<<

Appendices A. List of mathematical symbols 449

A. List of mathematical symbols

Chapter 2

Table A.I. List of symbols for Chapter 2

Symbol Meaning Where defined

A Aperture stop Fig. 2.6

aI, a2" . Coefficients for the definition of a centered surface Eq. (2.13)

aE, bE, CE Positions of the Ramsden disk in a refracting Fig. 2.8 telescope

b Distance from the pole of MI to the final image Fig. 2.11, in a 2-mirror telescope Fig. 2.12, Eq. (2.65)

b Normalized value of b Eq. (2.87)

C Beam compression factor Fig. 2.8, Eq. (2.39)

C Curvature of a surface = 1/r Eq. (2.13) (see surface number v)

Cl Velocity of light in wavefront propagation Fig. 2.3, Eq. (2.11)

D Effective diameter (aperture) of a system; diame- § 2.2.6 ter of the entrance pupil

(DAXh Axial beam diameter of M2 in a 2-mirror telescope Eq. (2.93)

(DTOTh Full diameter of M2 in a 2-mirror telescope Eq. (2.93)

d Axial distance between a given surface of a system Fig. 2.11, and the next surface (see surface number v) Fig. 2.12, Eq. (2.37)

E, E' Entrance, exit pupil of a system Fig. 2.6

F, F' Object, image focal point of a system Fig. 2.1, Fig. 2.2

j, l' Object-side, image-side of a system Fig. 2.1, Fig. 2.2 450 Appendices

Table A.2. List of symbols for Chapter 2 (continued)

Symbol Meaning Where defined

J{, J~ Image-side focal lengths of M I , M2 in a 2- Eqs. (2.54), mirror telescope (2.55), (2.60)

H The Lagrange Invariant Fig. 2.5, Eq. (2.27)

H (suffix) Upper ray Fig. 2.1, Fig. 2.2

I, I' Axial object, image positions of a system Fig. 2.2

Object, image positions associated with an up• Fig. 2.2, per ray Fig. 2.5

Object, image positions associated with a Fig. 2.8 lower ray

h, I~ Primary and secondary axial image points in Fig. 2.11, a 2-mirror telescope Fig. 2.12

i, it Ray incident angles to a surface before, after Eq. (2.15), refraction or reflection (see surface number v) Eq. (2.36)

K Optical power of a system or element Eqs. (2.22), (2.51), (2.53)

L Back focal distance in a 2-mirror telescope Fig. 2.11, (distance from the secondary to the image) Fig. 2.12 Eq. (2.61), Eq. (2.72)

L (suffix) Lower ray Fig. 2.8

LTP Light Transmission Power (Throughput) Eq. (2.47)

I (suffix) The last surface of a system before the image Eq. (2.38)

M Mirror (see surface number v) Fig. 2.11, Fig. 2.12

The primary and secondary mirrors of a 2- Fig. 2.11, mirror telescope Fig. 2.12 A. List of mathematical symbols 451

Table A.3. List of symbols for Chapter 2 (continued)

Symbol Meaning Where defined

m Magnification of a system Eqs. (2.1), (2.2), (2.23), Fig. 2.5

m2 Magnification of the secondary mirror of a 2- Eq. (2.55) mirror telescope

N Relative aperture, fino Eq. (2.104)

n, n I Refractive index in the object, image space of Fig. 2.2 a refracting or reflecting surface (see surface Eq. (2.11), number v) Eq. (2.12)

P, pi Object-side, image-side principal points of a Fig. 2.1, system Fig. 2.2

PH, P~ Object-side, image-side upper ray points defin- Fig. 2.1, ing with P, pi the principal planes of a system Fig. 2.2

PL, Pi Object-side, image-side lower ray points defin- Fig. 2.2 ing with P, pi the principal planes of a system

P The distance between the primary and sec- Fig. 2.11, ondary image in a 2-mirror telescope Fig. 2.12, Eq. (2.81), Eq. (2.84)

p (suffix) Denotes a field ray, or property thereof, which Fig. 2.5, cuts the axis at P or pi Fig. 2.6

pr (suffix) Denotes a principal ray, or property thereof, Fig. 2.6, which cuts the axis at E and EI Fig. 2.8

RA Axial obstruction ratio of a 2-mirror telescope Eq. (2.58), Eq. (2.72)

r Radius of curvature of a surface = lie (see sur- Eq. (2.13), face number v) Eq. (2.36) 452 Appendices

Table A.4. List of symbols for Chapter 2 (continued)

Symbol Meaning Where defined

Tl, T2'" Defined light rays Figs. 2.1, 2.2,2.4, 2.6,2.8

S Optical system Fig. 2.1, Fig. 2.6

S Scale of a telescope (arcsec/mm) Eq. (2.102)

S Inverse scale of a telescope (mm/arcsec) Eq. (2.103)

8, 8' Axial distance from an object, image to an imag- Figs. 2.2, ing surface or a principal plane (see surface num- 2.5,2.6, ber v) 2.11, 2.12, Eq. (2.4)

T True telephoto effect of a 2-mirror telescope rel- Eq. (2.57) ative to the length L

Tp Telephoto effect of a 2-mirror telescope relative Eq. (2.56) to the primary focal length f~

t Time (light propagation) Eq. (2.11) , u, u Ray angles to the axis before, after refraction or Fig. 2.5, reflection (see surface number v) Eq. (2.26)

W,W' Wavefront (or wavefront aberration) Fig. 2.3 before, after refraction or reflection

x, y, z Cartesian coordinate system (right-hand set): z § 2.2.1, is the axial distance, y the height in the principal § 2.2.3, section Eq. (2.13) , , x, y, z' Coordinates after refraction or reflection § 2.2.1, § 2.2.3, Eq. (2.13) A. List of mathematical symbols 453

Table A.S. List of symbols for Chapter 2 (concluded)

Symbol Meaning Where defined

rv Parameters for the folded Cassegrain case with Fig. 2.15, M2 plane (m2 = -1) Eqs. (2.97) - (2.100)

TJ, TJ' Height in the object, image plane Fig. 2.2, Fig. 2.5, Eq. (2.1), Eq. (2.23)

1/ (subscript) Counter number for system surfaces and parax- Eqs. (2.36) ial parameters, e.g. T." y." 8." d." n." i." U., - (2.38)

Chapter 3

Table A.6. Additional symbols for Chapter 3

Symbol Meaning Where defined

A, If Snell invariant for the paraxial aperture, princi• Eq. (3.19), pal ray (see surface number 1/) Eq. (3.20)

A Area of a circular aperture for diffraction Eq. (3.442) phenomena

A' Real area of a pupil, including vignetting Eq. (3.466)

A, Ao Common area, whole pupil area for a sheared Eq. (3.499) pupil

A, B Constants of a linear dispersion equation Eq. (3.316)

A, B Real, imaginary parts of the autocorrelation Eq. (3.503) function

As, Bs, Os, Supplementary aspherizing coefficients Eq. (3.77) Ds ... in the general definition of a surface 454 Appendices

Table A.7. Additional symbols for Chapter 3 (continued)

Symbol Meaning Where defined

Terms in equations for deriving decentering Eqs. (3.355) - (3.357)

Normalization constants for deriving Zernike § 3.9, polynomials Eq. (3.426)

Quantity calculated for the secondary as though Eq. (3.344) it were a primary in a Schiefspiegler

A (suffix) Pertaining to third order astigmatism for the Eq. (3.471) Strehl Intensity Ratio

a, b Semi-axes of an ellipse Eq. (3.4)

a Aspheric plate profile constant (defining its Eq. (3.221) )

a, b Upper and lower points of a Schmidt plate Fig. 3.27

(a), (b) Stop positions in a Fig. 3.36

Normalized amplitude of the object, image func• Eq. (3.485), tion (OTF) Eq. (3.486)

Afoe (suffix) Pertaining to the afocal form of a 2-mirror Eq. (3.98) telescope

Aplan (suffix) Pertaining to the aplanatic form of a 2-mirror Eq. (3.106) telescope

bs Schwarzschild (conic) constant Eq. (3.10)

Laux definition of conic parameter Eq. (3.79)

B (suffix) Pertaining to Bouwers' achromatic meniscus Eq. (3.311)

Bou (suffix) Pertaining to Bouwers-type meniscus Eq. (3.278)

BF (suffix) Best focus Eq. (3.185) A. List of mathematical symbols 455

Table A.S. Additional symbols for Chapter 3 (continued)

Symbol Meaning Where defined

C A constant in the diffraction integral Eq. (3.434)

Primary longitudinal, lateral chromatic Eq. (3.222), aberration Eq. (3.223)

Contrast for the object, image of a given spa• Eq. (3.483) tial frequency

C (suffix) Pertaining to chromatic aberrations Eq. (3.222), Eq. (3.223)

C (suffix) Pertaining to a concentric surface Fig. 3.36

C (suffix) Pertaining to third order coma for the Strehl Eq. (3.471) Intensity Ratio

Comat, Coma. Tangential, sagittal coma Fig. 3.18, Eq. (3.196), Eq. (3.197)

CFP (also suffix) Coma-free point § 3.7.2.3

cl (suffix) Pertaining to a classical 2-mirror telescope Eq. (3.93)

DK (also suffix) Dall-Kirkham form of a 2-mirror Cassegrain § 3.2.6.3(c) telescope

d Thickness of an aspheric or plane-parallel § 3.6.2.3 plate or filter; or of a meniscus or element of a corrector

dso Diameter of the circle containing 80% of the Table 3.15 geometrical energy in the point image (PSF)

d (suffix) Pertaining to defocus for the Strehl Intensity Eq. (3.471) Ratio

dec (suffix) Pertaining to Gaussian effects of transverse Eq. (3.422), despace, Le. lateral decenter Eq. (3.423) 456 Appendices

Table A.9. Additional symbols for Chapter 3 (continued)

Symbol Meaning Where defined

E Total energy incident on a circular aperture Eq. (3.442) for diffraction phenomena

EFC Effective field curvature Table 3.3, Eq. (3.164)

ExP (also suffix) Exit pupil in the theory of the CFP Eq. (3.381)

P Pupil function in autocorrelation theory of the Eq. (3.494) OTF

P* Complex conjugate of P Eq. (3.494)

P(c) Functions of c (obscuration factor) Eq. (3.482)

Pi (suffix) Pertaining to a plane-parallel plate or filter Eq. (3.253)

P P L (suffix) Pertaining to a field-flattening lens Eq. (3.259)

f (suffix) Pertaining to field aberration in a decentered Eq. (3.354) telescope

GP (suffix) Pertaining to the Gaussian focus Eq. (3.184)

g (suffix) Pertaining to the approximation of geometri- Eq. (3.507), cal optics for the MTF calculation Eq. (3.508)

HE Pupil position parameter (see surface number Eq. (3.19) 1/)

H8E Stop shift parameter Eq. (3.22)

1 Light intensity (Fresnel law) Eq. (3.269)

1 Intensity at point Q' (diffraction PSF) Eq. (3.435)

10 Intensity at point Q~ on the principal ray Eq. (3.437) (diffraction PSF) A. List of mathematical symbols 457

Table A.lD. Additional symbols for Chapter 3 (continued)

Symbol Meaning Where defined

10 Intensity at point Qo on the principal ray in the Eq. (3.458) absence of aberrations (Strehl Intensity Ratio)

1 (suffix) Pertaining to the image (Fourier transform Eq. (3.504) theory)

Fourier transform of intensity function 1 Eq. (3.505)

Bessel functions of the zero and first orders Eq. (3.440), Eq. (3.441)

k A constant (27r / >.) in the diffraction integral Eq. (3.434)

Coefficients of the Hamilton Characteristic Eq. (3.14), Function Eq. (3.16)

Dimensionless profile constant for an aspheric Eq. (3.238) (Schmidt) plate

kz "Ripple" amplitude (for Strehl Intensity Ratio) Eq. (3.479)

Fraction of the total energy enclosed within the Eq. (3.448) diffraction angle w

L. The complex OTF Eq. (3.487) LSF Line Spread Function Eq. (3.493)

l, m, n Integers involved in the definition of the Char• Eq. (3.16) acteristic Function

I, m, n, S Integers involved in the definition of Zernike ra• Eq. (3.431) dial polynomials

Folding flat mirror at an intermediate image; or Fig.3.72(b), a Newton-type flat Eq. (3.76)

MTF Modulation Transfer Function Eq. (3.484)

M (suffix) Pertaining to a Maksutov solution Fig. 3.36 458 Appendices

Table A.H. Additional symbols for Chapter 3 (continued)

Symbol Meaning Where defined

Magnification of an aspheric plate imaged back Eq. (3.221) to object space

Minimum magnification in order to reveal Eq. (3.451) diffraction resolution to the eye

Parameter for MTF calculations Fig. 3.112, Eq. (3.506)

m+ (suffix) Pertaining to the right-hand part of an achro• Fig. 3.48, matic meniscus Eq. (3.307)

men (suffix) Pertaining to a meniscus corrector Eq. (3.270)

Order number in the Characteristic Function Table 3.1

Ns Aperture number of a surface used afocally with Eq. (3.82) object at infinity

n Degree of polynomial V (Zernike polynomials) Eq. (3.427)

nz Number of complete "ripple" zones (Strehl In• Eq. (3.479) tensity Ratio)

Total number of powered surfaces in an ii-mirror § 3.6.5.2 system (see surface number 1/)

0' Axial image point for diffraction phenomena Fig. 3.99

OTF Optical Transfer Function § 3.10.7

o (suffix) Pertaining to the object (Fourier transform Eq. (3.504) theory)

opt (suffix) Optimum image surface § 3.6.4.1 Fig. 3.46

Petzval sum (see surface number 1/) Eq. (3.19) A. List of mathematical symbols 459

Table A.12. Additional symbols for Chapter 3 (continued)

Symbol Meaning Where defined E Phase Function (OTF) Eq. (3.502) PF Prime focus case § 3.2.6.2

PSF Point Spread Function § 3.10.7

P (suffix) Pertaining to a plane surface Fig. 3.36

P (suffix) Pertaining to the condition for the CFP to be at Eq. (3.382), the exit pupil in an aplanatic 2-mirror telescope Eq. (3.383)

PH (suffix) Pertaining to the plateholder Eq. (3.262)

Pi Aspheric plate Fig. 3.42

p Pupil magnification for a surface of an all- § 3.6.5, reflecting system (see surface number v) Eq. (3.317)

p, q Differences of the first two direction cosines of Eq. (3.434) the incident and diffracted waves

p, q, r Cartesian coordinate system of Q referred to the § 3.10.5 principal ray (Strehl Intensity Ratio)

p Phase shift with transfer of a sinusoidal wave Fig. 3.107

ptv Peak-to-valley wavefront aberration Table 3.27

pl (suffix) Pertaining to an aspheric plate Eq. (3.219)

Q~ A Gaussian image point (image "centre" on the Fig. 3.99 principal ray) in the image plane for diffraction phenomena , , Q A point near Qo in the diffraction PSF Fig. 3.99

Qo, Q Simplified forms (without primes) of Q~, Q' § 3.10.5, Eq. (3.458) 460 Appendices

Table A.l3. Additional symbols for Chapter 3 (continued)

Symbol Meaning Where defined

Q (suffix) Pertaining to the PSF of image point Q (Fourier Eq. (3.504) transform theory)

q Number of a Seidel aberration (I ... V) Eq. (3.18)

R Distance from the exit pupil to Qo (radius of the § 3.10.5 reference sphere)

R(p) A function only of p and equal to V(p, 0) (Zernike Eq. (3.427) polynomial)

E Real part of the OTF, i.e. the MTF Eq. (3.487)

RC Ritchey-Chretien form of a 2-mirror Cassegrain § 3.2.6.3(b) telescope

rc Optimum radius of curvature of the field Fig. 3.4

rms Root-mean-square wavefront aberration Table 3.27

rot (suffix) Pertaining to angular decenter of the secondary in Eq. (3.374) a 2-mirror telescope

Sq Seidel surface contribution to Seidel aberration q Eq. (3.18)

S+q Seidel term including stop shift Eq. (3.22)

SOq Basic (power) part of a Seidel term Eq. (3.24)

S·q Aspheric part of a Seidel term Eq. (3.24)

oSj Contribution of an aspheric plate to the third or- Eq. (3.219) der spherical aberration

SP Spherical Primary form of a 2-mirror Cassegrain § 3.2.6.3(d) telescope

S (suffix) Pertaining to a laterally decentered 2-mirror tele- Eq. (3.352) scope treated as a Schiefspiegler A. List of mathematical symbols 461

Table A.14. Additional symbols for Chapter 3 (continued)

Symbol Meaning Where defined

8 1 , 8 2 (suffix) Pertaining to third, fifth order spherical aberra- Eq. (3.471) tion for the Strehl Intensity Ratio

Spr1 Distance of the entrance pupil from the first Eq. (3.25) surface

Spl Stop shift of an aspheric plate relative to the Eq. (3.219) primary

Quantity calculated for the secondary as though Eq. (3.344) it were a primary in a Schiefspiegler

s, t Spatial frequency of the object or image function Eq. (3.485) in the e, TJ directions (MTF)

sol (suffix) Pertaining to a solid Schmidt § 3.6.4.1

T (suffix) Pertaining to wavefront tilt for the Strehl Inten• Eq. (3.471) sity Ratio

TO, 0 (suffix) Pertaining to a 2-mirror telescope of general or Eq. (3.386), SP form with zero lateral (translation) decenter• Eq. (3.389) ing coma

t, s, m Tangential, sagittal and mean astigmatic sur• Fig. 3.20, faces, foci or sections Fig. 3.21

tot (suffix) Pertaining to the total aberration (coma) defin• Eq. (3.377) ing neutral points (decenter)

U, U' Angles of finite rays to the axis Fig. 3.2, Eq. (3.83)

U(Q') The complex amplitude at Q' (diffraction Eq. (3.434) theory)

bu~ Angular aberration referred to the principal § 3.1 plane

Aplanatic parameter (see surface number v) § 3.2.2, Eq. (3.19) 462 Appendices

Table A.15. Additional symbols for Chapter 3 (continued)

Symbol Meaning Where defined

Normalized diffraction angle (kqYm) in the Y• Eq. (3.435), direction Eq. (3.436)

il, v Normalized ( "optical" ) coordinates of Q re• § 3.10.5" ferred to the principal ray (diffraction theory)

Typical orthogonal polynomials of a set § 3.9, (Zernike polynomials) Eq. (3.426)

w~ Third order wavefront aberration Eq. (3.21) , W Full wavefront aberration taking account of Eq. (3.192) cosn

Mean of the square of the wavefront aberration § 3.9, (footnote 8)

Square of the mean wavefront aberration § 3.9, (footnote 8)

Wq The wavefront aberration associated with Q Eq. (3.459)

Average value of the nth power of W q Eq. (3.461)

6.Wq Root-mean-square (rms) wavefront aberration Eq. (3.470) (Wq)rms

W Angular separation in the image plane of the § 3.10.3 point Q' from Q~ (diffraction theory)

Normalized form of the diffraction angle w Eq. (3.444)

Wo Radius (angular) of the first dark ring in the Eq. (3.446) Airy disk

Angular resolution according to Rayleigh Eq. (3.449) A. List of mathematical symbols 463

Table A.16. Additional symbols for Chapter 3 (continued)

Symbol Meaning Where defined

x, Y Coordinates in the pupil for diffraction Fig. 3.99 phenomena

X m , Ym Slit dimensions for diffraction at a slit Fig. 3.99

Y, Y' Heights of finite rays from the axis Eq. (3.84)

Ym Normalized aperture parameter Eq. (3.21)

Z (suffix) Pertaining to "ripple" Eq. (3.479)

Table A.17. Additional symbols for Chapter 3 (continued)

Symbol Meaning Where defined

Q, (3 (suffix) Pertaining to two glasses of an achromatic § 3.6.2.6, Schmidt plate Eq. (3.267)

8 Lateral (transverse) decenter of the secondary in § 3.7.2.1 a 2-mirror telescope

8 (suffix) Pertaining to a laterally decentered 2-mirror Eq. (3.352) telescope treated as a Schiefspiegler

Kronecker symbol (Zernike polynomials) § 3.9, Eq. (3.426)

Eccentricity of a conic Eq. (3.6)

Obscuration (obstruction) factor for diffraction § 3.10.4, phenomena at an annular aperture Eq. (3.453)

Error in the sine condition Eq. (3.166) 464 Appendices

Table A.IS. Additional symbols for Chapter 3 (continued)

Symbol Meaning Where defined

( Parameter for Seidel spherical aberration of the Eq. (3.30) primary mirror of a 2-mirror telescope

Basic (power), aspheric component of ( Eq. (3.30)

(, r/, { Cartesian coordinate system in the image plane Fig. 3.99 for diffraction phenomena

Linear resolution according to Rayleigh Eq. (3.450) , TJm Normalized field parameter Eq. (3.21)

Object coordinates in OTF theory § 3.10.7

Image coordinates in OTF theory § 3.10.7

Wavelength (spectral) § 3.5

AZ Normalized "ripple" wavelength Eq. (3.479)

Spatial wavelength in OTF theory (lis or lit) Fig. 3.107

Reciprocal of magnification m (see surface num- Eq. (3.332) ber v)

Reciprocal of pupil magnification p (see surface Eq. (3.332) number v)

Quantity calculated for the secondary as though Eq. (3.344) it were a primary in a Schiefspiegler

Abbe number for an optical glass § 3.6.2.6 Eq. (3.244), Eq. (3.252), Fig. 3.32

Parameter for Seidel spherical aberration of the Eq. (3.40) secondary mirror of a 2-mirror telescope A. List of mathematical symbols 465

Table A.19. Additional symbols for Chapter 3 (concluded)

Symbol Meaning Where defined

Basic (power), aspheric component of e Eq. (3.40)

{ See coordinate system (" r-,', { above

{ See coordinate system r-,', { above

P Normalized aperture radius § 3.2.1

P A point in a circular pupil for diffraction § 3.10.3 phenomena

Pm Radius of a circular pupil for diffraction § 3.10.3, phenomena Eq. (3.442)

a Normalized field radius § 3.2.1

T Aspheric form parameter (see surface number v) § 3.2.2, Eq. (3.19)

T Magic number of Pythagoras and Fibonacci Fig. 3.5, Eq. (3.129)

¢ Azimuth angle containing an aperture ray and a § 3.2.1 principal ray in the image forming wavefront

¢, 'Ij; Azimuth angles in the pupil, image coordinate § 3.10.3 systems for diffraction phenomena

Convolution symbol (Fourier transform Eq. (3.504) relations) et seq. 466 Appendices

Chapter 4

Table A.20. Additional symbols for Chapter 4

Symbol Meaning Where defined

ADC Atmospheric Dispersion Corrector § 4.4

b Barometric pressure (mbar) Eq. (4.91)

cor (suffix) Pertaining to the properties of a lens corrector § 4.3.1.1, ("central" contributions) Eq. (4.27)

E Pupil position parameter in a normalized tele• Eq. (4.4) scope system with corrector

F R (also suffix) Focal reducer § 4.5

FE (also suffix) Focal extender § 4.5

FF (suffix) Pertaining to a field flattener Eq. (4.15)

9 Distance of an aspheric plate field corrector Eq. (4.2), from the image Fig. 4.2, Fig. 4.5

gh (suffix) Pertaining to ghost images from a plane• Eq. (4.1), parallel plate Fig. 4.1

h Height of the equivalent homogeneous Eq. (4.93) atmosphere

L (suffix) Pertaining to a thin corrector lens Eq. (4.52)

L 1 , L2 (suffix) Pertaining to the first, second thin lens of a Eq. (4.73) 2-lens corrector

MFC (also suffix) Mean field curvature, i.e. the EFC in the pres- Eq. (4.13) ence of a field corrector A. List of mathematical symbols 467

Table A.21. Additional symbols for Chapter 4 (continued)

Symbol Meaning Where defined , n Refractive index of a single corrector lens Eq. (4.71)

n~, n~ Refractive indices of doublet corrector Eq. (4.81) with two different glasses

na Effective refractive index of the atmosphere Eq. (4.92)

P (suffix) Pertaining to an aspheric plate or an effective Eq. (4.54), plate formed by an aspheric surface on a correc- Eq. (4.60) tor lens

PP (suffix) Pertaining to a plane-parallel plate Eq. (4.16)

1pl (suffix) Pertaining to a I-plate corrector Eq. (4.21) et seq.

2pl (suffix) Pertaining to a 2-plate corrector Eq. (4.21) et seq.

R Radius of the Earth Eq. (4.93)

real (suffix) Pertaining to real values of aperture and field § 4.2.2.2 compared with the normalized case (end of section)

81/ Simplified notation for the spherical aberration Eq. (4.5) contribution (88i)1/ for aspheric plate number v

fJ.8II, fJ.8II I Changes in telescope contributions to 8 II, 8 II I Eq. (4.75) due to free aspheric constants combined with a lens corrector

Tel (suffix) Pertaining to the contribution of the telescope Eq. (4.67) without its corrector

t Absolute temperature (OK) Eq. (4.91)

u A simplifying parameter defined as a function of Eq. (4.44) f', constant for a given telescope geometry 468 Appendices

Table A.22. Additional symbols for Chapter 4 (concluded)

Symbol Meaning Where defined

V A simplifying parameter defined as a function Eq. (4.44) of 1', dl, L, constant for a given telescope geometry

V Dispersion vector produced by a prism (ADC) Fig. 4.25

XL, YL Shape, magnification parameters for the Seidel Eq. (4.52) aberrations of a thin corrector lens

Z Zenith distance (angle) Eq. (4.91)

Q Rotation angle of ADC prisms Fig. 4.25

figh Ghost image displacement in the image plane Eq. (4.1), (plane-parallel plate) Fig. 4.1

¢ref Angular atmospheric refraction Eq. (4.91)

fi¢refl,2 Atmospheric dispersion between wavelengths 1 Eq. (4.94) and 2

• (superscript) Pertaining to the total aberration induced by a Eq. (4.55) corrector lens with an aspheric surface

Chapter 5

Table A.23. Additional symbols for Chapter 5

Symbol Meaning Where defined

Cp Curvature (vertex) of a parabola (figuring) Eq. (5.2)

Cs Curvature of a sphere (figuring) Eq. (5.2)

ES (suffix) "Equal slope" case (figuring) Eq. (5.3) B. Portrait gallery 469

B. Portrait gallery

This Portrait Gallery is intended to give the basic biographical information of 26 great scientific and technical contributors to the historical development of optics. Such a choice is inevitably personal and to some extent arbitrary. I have chosen the personalities listed below because of their contributions to the form, the theory and the optical quality of the reflecting telescope.

Marin Mersenne Born: 1588, Oize, France Died: 1648, Paris

Mersenne invented the afocal forms of the 2-mirror telescope, fun• damental to modern theory. He worked closely with Descartes. Re• cent historical research (see under "Cassegrain" overleaf) has revealed that he also invented other basic forms of reflecting telescope. (Cour• tesy Deutsches Museum, Munich)

Rene Descartes Born: 1596, La Haye, France Died: 1650, Stockholm

Descartes used his analytical geom• etry to lay down the mathematical principles for the axial monochro• matic correction of images in both mirror and lens systems. This estab• lished all forms of the classical re• flector (parabolic primary). (Cour• tesy Deutsches Museum, Munich) 470 Appendices

No portrait of Cassegrain is known. Laurent Cassegrain The biographical details given in the Born: 1628-1629, in or near original edition, taken from Robert Chartres, France "Dictionnaire des Noms Propres", Died: 1693, Chaudon, near Nogent• were incorrect, due apparently to a le-Roi (Eure-et-Loire) confusion between Cassegrain and J. D. Cassini. New historical research Cassegrain invented the 2-mirror by A. Baranne and F. Launay has telescope form which has become revealed at last definitive information the definitive focal form for mod• on the indentity of Cassegrain.* ern telescopes. Mersenne had al• ready invented the equivalent afo• cal form, and, though this has re• mained largely unknown, also the focal forms of both Gregory and Cassegrain. *

James Gregory Born: 1638, Aberdeen, Scotland Died: 1675, Edinburgh

Gregory is rightly considered the inventor of the 2-mirror telescope in focal (Gregory) form. Mersenne had already invented the equivalent afocal form. (Courtesy Royal As• tronomical Society, through Peter Ringley)

* A. Baranne, F. Launay, 1997, "Cassegrain: un celebre inconnu de l'astronomie instrumentale", J. Opt. 28, 158-172. I am delighted and proud that questions I addressed to my French colleagues, above all Andre Baranne, concerning the identity of Cassegrain for this portrait gallery have resulted in this superb piece of historical research, mainly regarding Cassegrain but also with largely unknown information concerning the remarkable work of Mersenne. If a birth certificate of Cassegrain can be found (the search is continuing, I believe), the basic biographical information will be complete. B. Portrait gallery 471

Isaac Newton Born: 1643, Woolsthorpe, England Died: 1727, Kensington

Newton invented the Newton form and made the first usable reflector. But his greatest contribution was his theory of chromatism, albeit in• correctly denying the possibility of achromatism. (Courtesy Deutsches Museum, Munich)

William Herschel Born: 1738, Hannover, Germany Died: 1822, Slough

Herschel realised the "front view" form, but his greatest contribution was in advancing the technology to increase size and optical qual• ity. (Courtesy Deutsches Museum, Munich) 472 Appendices

Carl Friedrich Gauss Born: 1777, Braunschweig, Germany Died: 1855, Gottingen

Gauss gave a complete mathemat• ical exposition of the first order (Gaussian) theory of optical imag• ing. This was essential for the devel• opment of aberration theory. (Cour• tesy Deutsches Museum, Munich)

Joseph von Fraunhofer Born: 1787, Straubing, Germany Died: 1826, Munich

F'raunhofer's main contributions were to the development of the re• fractor. But his advances in optical glass technology, testing and figur• ing, as well as the application of ray tracing and diffraction theory, all helped the advance of the reflector to its many modern forms. (Cour• tesy Deutsches Museum, Munich) B. Portrait gallery 473

William Lassell Born: 1799, Bolton, England Died: 1880, Maidenhead

Lassell was above all a great maker of telescopes. His greatest contribu• tion to the advance of the reflec• tor was his invention of the astatic lever for mirror supports, a prin• ciple fundamental to improved im• age quality in large telescopes. He was the first to apply the equato• rial mount to a large reflecting tele• scope. (Courtesy National Museums and Galleries on Merseyside from an original Daguerreotype of 1845 owned by the Liverpool Astronom• ical Society, through Peter Hingley and Alan Bowden)

William Parsons Earl of Rosse Born: 1800, York, England Died: 1867, Dublin

Rosse, like Lassell, was principally a maker of telescopes and his contri• butions were mainly concerned with technological advance. He invented the lightweight mirror blank and successfully applied the "whiffle• tree" support principle of Thomas Grubb to his biggest telescope. (Courtesy Royal Astronomical Soci• ety, through Peter Hingley) 474 Appendices

William Rowan Hamilton Born: 1805, Dublin, Ireland Died: 1865, Dunsink

Hamilton's great contribution to telescope optics was his fundamen• tal work on the nature of the aber• ration function of a centered optical system, the basis for the theoretical work of Gauss, Petzval and von Sei• del. (Courtesy Deutsches Museum, Munich)

Joseph Petzval Born: 1807, Szepesbela, Hungary Died: 1891, Vienna

Petzval was probably the first to develop third order aberration the• ory and was a great designer of early photographic optics. His field• curvature theorem (Petzval curva• ture) is fundamental to telescope optics and optical systems in gen• eral. (Courtesy Deutsches Museum, Munich) B. Portrait gallery 475

James N asmyth Born: 1808, Edinburgh, Scotland Died: 1890, London

N asmyth was another great maker of reflectors. He invented the N as• myth form and, in applying it, con• structed one of the first successful Cassegrain telescopes of appreciable size. (Courtesy Deutsches Museum, Munich)

Leon Foucault Born: 1819, Paris, France Died: 1868, Paris

Foucault was largely responsible for the triumph of silvered glass mirrors over speculum for reflectors. Equally important was his invention of the "knife-edge" test of mirror quality, a great advance in image quality im• provement. He also developed the coelostat form of telescope. (Cour• tesy Deutsches Museum, Munich) 476 Appendices

Ludwig von Seidel Born: 1821, Zweibriicken, Germany Died: 1896, Munich

Seidel was the first to formulate and publish an explicit practical form for calculating the five monochro• matic third order (Seidel) aberra• tions. This theory was later ap• plied systematically to reflecting telescopes by Schwarzschild. (Cour• tesy Deutsches Museum, Munich)

Ernst Abbe Born: 1840, Eisenach, Germany Died: 1905, Jena

Abbe was one of the great contrib• utors to the development of opti• cal design and aberration theory. Particularly important in telescope optics is the Abbe sine condition, defining freedom from coma. (Cour• tesy Deutsches Museum, Munich) B. Portrait gallery 477

George Ritchey Born: 1864, Meigs County, Ohio, USA Died: 1945, Azusa, California

Ritchey was a practical genius rather than a great theoretician, but he developed deep understanding of the theoretical requirements of re• flecting telescopes. His encourage• ment of, and association with, Chre• tien produced the Ritchey-Chretien form, the modern form of 2-mirror aplanatic telescope. His advances in figuring and test technology were also a major contribution. (Courtesy U.S. Naval Observatory, through Brenda Corbin)

Karl Schwarzschild Born: 1873, Frankfurt/Main, Germany Died: 1916, Potsdam

In 1905 Schwarzschild formulated the complete third order aberra• tion theory of 1- and 2-mirror tele• scopes. Furthermore, his formula• tion can be extended to any system and forms the basis of all modern reflecting telescope optics. He also developed a practical "Eikonal" the• ory giving the total aberration at a given field point. (Courtesy Martin Schwarzschild) 478 Appendices

Bernhard Schmidt Born: 1879, Naissaar Island, Estonia Died: 1935, Hamburg

Schmidt was the first to realise the full significance of stop shift from the primary if combined with an aspheric refracting plate. This has led not only to the famous Schmidt wide-field telescope, but also to a whole range of modern telescope forms using aspheric plates. (Cour• tesy Hamburg Observatory, through Christian de Vegt)

Henri Chretien Born: 1879, Paris, France Died: 1956, Washington

Chretien was a great optical de• signer who invented, among other optical systems, the principle of Cinemascope. In association with Ritchey, he set up in 1910 the design of the aplanatic Ritchey-Chretien telescope, apparently before learn• ing of Schwarzschild's work. (Cour• tesy Observatoire de la Cote d'Azur, through Franc;oise Ie Guet Tully) B. Portrait gallery 479

Frits Zernike Born: 1888, Amsterdam, Holland Died: 1966, Naarden

Zernike made major contributions to diffraction theory and received the Nobel prize in physics for his invention of phase-contrast micro• scopy. In telescope optics, his great• est contribution was the derivation of the Zernike circle polynomials, of fundamental importance in op• tical design and specification be• cause of their orthogonal properties. (Courtesy Rijksuniversiteit Gronin• gen, through H. J. Frankena, TV Delft)

Maurice Paull Born: 1890, Fontainebleau, France Died: 1981, Cervens, Haute Savoie

Paul has been largely forgotten, even in France, but he wrote in 1935 a classical paper on modern re• flector optics. A pupil of Chretien, he proposed the fundamental form of 3-mirror anastigmat and crit• ically analysed the scope of as• pheric plates and lenses for field correctors. (Courtesy Claude Paul, through Andre Baranne)

1 The biographic details of Maurice Paul were the most difficult to obtain of all the personalities in this portrait gallery. I am deeply grateful to Andre Baranne (Marseille) for a veritable detective work; also to Fran<;oise Ie Guet Tully (Nice), Marie-Jose Vin (OHP) and Franc;oise Chavel (Ecole Superieure d'Optique, Paris) for valuable information. 480 Appendices

Albert Bouwers Born: 1893, Dalen, Holland Died: 1972

Bouwers invented the "concentric meniscus" wide-field telescope, the most fundamental of all forms. In the 1940s and 1950s, various de• sign variations by Bouwers and oth• ers produced a new family of tele• scope designs. (Courtesy Delft In• struments NV, formerly de Oude Delft NV, through H. J. Frankena, TU Delft)

Dimitri Maksutov Born: 1896, Odessa, Ukraine Died: 1964, Leningrad

Maksutov invented independently of Bouwers the meniscus telescope that bears his name. Above all for am• ateurs, but also for smaller pro• fessional telescopes, the Maksutov form has been widely used. Mak• sutov ranked as a general expert on telescope optics. His experiments with metal mirrors were particularly notable. (Courtesy Rolf Riekher) B. Portrait gallery 481

Andre Couder Born: 1897, Alenr,;on, France Died: 1979, Paris

Couder contributed in a major way to nearly every aspect of telescope optics. He invented the 2-mirror Couder anastigmat, a development of the Schwarz• schild telescope. He also invented "Null Testing" and advocated metal mirrors from practical ex• periments. The "Couder law" is the fundamental law of pri• mary mirror supports. (Courtesy Charles Fehrenbach)

James Baker Born: 1914, Louisville, Kentucky, USA

Baker is the doyen of living op• tical designers of telescope op• tics. His contributions are vast both in scope and significance. Among the greatest designs are the Baker-Schmidt-Cassegrains; the Paul-Baker 3-mirror flat- field tele• scope; a 3-mirror, 2-axis concept; the "reflector corrector", and the Baker-Nunn Super-Schmidt. He is one of the giants in the history of re• flecting telescope optics. (Courtesy J ames Baker) References

General

1. Bahner, K., 1967, "Teleskope" in Handbuch der Physik, Vol. XXIX, Springer Verlag, Heidelberg, 227-342 2. Born, M., Wolf, E., 1987, "Principles of Optics", 6th ed., Pergamon Press, Oxford 3. Czapski, S., Eppenstein, 0., 1924, "Grundziige der Theorie der optischen Instrumente", 3. Aufl., J.A. Barth, Leipzig 4. Danjon, A., Couder, A., 1935, "Lunettes et Telescopes", reissued 1983, Blanchard, Paris 5. Gascoigne, S.C.B., 1968, "Some Recent Advances in the Optics of Large Telescopes", Quart. J. Roy. Astron. Soc., 9, 98 6. Herzberger, M., 1958, "Modern Geometrical Optics", Interscience Publishers, New York 7. Hopkins, H.H., 1950, "Wave Theory of Aberrations", Oxford 8. King, H.C., 1955, "The History of the Telescope", Griffin, London 9. Korsch, D., 1991, "Reflective Optics", Academic Press, San Diego 10. Laux, U., 1993, "Astrooptik", Verlag Sterne u. Weltraum, Miinchen, Taschenbuch 11 11. Marechal, A., Franc;on, M., 1960, "Diffraction: Structure des Images", Vol. 2, Editions de la Rev. d'Opt., Paris 12. Michelson, N.N., 1976, "Optical Telescopes: Theory and Design", published by "NAUKA" (Mathematical and Physical Section), Moscow. (In Russian) 13. Osterbrock, D.E., 1993, "Pauper and Prince: Ritchey, Hale and Big American Telescopes", Univ. of Arizona Press, Tucson and London 14. Riekher, R., 1990, "Fernrohre und ihre Meister", 2. Aufl., Verlag Technik GmbH, Berlin 15. Rutten, H.G.J., van Venrooij, M.A.M., 1988, "Telescope Optics", Willmann-Bell, Richmond, VA, USA 16. Schroeder, D.J., 1987, "Astronomical Optics", Academic Press, San Diego 17. Welford, W.T., 1974, "Aberrations of the Symmetrical Optical System", Academic Press, London (2nd ed., 1986, Adam Hilger, London) 18. Wetherell, W., 1980, "Applied Optics and Optical Engineering", Vol. 8, Academic Press, New York, Chap. 6, 171-315

Chapter 1

1.1 King, H.C., 1955, "The History of the Telescope", Griffin, London 1.2 Riekher, R., 1957, "Fernrohre und ihre Meister", 1. Aufl., Berlin; 1990, 2. Aufl., Verlag Technik GmbH, Berlin 484 References

1.3 Danjon, A., Couder, A., 1935, "Lunettes et Telescopes", reissued 1983, Blanchard, Paris 1.4 Grant, R., 1852, "History of Physical Astronomy", H.G. Bohn, London, 514 1.5 Martin, L.C., 1950, "Technical Optics", Vol. II, Pitman, London, 303 1.6 Schwarzschild, K., 1905, Abh. der Konigl. Ges. der Wissenschaften zu Gottingen, Bd. IV (2) 1.7 Czapski, S., Eppenstein, 0., 1924, "Grundziige der Theorie der optischen Instrumente", 3. Aufi., J.A. Barth, Leipzig, 454 1.8 Wolter, H., 1952, Ann. Phys., 10, 94 and 286 1.9 Herschel, W., 1800, Phil. Trans. Royal Society, 90,49

Chapter 2

2.1 della Porta, Giambattista, 1589, "Magia Naturalis", Naples, Book 17 of the revised edition from the original of 1558 2.2 Riekher, R., 1990, "Fernrohre und ihre Meister", 2. Aufi., Verlag Technik GmbH, Berlin, 16 2.3 Welford, W.T., 1974, "Aberrations of the Symmetrical Optical System", Academic Press, London (2nd ed., 1986) 2.4 Gauss, C.F., 1841, "Dioptrische Untersuchungen", Gottinger Abh., 1 2.5 Born, M., Wolf, E., 1964, "Principles of Optics", 2nd ed., Pergamon Press, Oxford 2.6 Schroeder, D.J., 1987, "Astronomical Optics", Academic Press, San Diego 2.7 Herzberger, M., 1958, "Modern Geometrical Optics", Interscience Publishers, New York 2.8 Hansen, G., 1950, Optik, 6, 337 2.9 Miitze, K. et aI., 1961, "ABC der Optik", Brockhaus Verlag, Leipzig, 477 2.10 Zimmer, H.G., 1970, "Geometrical Optics", Springer Verlag, Heidelberg, 5

Chapter 3

3.1 Schwarzschild, K., 1905, Gottinger Abh, Neue Folge, Band IV, No.1, "Untersuchungen zur geometrischen Optik", I, II, III 3.2 Hamilton, W.R., 1833, Report Brit. Assoc., 3, 360 3.3 Hopkins, H.H., 1950, "Wave Theory of Aberrations", Oxford 3.4 Seidel, L., 1856, Astron. Nachr., 43, 289 3.5 Bahner, K., 1967, "Teleskope" in Handbuch der Physik, Vol. XXIX, Springer Verlag, Heidelberg, 227-342 3.6 Welford, W., 1974, "Aberrations of the Symmetrical Optical System", Academic Press, London 3.7 Herzberger, M., 1958, "Modern Geometrical Optics", Interscience Publishers, New York, (a) 82, 457 3.8 Laux, U., 1993, "Astrooptik", Verlag Sterne u. Weltraum, Miinchen, Taschenbuch 11, (a) 150, (b) 78, 101 3.9 Abbe, E., 1873, Schultzes Arch. f. mikr. Anat., 9, 413-468 3.10 Clausius, R., 1864, Pogg. Ann., 121, 1-44 3.11 Czapski, S., Eppenstein, 0, 1924, "Grundziige der Theorie der optischen Instrumente", 3. Aufl., J. A. Barth, Leipzig, (a) 229, (b) 242, (c) 513, (d) 295 3.12 Rutten, H.G.J., van Venrooij, M.A.M., 1988, "Telescope Optics", Willmann-Bell, Richmond, VA, USA, (a) 65, (b) 272, (c) 96, (d) 103, (e) 98, (f) 109, (g) Chap. 13, (h) 132, (i) 133-135, (j) Chap. 12 References 485

3.13 Wilson, RN., 1994, "Karl Schwarzschild Lecture of the German Astronomical Society", Bochum, 1993, Reviews in Modern Astronomy, 7, 1 3.14 Chretien, H., 1922, Rev. d'Opt., 1, 13, 19 3.15 Theissing, H., Zinke, 0., 1948, Optik, 3 (5/6), 451 3.16 Krautter, M., 1986, SPIE Vol. 655, 127 3.17 Wolter, H., 1952, Ann. der Physik, 6. Folge, 10, 94, 286 3.18 Kirkham, A. R, 1951, Sci. Amer., 185, 118 3.19 Wilson, P.L, 1995, J. theor. Biol., 177, 315 3.20 Bravais, L., Bravais, A., 1839, Ann. Sci. Nat. Bot., (Paris), 12, 5, 65 3.21 Chretien, H., 1959, "Calcul des Combinaisons Optiques", Ecole Superieure d'Optiques, Paris, 385 3.22 Schroeder, D.J., 1987, "Astronomical Optics", Academic Press, San Diego, (a) 151, (b) 114, (c) 276, (d) 110, (e) 113, (f) 189, (g) 192, (h) Chap. 11 3.23 Dimitroff, G.Z., Baker, J.G., 1945, "Telescopes and Accessories", Blakiston, New York, (a) 294, (b) 102, (c) 107, (d) 105, (e) App. VII, 295 3.24 Danjon, A., Couder, A., 1935, "Lunettes et Telescopes", reprinted 1979 by Blanchard, Paris, (a) 192-195 and Fig. 83, (b) 206 3.25 Couder, A., 1926, C.R. Acad. Sci. Paris, 183 (II), 1276 3.26 Marechal, A., Fran<;on, M., 1960, "Diffraction: Structure des Images", Vol. 2, Editions de la Rev. d'Opt., Paris, (a) 152, (b) 105, (c) 108, (d) 116, (e) 127, (f) Chap. 2, (g) 136, (h) 25,40, (i) 34, (j) 39 3.27 Nijboer, B.RA., 1942, Thesis, Univ. of Groningen; 1947, Physica, 10, 679, and 13, 605 3.28 Burch, C.R., 1942, MNRAS, 102, 159 3.29 Linfoot, E.H., 1955, "Recent Advances in Optics", Oxford 3.30 Konig, A., Kohler, H., 1959, "Die Fernrohre und Entfernungsmesser", 3. Aufl., Springer Verlag, Heidelberg, (a) 152, (b) 157, (c) 158, (d) 159 3.31 Schmidt, B., 1931, Centro Ztg. f. Opt. U. Mech., 52, 25 3.32 Bouwers, A., 1946, "Achievements in Optics", Elsevier, Amsterdam, 25 3.33 Harrington, RG., 1952, PASP, 64, 275 3.34 Richter, N., 1961, Sterne, 37, 89 3.35 Piazzi-Smyth, C., 1874, Brit. J. of Phot.-Alman., 43 3.36 Baker, J.G., 1940, Proc. Am. Phil. Soc., 82, 323; Harvard Reprint No. 198 3.37 Herzberger, M., 1956, Internat. Projectionist, 31, 7; 1957, JOSA, 47, 584 3.38 Maksutov, D.D., 1944, JOSA, 34, 270 3.39 Riekher, R., 1990, "Fernrohre U. ihre Meister", 2. Aufl., Verlag Technik, Berlin, (a) 335, (b) 332, (c) 334, (d) 342, (e) 335, (f) 345, (g) 232 et seq., (h) 318 3.40 Wright, F.B., 1935, PASP, 47, 300 3.41 Viiisiilii, y., 1936, Astron. Nachr., 259, 197 3.42 Viiisiilii, y., 1950, Turku Inform. No.6 3.43 Baker, J.G., 1940, Proc. Amer. Phil. Soc., 82, 339 3.44 Slevogt, H., 1942, Z. f. Instrumentenkunde, 62, 312 3.45 Linfoot, E.H., 1943, MNRAS, 103, 210 3.46 Kohler, H., 1949, Astron. Nachr., 278, 1 3.47 Linfoot, E.H., 1944, MNRAS, 104,48 3.48 Mackintosh, A., 1986, "Advanced Telescope Making Techniques", Vol. 1: Optics, Willmann-Bell, Richmond, VA, USA 3.49 Wright, F.B., 1953, " III", A.G. Ingalls ed., Scientific American, New York, 574 3.50 Hawkins, D.G., Linfoot, E.H., 1945, MNRAS, 105, 334 3.51 Gabor, D., 1941, Brit. Pat. No. 544694 486 References

3.52 Maxwell, J., 1972, "Catadioptric Imaging Systems", American Elsevier, New York 3.53 Penning, K., 1941, German Pat. No. P 82 128 IX a/42h 3.54 Baker, J.G., 1945, U.S. Patent No.2 458 132 3.55 Whipple, F.L., 1947, Harvard Meteor Program, Cambridge, Mass.; Harvard Reprint Series II, No. 19 3.56 Bradford, W.R, 1956, The Observatory, 76, 172 3.57 Davis, J., 1963, Quart. J. Roy. Astron. Soc., 4, 74 3.58 Henize, K.G., 1957, Sky and Telescope, 16, 108 3.59 Wynne, C.G., 1947, MNRAS, 107, 356 3.60 Wynne, C.G., 1947, Nature, 160, 91 3.61 Bennett, H.F., 1945, U.S. Patent No.2 571 657 3.62 Sonnefeld, A., 1936, DRP No. 697003 3.63 Richter, R, Slevogt, H., 1941, German Patent Application No. Z 26592 IXa 42h 3.64 Houghton, J.L., 1944, U.S. Patent No.2 350 112 3.65 Mangin, A., 1876, Memorial de l'officier du genie 25.(2)10, 211-289 3.66 Rosin, S., Amon, M., 1967, Appl. Opt., 6, 963 3.67 Silvertooth, E.W., 1968, Bull. Inst. Phys. and Phys. Soc., 19, 257 3.68 Hamilton, W.F., 1814, Engl. Pat. No. 3781 3.69 Schupmann, L., 1899, "Die Medial-Fernrohre", B. G. Teubner, Leipzig 3.70 Kerber, A., 1893, Centro Ztg. f. Optik U. Mechanik, 14, 145 3.71 Daley, J., 1984, "Amateur Construction of Schupmann Medial Telescopes", privately printed (see [3.12(h)]) 3.72 Delabre, B., 1990, Internal ESO communication 3.73 Korsch, D., 1972, Appl. Optics, 11(12), 2986 3.74 Paul, M., 1935, Rev. d'Opt., 14, 169 3.75 Baker, J.G., 1969, IEEE Trans. Aerosp. Electron. Syst., 5, 261 3.76 McGraw, J., et al., 1982, Proc. SPIE Conf. 331, 137 3.77 Willstrop, RV., 1984, MNRAS, 210, 597 3.78 Epps, H.W., Takeda, M., 1983, Ann. Tokyo Astron. Obs., 2nd series, 19, 401 3.79 Loveday, N., 1981, Sky and Telescope, 61 (6), 545 3.80 Zimmer, H.G., 1970, "Geometrical Optics", Springer Verlag, Heidelberg, (a) 47 3.81 Meschkowski, H., 1965, "Meyers Handbuch iiber die Mathematik", Bibl. Institut, Mannheim, D57, D83, D95 3.82 Robb, P.N., 1978, Appl. Opt., 17 (17), 2677 3.83 Shack, RV., Meinel, A.B., 1966, JOSA, 56, 545 3.84 Rumsey, N.J., 1970, Optical Instruments and Techniques, ed. J. Home Dickson, Oriel Press, Newcastle, 516 3.85 Rumsey, N.J., 1969, U.S. Patent No.3 460 886 3.86 Vigroux, L., 1993, Proc. IAU Symposium No. 161 on "Astronomy from Wide-Field Imaging", Potsdam, Aug. 1993; Kluver, Dordrecht, 73 3.87 Korsch, D., 1991, Paper presented at the JPL Workshop on the "Next Generation Space Telescope", Pasadena, March 1991 3.88 Korsch, D., 1986, Opt. Engin., 25(9), 1034 3.89 Strong, J., 1933, Phys. Rev., 43, 498 3.90 Jacobson, M.R, et al., 1992, GEMINI Project Investigation of Low Emissivity Durable Coatings, Optical Data Associates, Tucson 3.91 Schmidt-Kaler, Th., 1994, Astron. Nachr., 315(4), 323 3.92 Ardeberg, A., et al., 1992, Proc. ESO Conf. on "Progress in Telescope and Instrument Technologies", ESO, Garching, 159 References 487

3.93 Ardeberg, A., et aI., 1993, Proc. Conf. on "Metal Mirrors for Astronomical Telescopes", University College, London, 1992 3.94 Wilson, RN., Delabre, B., 1995, Astron. and Astrophys., 294(1), 322 3.95 Wilson, RN., Delabre, B., Franza, F., 1994, Proc. SPIE Conf. on "Advanced Technology Optical Telescopes V", Vol. 2199, 1052 3.96 Baranne, A., Lemaltre, G., 1986, Proc. "Workshop on Large Telescopes", Hamburg, Mitt. der Astron. Gesellschaft No. 67, Hamburg, 1986, 226 3.97 Baranne, A., Lemaltre, G., 1987, C.R Acad. Sci. Paris, 305, Serie II, 445 3.98 Wilson, RN., et aI., 1991, J. Mod. Optics, 38(2), 219 3.99 Robb, P.N., 1979, JOSA, 69(10), 1439 3.100 Sasian, J.M., 1990, Opt. Engin., 29(10), 1181 3.101 Schafer, D.R, 1979, "Instrumentation in Astronomy III", SPIE Vol. 172, 19 3.102 Shectman, S.A., 1983, Proc. SPIE 444, 106 3.103 Kutter, A., 1953, "Der Schiefspiegler", Verlag F. Weichardt, Biberach 3.104 Kutter, A., 1964, "Bauanleitung fur den Kosmosschiefspiegler", Franckh'sche Verlagshandlung, Stuttgart 3.105 Czerny, M., Turner, A.F., 1930, Zeits. f. Physik, 61 , 792 3.106 Wilson, RN., Opitz, A., 1976, FRG Patent No. 24 26 325 3.107 Buchroeder, RA., 1969, Sky and Telescope, 38 (6),418 3.108 Kutter, A., 1975, Sky and Telescope, 49 (1) and (2), 46 and 115 3.109 Conrady, A.E., 1919, MNRAS, 79,384 3.110 Marechal, A., 1950, Rev. d'Opt., 29, 1 3.111 Slevogt, H., 1963, Optik, 20, 488 3.112 Baranne, A., 1966, J. Observateurs, 49, 75 3.113 Meinel, A.B., Meinel, M.P., 1984, Opt. Eng., 23 (6), 801 3.114 Delabre, B., 1991, ESO private communication 3.115 Sand, R, 1991, Conference of the Deutsche Ges. d. angew. Opt., and private communication 3.116 Robb, P.N., Mertz, L., 1979, SPIE Proc. "Instrumentation in Astronomy III", Vol. 172, 15 3.117 Schafer, D.R, 1978, Appl. Opt., 17(7), 1072 3.118 Burch, C.R., 1947, Proc. Phys. Soc. London, 59, 41 3.119 Zernike, F., 1934, Physica, 1, 689 3.120 Born, M., Wolf, E., 1964, "Principles of Optics", 2nd Ed., Pergamon Press, Oxford, (a) 464, 767, (b) 384, 392, (c) 416, (d) 459, (e) 480, (f) 484, (g) 381 3.121 Bhatia, A.B., Wolf, E., 1954, Proc. Cambridge Phil. Soc., 50, 40 3.122 Dierickx, P., 1989, ESO Internal report for the VLT 3.123 Flugge, S., 1979, "Mathematische Methoden der Physik I", Springer Verlag, 107, 160 3.124 Malacara, D., 1978, "Optical Shop Testing", John Wiley, New York, 489 3.125 Sumita, H., 1969, Jap. J. Appl. Phys. 8, 1027 3.126 Zernike, F., 1938, Physica, 5, 785 3.127 Hopkins, H.H., 1951, Proc. Roy. Soc. A, 208, 263 3.128 Hopkins, H.H., 1953, Proc. Roy. Soc. A, 217,408 3.129 Airy, G.B., 1835, Trans. Camb. Phil. Soc., 5, 283 3.130 Rayleigh, Lord, 1881, Phil. Mag. (5), 11, 214 3.131 Rayleigh, Lord, 1879, Phil. Mag. (5), 8, 261 3.132 Steward, G.C., 1928, "The Symmetrical Optical System", Cambro Univ. Press, 89 3.133 Jacquinot, P., Roizen-Dossier, B., 1964, "Progress in Optics", Vol. 3, North Holland, Amsterdam, 29 3.134 Lansraux, G., 1953, Rev. d'Opt., 32,475 3.135 Strehl, K., 1902, Z. f. Instrumentenkunde, 22, 213 488 References

3.136 Duffieux, P.M., 1946, "L'lntegrale de Fourier et ses applications a l'optique", published by the author. 2nd ed., 1970, published by Masson, Paris 3.137 Wetherell, W., 1980, "Applied Optics and Optical Engineering", Vol. 8, Academic Press, New York, 171-315 3.138 Goodman, J., 1968, "Introduction to Fourier Optics", McGraw-Hill, New York 3.139 O'Neill, E.L., 1956, JOSA, 46 (4), 285, 1096 3.140 Lloyd, J.M., 1975, "Thermal Imaging Systems", Plenum Press, New York, 102 3.141 Rayleigh, Lord, 1903, Scientific Papers, 3, Cambridge University Press 3.142 Hopkins, H.H., 1955, Proc. Roy. Soc. A, 231, 98 3.143 Black, G., Linfoot, E.H., 1957, Proc. Roy. Soc. A, 239, 522 3.144 De, M., 1955, Proc. Roy. Soc. A, 233, 96 3.145 Hopkins, H.H., 1956, Proc. Phys. Soc. B, LXIX, 562 3.146 O'Neill, E.L., 1963, "Introduction to Statistical Optics", Addison-Wesley, Reading, Mass., 88 3.147 Ditchburn, R.W., 1976, "Light", Vol. 1, Academic Press, London, 188 3.148 Babinet, J., 1837, C. R. Acad. Sci. Paris, 4, 638 3.149 Scheiner, J., Hirayama, S., 1894, Abh. d. Konigl. Akad. Wissensch., Berlin, Anhang I 3.150 Cox, R.E., 1960, Sky and Telescope, 20 (3), 166

Chapter 4

4.1 Sampson, R.A., 1913, Phil. Trans. Roy. Soc. (London), 213, 27 4.2 Sampson, R.A., 1913, MNRAS, 73, 524 4.3 Violette, H., 1922, Rev. d'Opt., 1(9), 397 4.4 Paul, M., 1935, Rev. d'Opt., 14(5), 169 4.5 Wynne, C.G., 1972, Progress in Optics X, ed. E. Wolf, North Holland Publ. Co., Amsterdam - London, 137 4.6 Meinel, A.B., 1953, Astrophys. J., 118, 335 4.7 Gascoigne, S.C.B., 1965, The Observatory, 85, 79 4.8 Gascoigne, S.C.B., 1968, Quart. J. Roy. Astron. Soc., 9, 98 4.9 Gascoigne, S.C.B., 1973, Appl. Opt., 12(7), 1419 4.10 Burch, C.R., 1942, MNRAS, 102, 159 4.11 Schulte, D.H., 1966, Appl. Opt., 5(2), 313 4.12 Kohler, H., 1967, ESO Bulletin No.2, 13 4.13 Kohler, H., 1968, Appl. Opt., 7, 241 4.14 Wynne, C.G., 1968, Astrophys. J., 152, 675 4.15 Wilson, R.N., 1971, ESO Conf. "Large Telescope Design", ESO/CERN, Geneva, 131 4.16 Cao, C., Wilson, R.N., 1984, Astron. Astrophys., 133, 37 4.17 Schulte, D.H., 1966, Appl. Opt., 5(2), 309 4.18 Bowen, I.S., Vaughan, A.H., 1973, Appl. Opt., 12(7), 1430 4.19 Brown, R.A., Ford, H.C. (eds), 1990, "Report of the HST Strategy Panel: A Strategy for Recovery" 4.20 Ross, F.E., 1933, Astrophys. J., 77, 243 4.21 Ross, F.E., 1935, Astrophys. J., 81, 156 4.22 Hopkins, H.H., 1950, "Wave Theory of Aberrations", O.U.P., London 4.23 Wynne, C.G., 1949, Proc. Phys. Soc., B62, 772 4.24 Wynne, C.G., 1965, Appl. Opt., 9(4), 1185 References 489

4.25 Bahner, K., 1967, "Teleskope" in "Handbuch der Physik", Vol. XXIX, 227-342 4.26 Rosin, S., 1961, JOSA, 51(3), 331 4.27 Baker, J.G., 1953, "Amateur Telescope Making", Book 3, Scientific American, Inc., New York, 7 et seq. 4.28 Wynne, C.G., 1967, Appl. Opt., 6(7), 1227 4.29 Bourdet, M., Cayrel, R, 1971, INAG Report 71-10, Meudon 4.30 Faulde, M., Wilson, R.N., 1973, Astron. Astrophys., 26, 11 4.31 Baranne, A., 1966, Proc. IAU Symposium No. 27, "The Construction of Large Telescopes" , Academic Press, 22 4.32 Baranne, A., 1966, Publ. de I'Observatoire de Haute Provence, 8(22), 75 4.33 Richardson, E.H., Harmer, C.F.W., Grundmann, W.A., 1982, "Better but bigger prime focus corrector lenses for RC telescopes" , Dominion Astrophys. Obs. (Preprint) 4.34 Richardson, E.H., Harmer, C.F.W., Grundmann, W.A., 1984, MNRAS, 206, 47 4.35 Bahner, K., 1975, Mitt. Astron. Gesellschaft, 36, 57 4.36 Epps, H.W., Angel, J.R.P., Anderson, E., 1984, Proc. IAU Colloq. No. 79 "Very Large Telescopes, their Instrumentation and Programs", ESO, Garching, 519 4.37 Angel, J.RP., Woolf, N.J., Epps, H.W., 1982, SPIE Proc. Vol. 332, 134 4.38 Epps, H.W., Takeda, M., 1984, Japanese J. Optics, 13(5), 400 4.39 Richardson, E.H., Morbey, C.L., 1984, IAU Colloq. No. 79 "Very Large Telescopes, their Instrumentation and Programs", ESO, Garching, 549 4.40 Brodie, J.P., Epps, H.W., 1986, Report of Space Sciences Lab., Univ. of California, Berkeley, on "Six alternative PF field correctors for the 120-inch Shane telescope" 4.41 Bowen, I.S., 1961, PASP, 73, 114 4.42 Wynne, C.G., 1973, MNRAS, 163, 357 4.43 Rosin, S., 1964, Appl. Opt., 3(1), 151 4.44 Harmer, C.F.W., Wynne, C.G., 1976, MNRAS, 177, 25P 4.45 Wilson, RN., 1968, Appl. Opt., 7, 253 4.46 Epps, H.W., 1989, MMT Project Report for the Carnegie Institution 4.47 Epps, H.W., 1989, Magellan Project Report No.9 4.48 Epps, H.W., 1987, "MMT Project Design" in SPIE Proceedings Vol. 766, 140 4.49 Refsdal, I.N., 1968, Appl. Opt., 7, 1645 4.50 Rosin, S., 1966, Appl. Opt., 5(4), 675 4.51 Su, D.-q., Zhou, B.-f., Yu, X.-m., 1990, Science in China (Series A), 33(4), 454 4.52 Wallner, E.P., Wetherell, W.B., 1980, Proc. Conf. "Optical and Infrared Telescopes for the 1990s", Vol. II, KPNO, Tucson, 717 4.53 Airy, G.B., 1869, MNRAS, 29, 333 4.54 Russell, H.N., Dugan, RS., Stewart, J.Q., 1945, "Astronomy", Vol. I, App. VI 4.55 Barlow, C.W.C., Bryan, G.H., 1944, "Elementary Mathematical Astronomy", Univ. Tutorial Press, London, 108 4.56 Von Hoerner, S., Schaifers, K., 1967, "Meyers Handbuch tiber das Weltall", 163 4.57 Beddoes, D.R., Dainty, J.C., Morgan, B.L., Scaddon, RJ., 1976, JOSA, 66, 1247 4.58 Breckenridge, J.B., McAlister, H.A., Robinson, W.G., 1979, Appl. Opt., 18, 1034 490 References

4.59 Wynne, C.G., 1984, The Observatory, 104, 140 4.60 Wynne, C.G., Worswick, S.P., 1986, MNRAS, 220, 657 4.61 Wynne, C.G., 1986, The Observatory, 106, 163 4.62 Wynne, C.G., Worswick, S.P., 1988, MNRAS, 230, 457 4.63 Bingham, RG., 1988, Proc. Conf. "Very Large Telescopes and their Instrumentation", Vol. II, ESO, G arching , 1167 4.64 Su, D.-q., 1986, Astron. Astrophys., 156, 381 4.65 Wang, Y.-n., Su, D.-q., 1990, Astron. Astrophys., 232, 589 4.66 Rutten, H., van Venrooij, M., 1988, "Telescope Optics", Willmann-Bell, Inc., Richmond VA, 149 4.67 Hartshorn, C.R., 1953, "Amateur Telescope Making", Book 3, 277 4.68 Meinel, A.B., 1956, Astrophys. J., 124, 652 4.69 Jorsater, S., 1991, NOT News No.4, July 1991, 9 4.70 Boulesteix, J., Courtes, G., Laval, A., Monnet, A., 1974, Proc. ESOjSRCj CERN Conf. "Research Programmes for New Large Telescopes" 4.71 Geyer, E.H., Nelles, B., 1984, Proc. IAU Colloq. No. 79 "Very Large Telescopes, their Instrumentation and Programs", ESO, Garching, 575 4.72 Meinel, A.B., Meinel, M.P., Wang, Y.-n., 1985, Appl. Opt., 24(17), 2751 4.73 MacFarlane, M., 1982, "Report of the Optical Conference on the 7.6 m Telescope", Univ. of Texas Publ. in Astron. No. 22, 157 and 181 et seq. 4.74 Rosin, S., 1968, Appl. Opt., 7, 1483

Chapter 5

5.1 Danjon, A., Couder, A., 1935, "Lunettes et Telescopes", reprinted 1983 (Blanchard, Paris), 677 et seq. 5.2 King, H.C., 1955, "The History of the Telescope", Griffin, London 5.3 Riekher, R., 1990, "Fernrohre und ihre Meister", 2. Aufi., Verlag Technik GmbH, Berlin 5.4 Schwarzschild, K., 1905, "Untersuchungen zur geometrischen Optik II", Abh. der koniglichen Ges. der Wissensch. zu Gottingen, Math.-Phys. Klasse, Neue Folge Bd. IV (2) 5.5 Rosse, Earl of, 1861, Phil. Trans., 151, 681 5.6 Grant, R, 1852, "History of Physical Astronomy", Bohn, London, 569 5.7 Lassell, W., 1842, Mem. Roy. Astron. Soc. XII, 265 5.8 Lassell, W., 1867, Mem. Roy. Astron. Soc. XXXVI, Plate XI (Frontispiece) 5.9 Robinson, T.R, 1869, Phil. Trans., 159, 132 5.10 Foucault, J.B.L., 1857, C. R. Acad. Sci. Paris, 44, 339 5.11 Tobin, W., 1987, Vistas in Astronomy, 30, 153 5.12 Tobin, W., 1987, Sky and Telescope, 74 (4), 358 5.13 Hyde, W.L., 1987, Optics News, Jan. 1987,6 5.14 Ritchey, G.W., 1904, Smithsonian Contrib. to Knowledge, 34,47 5.15 Foucault, J.B.L., 1859, Ann. de l'Obs. de Paris, 5, 197 5.16 Hale, G.E., 1908, "The Study of Stellar Evolution", Univ. of Chicago Press, Chicago, 45 5.17 Dimitroff, G.Z., Baker, J.G., 1945, "Telescopes and Accessories", Blakiston, New York, 150 5.18 Osterbrock, D. E., 1984, "James E. Keeler: Pioneer American Astrophysicist", CUP, Cambridge,UK 5.19 Osterbrock, D. E., 1993, "Pauper and Prince: Ritchey, Hale and Big American Telescopes", Univ. of Arizona Press, Tucson & London 5.20 Pease, F.G., 1935, JOSA, 25, 156 References 491

5.21 Bahner, K., 1967, "Teleskope" in Handbuch der Physik, Vol. XXIX, Springer Verlag, 266 5.22 Ingalls, A.G., 1945, "Amateur Telescope Making", Vol. 1, Munn and Co., New York, 396 5.23 Bowen, I.S., 1960, in "Stars and Stellar Systems", Vol. 1 "Telescopes", Ed. Kuiper and Middlehurst, Univ. Chicago Press, 1 5.24 Woodbury, D.O., 1939, "The Glass Giant of Palomar", Dodd, Mead & Co., New York 5.25 Wright, H., 1953, "The Great Palomar Telescope", Faber & Faber, London 5.26 Sky and Telescope, 1950, Vol. IX, February Issue 5.27 Couder, A., 1931, Bulletin Astron., 2me. Serie, Tome VII, Fasc. VII, 283 5.28 Mayall, N.U., Vasilevskis, S., 1960, Astron. J., 65, 304 5.29 Bowen, I.S., 1950, PASP, 62, 91 5.30 Bowen, I.S., 1967, Q. J. RAS, 8 (1), 9 5.31 Kuiper, G.P., Middlehurst, B.M. (Eds) , 1960, "Stars and Stellar Systems", Vol. 1 "Telescopes", Univ. Chicago Press, 239 5.32 Brown, P.L., 1967, Sky and Telescope, 34, 356 5.33 Smith, F. G., Dudley, J., 1982, J. Hist. of Astron., 13, Part 1, No. 36, 1 5.34 (Anon)(Special Article), 1965, Engineering (6 August 1965), 164 5.35 Crawford, D.L., 1971, Proc. ESO Conf. "Large Telescope Design", Ed. R.M. West, ESO Geneva, 23 5.36 Bowen, E.G., Gascoigne, S.C.B., Wehner, H., 1968, Proc. ASA, 1(3), 74 5.37 Blanco, V.M, 1968, Sky and Telescope, 35 (2), 72 5.38 Laustsen, S., Madsen, C., West, R.M., 1987, "Exploring the Southern Sky", Springer-Verlag, Plates 214 and 215 5.39 Wilson, R.N., 1974, Technical Report No.2, ESO Geneva 5.40 Odgers, G.J., Richardson, E.H., Grundmann, W.A., 1977, Proc. of ESO Conf. "Optical Telescopes of the Future", Eds. F. Pacini, W. Richter, R. Wilson, ESO Geneva, 79 5.41 Carpenter, G.C., Ring, J., Long, J.F., 1977, as [40], 47 5.42 Brown, D.S., Humphries, C.M., 1977, as [40], 55 5.43 Bahner, K., 1986, Sterne u. Weltraum, 25 (6), 310 5.44 Pope, J.D., 1977, as [40], 67 5.45 Ridpath, I., 1990, Sky and Telescope, 80 (2), 136 5.46 Dall, H.E., 1947, J. Brit. Astron. Ass. 57 (5), 201 5.47 Dall, H.E., 1953, "Amateur Telescope Making", Book 3, Scientific American Inc., New York, 149 5.48 Couder, A., 1927, Rev. d'Opt., 6, 49 5.49 Pasachoff, J. M., 1978, "Astronomy Now", W. B. Saunders, Philadelphia, 42 5.50 Learner, R., 1982, "Astronomy through the Telescope", Evans Bros., London, 148 5.51 Gochermann, J., Schmidt-Kaler, T., 1989, Sterne u. Weltraum, 28 (1), 30 5.52 Bahner, K., 1965, "Astronomical Instruments" in Landolt-Bornstein, Neue Serie, Ed. K.H. Hellwege, Vol. VI/I, Springer-Verlag, 6 5.53 Wolf, R., 1982, "Astronomical Instruments" in Landolt-Bornstein, Ed. K.H. Hellwege, Vol. VI/2a, Springer-Verlag, 6 5.54 Schielicke, R., 1982, Die Sterne, 58 (2), 93 5.55 Fehrenbach, Ch., 1990, "Des hommes, des telescopes, des etoiles", Editions du CNRS, Paris List of figures

Chapter 1

1.1 Zucchi's attempt at a Herschel-type front-view reflecting telescope, 1616 ...... 2 1.2 Spherical aberration of a spherical concave telescope mirror. "Paraxial" rays are nominally at a negligible height from the axis ...... 3 1.3 Two of Mersenne's designs for reflecting telescopes, adapted from "L'Harmonie Universelle", 1636, and King [1.1], compared with GalileD-type and Kepler-type refracting telescopes ...... 4 1.4 (a) Facsimile of the Gregory telescope from "Optica Promota", 1663 (after Danjon and Couder [1.3)). (b) Raypath of the Gregory form (after King [1.1))...... 7 1.5 The Newton reflecting telescope, 1668 ...... 8 1.6 The Cassegrain reflecting telescope, 1672, (a) as drawn by de Berce. (b) Raypath of the Cassegrain form (after King [1.1)) 9 1.7 John Hadley's 6-inch, f/1O.3 Newton reflector, 1721 (courtesy Royal Astronomical Society, through Peter Hingley). 12 1.8 The "Ramsden disk" (exit pupil) explained by Ramsden in 1775 (after King [1.1)) ...... 14 1.9 Sir William Herschel (1738--1822) painted by L.T. Abbot in 1785 (courtesy Deutsches Museum, Munich) ...... 16 1.10 William Herschel's "large" 20-foot focus telescope, aperture 18.8 inches (f/12.8), completed in 1784, (reproduced from an engraving of 1794, courtesy Science History Publications Ltd., Cambridge, England)...... 17 1.11 William Herschel's largest telescope: 4 feet in aperture, 40-foot focus (f/10), completed in 1789 (courtesy Deutsches Museum, Munich) ...... 18

Chapter 2

2.1 The ideal optical system: the principal planes and unit magnification between them ...... 22 2.2 Geometrical construction of ideal image formation...... 23 494 List of figures

2.3 Geometrical wavefronts and rays...... 26 2.4 The relationship between the focal lengths ...... 29 2.5 Derivation of the Lagrange Invariant...... 30 2.6 Aperture stop, entrance and exit pupils...... 32 2.7 Telecentric aperture stop ...... 33 2.8 Gaussian optics of a conventional with ocular (afocal in both object and image spaces) ...... 35 2.9 Image principal plane in the defocused telescope of Fig. 2.8, producing a real image at I~...... 39 2.10 Prime focus forms of reflecting telescope...... 40 2.11 Gaussian optics of a Gregory telescope ...... 41 2.12 Gaussian optics of a Cassegrain telescope ...... 42 2.13 Exit pupil position E' in the Cassegrain form with the entrance pupil E at the primary ...... 49 2.14 Entrance pupil position E in the Cassegrain form with the exit pupil E' at the secondary...... 50 2.15 Limit case of a Cassegrain telescope with a plane secondary mirror 51

Chapter 3

3.1 Wavefront, longitudinal and lateral aberration...... 56 3.2 The Abbe sine condition ...... 83 3.3 Normal representation of spot-diagrams ...... 84 3.4 (a) Spot-diagrams for a classical Cassegrain telescope with the geometry of the ESO 3.5 m NTT (f/11; m2 = -5) for an optimum field curvature rc = -1955 mm (concave to the incident light) ...... 95 3.4 (b) Spot-diagrams for an RC aplanatic telescope with the geometry of the ESO 3.5 m NTT (f/11; m2 = -5) for an optimum field curvature rc = -1881 mm ...... 96 3.5 The function f(m2) = (m2+1)(;n2-1)2 for DK telescopes. m 2 The left-hand curve refers to Cassegrain solutions, the right-hand curve to Gregory solutions, if the image is real.. 100 3.6 Spot-diagrams for a DK Cassegrain telescope with the geometry of the ESO 3.5 m NTT (f/11; m2 = -5) for a flat field. Compare with Fig. 3.4 where the field is 10 times larger ...... 102 3.7 Spot-diagrams for an SP Cassegrain telescope with the geometry of the ESO 3.5 m NTT (f/11; m2 = -5), for a flat field. Compare with Fig. 3.6 with field 4~ times larger and Fig. 3.4 with field 45 times larger ...... ; ...... 106 3.8 Karl Schwarzschild's first impractical telescope solution fulfilling four Seidel conditions [3.1] ...... 109 3.9 Karl Schwarzschild's original aplanatic telescope (1905) [3.1] [3.13]...... 110 List of figures 495

3.10 Spot-diagrams for the Schwarzschild telescope 1905 [3.1] for an aperture of 1 m with f/3.0 ...... 114 3.11 Geometrical construction from the sine condition of the form of an RC telescope compared with a classical Cassegrain (from Danjon and Couder [3.24(a)]) ...... 115 3.12 The Couder (aplanatic) anastigmatic telescope (1926) [3.25] . .. 118 3.13 Spot-diagrams for the Couder telescope (1926) [3.25] for an aperture of 1 m with f/3.0 ...... 120 3.14 Third order spherical aberration as wavefront aberration ..... 123 3.15 Third order spherical aberration: longitudinal and lateral forms 124 3.16 Third order coma as wavefront aberration...... 125 3.17 Third order coma: lateral aberration form...... 126 3.18 Third order coma: the "coma patch" ...... 127 3.19 Third order astigmatism: wavefront aberration reversal in the t- and s-sections due to the cos 2¢ term...... 129 3.20 Third order astigmatism: astigmatic surfaces and lines ...... 129 3.21 Tangential and radial astigmatic lines at the t-focus and s-focus respectively...... 130 3.22 Distortion: (a) barrel, (b) pincushion ...... 132 3.23 Stop-shift effect for a single third order aspheric plate shifted from the pupil...... 135 3.24 Heights of the paraxial aperture and paraxial principal rays as they pass through a Cassegrain telescope ...... 136 3.25 Fundamental form of a wide-field telescope without correction of spherical aberration ...... " 142 3.26 The Bouwers concentric telescope (1941) ...... 144 3.27 The Schmidt telescope (1931) ...... 145 3.28 Profile function (P!l - kplP~l) for Schmidt corrector plates with various values of the form profile parameter kpl . The glass plate is formed by considering the area under the curves to be filled with glass down to an abscissa tangential to the curve in question. To the resulting axial thickness, the constant thickness (dpl)o is added to give the necessary minimum plate thickness. (After Bahner [3.5]) ...... 148 3.29 Spot-diagrams for the ESO 1 m, f/3.0 Schmidt telescope with the original singlet corrector plate. Optimum curved field of radius 3050 mm and ±3.20° field for 24 cm x 24 cm plates ...... 155 3.30 The dispersion function for a typical optical glass (-1. = n;,-::..no) 157 Va no 1 3.31 The effect of achromatisation: the dispersion function is rotated to minimize its slope, giving desired zero points A1 and A2 .. " 157 3.32 The optical glass diagram (from the Schott Catalogue, courtesy Hans F. Morian and the Schott Glaswerke, Mainz) . .. 159 496 List of figures

3.33 Spot-diagrams for the ESO 1 m, f/3.0 Schmidt telescope with the achromatic (doublet) corrector plate (glasses UBK7 and LLF6). Optimum curved field of radius 3050.5 mm and ±3.20° field for 24 cm x 24 cm plates (format identical with Fig. 3.29, but scale five times larger) ...... 159 3.34 The basic form of the Maksutov telescope (1944) ...... 160 3.35 Spot-diagrams for the "short" Maksutov telescope of Table 3.11 with aperture 400 mm and f/3.0 ...... 164 3.36 Effect of stop shift on transverse C2 in a Maksutov meniscus: the "short" version (b) causes refraction and dispersion of the principal ray at the first surface, but the effect is largely (though not entirely) compensated at the second surface ...... 165 3.37 Spot-diagrams for a "short" Maksutov telescope with aperture 400mm and f/3.0 optimized with an achromatic field flattener (Table 3.12) ...... 166 3.38 The solid Schmidt in the direct form (a) and folded form (b), with effective focal length 1'/ n' ...... 168 3.39 The semi-solid with effective focal length J'/n'. 169 3.40 The Wright-Vaisala telescope (1935) ...... " 170 3.41 Spot-diagrams for a Wright-Vaisala telescope of aperture 400 mm and f/4.0 ...... 172 3.42 Schmidt-Cassegrain systems proposed by Baker (1940) ...... 174 3.43 Monocentric (concentric) Schmidt-Cassegrain proposed by Linfoot (1944) ...... 176 3.44 Spot-diagrams for a Linfoot mono centric Schmidt-Cassegrain with spherical mirrors and a singlet (non-achromatic) corrector plate (400 mm, f/3.0 - f/6.0) ...... 180 3.45 Typical modern aplanatic Schmidt-Cassegrain for advanced amateur use with aperture 400 mm, f/2 - f/10 182 3.46 Spot-diagrams for the aplanatic Schmidt-Cassegrain system of Fig. 3.45 with 400 mm, f/2 - f/10, and an achromatic corrector plate...... 185 3.4 7 Spot-diagrams for a Slevogt aplanatic Schmidt-Cassegrain with 400 mm, f/2.0 - f/3.25, and an achromatic corrector plate. The field is flat ...... 187 3.48 Two-glass concentric (monocentric) Bouwers-Cassegrain telescope...... 188 3.49 Spot-diagrams for an achromatic, monocentric Bouwers meniscus-Cassegrain telescope as in Fig. 3.48, but with a singlet field flattener added. The geometry is lightly modified to 400 mm, f/3.11 - f/6.0, and the stop is shifted to the meniscus ...... 190 List of figures 497

3.50 Classical Bouwers telescope with additional weak lens at the stop ...... 191 3.51 Spot-diagrams of a classical Bouwers telescope (prime focus) with weak achromatising positive lens in the pupil (400 mm, f/3). The angular field is large (±3°) ...... 192 3.52 Spot-diagrams of a classical Bouwers-Cassegrain with weak achromatising lens (400 mm, f/3.0 - f/6.0), as shown in Fig. 3.50 193 3.53 Maksutov-Cassegrain in "long" and "short" versions with secondary separated from the meniscus. Example with aperture 400 mm, f/3.5 - f/10.71 ...... 195 3.54 Spot-diagrams for the "short" version of the Maksutov-Cassegrain of Fig. 3.53 and Table 3.14 for an optimum curved field ...... 196 3.55 A Maksutov-Cassegrain with secondary combined with the meniscus. Aperture 400 mm, f/3.5 - f/15.20 ...... 197 3.56 Spot-diagrams of the Maksutov-Cassegrain of Fig. 3.55 ...... 198 3.57 Hawkins-Linfoot Schmidt-Bouwers telescope with f/1.2 in the prime focus ...... 201 3.58 Spot-diagrams for the Hawkins-Linfoot monocentric Cassegrain of Fig. 3.57, aperture 400 mm, f/3.0 - f/6.0 ...... 203 3.59 Baker Super-Schmidt, with f' = 200 mm, effective aperture ratio f/0.82 and field ± 26° ...... 204 3.60 Baker-Nunn camera, designed for satellite tracking, aperture 508 mm, f/1.0 ...... 204 3.61 Double-meniscus system due to Wynne [3.59J (schematic) . . . .. 205 3.62 Double-meniscus system due to Wynne with strongly asymmetric meniscus thicknesses [3.59J (schematic) ...... 206 3.63 Buchroeder design of a Houghton-type corrector in Schmidt geometry (200 mm, f/3) given by Rutten and van Venrooij [3.12(g)J ...... 207 3.64 Lurie design of a Houghton-type corrector in Wright-ViiisaJii camera geometry (200 mm, f/4) given by Rutten and van Venrooij [3.12(g)J ...... 208 3.65 Spot-diagrams for a modified Lurie-Houghton design with aperture 400 mm at f/3.5 and geometry like the Wright-Viiisiilii system of Fig. 3.40 ...... 209 3.66 Original Mangin system for searchlight projection ...... 210 3.67 Dialyte telescope due to Piossl (1850) ...... 212 3.68 Brachymedial due to Hamilton (1814) ...... 213 3.69 Brachymedial due to Schupmann (1899) ...... 213 3.70 The Medial telescope due to Schupmann ...... 214 3.71 Compact system using Mangin secondary and Brachymedial geometry due to Delabre ...... 215 3.72 Two 3-mirror anastigmatic, flat-field solutions proposed by Korsch (1972): (a) single-axis system, (b) 2-axis system .... 217 498 List of figures

3.73 3-mirror system due to Paul (1935) ...... 219 3.74 The Willstrop Mersenne-Schmidt telescope with f/1.6 and a 40 diameter field (1984) ...... 222 3.75 Baker 3-mirror, 2-axis anastigmatic telescope (1945) ...... 223 3.76 Dual-purpose Newton telescope due to Loveday (1981) ...... 224 3.77 3-mirror system proposed by Robb (1978) ...... 230 3.78 3-mirror system given by Laux (1993) for a fast, fiat-field 2.5m wide-field survey telescope with f/2.18 primary

and f/4.0 final image, with a field diameter of 2.0 0 to 2.5 0 •••• 230 3.79 3-mirror, 4-refiection telescope proposed by Korsch (1991) for a future large space telescope ...... 231 3.80 First solution of a 2-axis system with 4 powered mirrors (spherical primary and secondary) and a folding fiat (f/1.5 and f/7.29), proposed by Wilson and Delabre (1993, 1995) . . .. 234 3.81 Spot-diagrams of the first, 2-axis solution of Table 3.19 and Fig. 3.80: (a) axis to ± 9 arcmin with circle 0.20 arcseCj (b) ± 12 arcmin to ± 18 arc min with circle 1.00 arcsec...... 236 3.82 First solution, 2-axis system as in Fig. 3.80, but with two identical "Nasmyth-type" foci...... 237 3.83 Second, 2-axis solution with 4 powered mirrors (spherical primary and secondary) and a folding fiat (f/1.5 and f/6.01), proposed by Wilson and Delabre (1993, 1995) ...... 238 3.84 Spot-diagrams of the second, 2-axis solution of Fig. 3.83: (a) axis to ±9 arcmin with circle 0.2 arcsec (b) ± 12 arcmin to ± 18 arcmin with circle 1.00 arcsec...... 239 3.85 Single-axis, 4-mirror system with f/1.2 - f/2.657

giving a field diameter of 1.500 • The primary is spherical .. . .. 240 3.86 Spot-diagrams for the fast, wide-field, 4-mirror design of Fig. 3.85. The circle diameter is 1 arcsec ...... 240 3.87 Single-axis, 4-mirror concept for a fast, wide-field telescope with improved field curvature...... 241 3.88 Single-axis, 4-mirror system using an afocal feeder and a spherical primary ...... 241 3.89 A 2-axis system with 5 powered mirrors capable of a fast output beam (faster than f/3.0) and a fiat field. The primary and secondary mirrors are spherical as in Fig. 3.83...... 242 3.90 A 2-axis solution with 4 powered mirrors proposed by Sasian (1990). Either Ml or M2 is spherical, M3 is toroidal 243 3.91 2-axis form of the system of Fig. 3.85 proposed by Baranne and Lemaitre (1986), the mirror pair M3M4 forming a corrector and focal transfer system with a magnification of -1 in the TEMOS concept, giving f/2.0 - f/4.5 - f/4.5 ...... 244 3.92 Double-Cassegrain 4-mirror telescope with intermediate image after M 2 , proposed by Korsch (1986) ...... 245 List of figures 499

3.93 The Kutter Schiefspiegler [3.103][3.104] showing 3 solutions (after Rutten and van Venrooij [3.12(j)] ...... 247 3.94 The basis of coma compensation in a Czerny-Turner monochromator ...... 248 3.95 Schiefspiegler achieved by off-axis sections of a centered, 2-mirror telescope ...... 252 3.96 Schiefspiegler interpretation of lateral decentering in a Cassegrain telescope ...... 252 3.97 Strict case of lateral decenter in a 2-mirror telescope ...... 253 3.98 Schiefspiegler with spherical primary and insensitive to lateral decenter [3.114] ...... 267 3.99 Exit pupil (x, y, z) and image plane (1],~, () coordinate systems. 284 3.100 Fraunhofer diffraction at a rectangular aperture showing the function I = [Sinj.g~/)]2 (after Born-Wolf [3.120(b)]) ...... 285 3.101 Fraunhofer diffraction pattern of a rectangular aperture 8 mm x 7 mm, magnification 50x, A = 579 nm. The centre was deliberately overexposed to reveal the secondary maxima (after Born-Wolf [3.120(b)] and Lipson, Taylor and Thompson, courtesy Brian Thompson) ...... 286 3.102 Fraunhofer diffraction at a circular aperture showing the function I = [2J~w)]2 (after Born-Wolf [3.120(b)]) ...... 289 3.103 Fraunhofer diffraction at a circular aperture 6 mm in diameter, magnification 50x, A = 579 nm. The central maximum has been overexposed to reveal the weak subsidiary maxima. (After Born-Wolf [3.120(b)] and Lipson, Taylor and Thompson, courtesy Brian Thompson) ...... 290 3.104 Energy encircled in the radius w of the pattern due to Fraunhofer diffraction at a circular aperture. The fraction of energy is given by Lw = 1 - J6(w) - J'f(w) with w = kpmw. (After Born-Wolf [3.120(b)]) ...... 291 3.105 The diffraction PSF at an annular aperture showing the effect of increasing the central obscuration factor c; (after Born-Wolf [3.120(c)] and G.C. Steward [3.132]) ...... 293 3.106 Idealized sinusoidal ripple showing 3 complete wavelengths of ripple in the pupil radius ...... 299 3.107 Transfer of a sinusoidal wave with reduced contrast through an optical system (bf a) without phase shift, (b) with phase shift p ...... 302 3.108 Shearing of a circular pupil corresponding to the calculation of the OTF from the autocorrelation function for shears of ARs, ARt...... 305 3.109 One-dimensional pupil shear to demonstrate the low bandpass filter function of an optical system ...... 306 500 List of figures

3.110 The MTF for a circular pupil free from aberrations and obstruction, corresponding to the diffraction PSF with incoherent illumination...... 308 3.111 MTF for a circular pupil free of aberration with central obstruction c (after Lloyd [3.140]) ...... 309 3.112 The MTF for a non-obstructed circular aperture with incoherent illumination in the presence of pure defocus aberration (after Hopkins [3.142]) ...... 310 3.113 Normal form of supporting spider for secondary mirrors shown here without central obstruction of the secondary...... 312 3.114 Typical astronomical photograph of a star field where diffraction spikes appear on the bright star images. The galaxy is NGC 253, photographed with the 2.2 m telescope at La Silla with 40 m exposure. (Courtesy ESO) ...... 312

Chapter 4

4.1 Ghost images through 2 reflections at a plane parallel plate 316 4.2 Transformation of a real corrector 'plate to a virtual plate in object space ...... 318 4.3 Spot-diagrams for the PF Gascoigne plate-field flattener corrector (with filter) of the ESO 3.6 m telescope on La Silla. The Schwarzschild constant of the primary is bs l = -1.1567 for a quasi-RC solution ...... 322 4.4 Schematic appearance of aspherics on PF plate correctors: (a) Gascoigne plate (singlet) corrector for RC hyperbolic primaries; (b) 2-plate corrector for strongly hyperbolic primaries correcting E SI = E SII = E SIll = 0; (c) 2-plate corrector for parabolic or RC primaries correcting E S I = E S II = 0; (d) 3-plate corrector for parabolic or RC primaries correcting E SI = E SII = E SIll = O...... 328 4.5 Conjugate virtual plate in object space for a real aspheric plate at distance 9 in front of the Cassegrain focus ...... 331 4.6 Spot-diagrams for a quasi-RC telescope with Gascoigne plate corrector and field flattener based on the geometry of the ESO 3.6 m telescope (f/3 - f/8) 336 4.7 The 3-lens Ross corrector for the Mt. Palomar 5 m, f/3.3 parabolic primary (schematic, after Wynne [4.5] [4.24]) ...... 343 4.8 Reflector-corrector due to Baker [4.27] ...... 347 4.9 Wynne design for a 4-lens corrector of the Palomar 5 m, f/3.34 paraboloid. The cross shows the focus of the naked primary (after Wynne [4.28]) ...... 349 List of figures 501

4.10 Spot-diagrams for the Wynne design of Fig. 4.9: (a) on axis, (b) 6 arc min off-axis, (c) 9 arcmin off-axis, (d) 12.5 arcmin off-axis. The circle has a diameter of 0.5 arcsec. (After Wynne [4.28]) ...... 349 4.11 3-lens corrector for paraboloids using one aspheric by Faulde and Wilson [4.30] ...... 350 4.12 (a) Spot-diagrams for the 3-lens corrector of Fig. 4.1l. The circle represents 0.5 arcsec. (a) Basic focus...... 351 4.12 (b) and (c) Spot-diagrams for the 3-lens corrector of Fig.4.1l. The circle represents 0.5 arcsec. (b) Focus shift +0.05 mm, (c) focus shift -0.05 mm ...... " 352 4.13 3-lens corrector by Wynne [4.14] [4.5] for the Kitt Peak 3.8 m, f/2.8 - f/8 RC telescope. All three lenses are of UBK7. (After Wynne) ...... 354 4.14 Spot-diagrams for two correctors for the ESO 3.6 m quasi-RC telescope: (a) the basic plate system of Kohler with field flattener, recalculated without vignetting; (b) the Wynne-type lens corrector also recalculated without vignetting. (After Cao and Wilson [4.16]) ...... 355 4.15 3-lens prime focus corrector designed by Richardson et al. [4.34] for the then proposed 7.6 m, f/2 primary of University of Texas. (After Richardson et al.) ...... 357 4.16 3-lens PF corrector for the 10 m Keck primary (after Epps et al. [4.36]) ...... 358 4.17 Spot-diagrams for the system of Fig. 4.16 for two of the four spectral bands given (after Epps et al. [4.36]) ...... 359 4.18 Spot-diagrams for the singlet lens corrector of the ESO 3.6 m quasi-RC telescope (after Wilson [4.15]). Circle 0.18 arcsec . . .. 371 4.19 Three-element corrector for an f/2.00 to f/5.28 classical Cassegrain designed by Epps et al. [4.36] for a 300-inch telescope, giving f/6.00 with the corrector ...... 373 4.20 Spot-diagrams for the design of Fig. 4.19 for a field of 10 diameter (Epps et al. [4.36]) ...... 374 4.21 Spot-diagrams for the 2.2 m MPIA telescope as quasi-RC using a 2-lens corrector of one glass (quartz) (after Wilson [4.15]). Circle 0.47 arcsec ...... 375 4.22 Spot-diagrams for the 2.2 m MPIA telescope as strict RC using a 2-lens corrector of 2 different glasses (PK50 and BaF3 ) (after Wilson [4.15]). Circle 0.48 arcsec ...... 376 4.23 Spot-diagrams for a doublet corrector using a single glass designed by Su, Zhou and Yu [4.51] for the Chinese 2.16 m, strict RC telescope with f/3 to f/9 ...... 377 502 List of figures

4.24 Spot-diagrams for a three-element corrector designed by Epps et al. [4.36] for an f/1.80 - f/4.50 Cassegrain system using a significantly hyperbolic primary (b s1 = -1.1523105) ... 378 4.25 Dispersion variation by opposite rotation of two prism pairs . . . 381 4.26 Performance of the ADC designed by Wynne and Worswick for the William Herschel 4.2 m telescope with Z = 70°. Curve A shows the uncorrected atmospheric dispersion; curve B the correction achieved with the glasses used (UBK7 and LLF6); curve C what could be achieved with FK50 and Calcium Fluoride. (After Wynne and Worswick [4.60]) ...... 383 4.27 Configurations of prisms for maximum dispersion setting, in cases 1 and 2 (angles exaggerated) for ADC in the prime focus (PF). (After Wynne and Worswick [4.62]) 384 4.28 (a) Spot-diagrams, reproduced from Wynne and Worswick [4.62]' for their PF ADC for the 4.2 m, f/2.5 William Herschel Telescope. (a) Zero dispersion setting ...... 385 4.28 (b) and (c) Spot-diagrams, reproduced from Wynne and Worswick [4.62], for their PF ADC for the 4.2 m, f/2.5 William Herschel Telescope. (b) At ±45° and (c) maximum dispersion setting ±90° ...... 386 4.29 Section through the complete ADC-corrector system for the 4.2 m, f/2.5 PF of the WHT, reproduced from Bingham [4.63] 387 4.30 "Lensm" design of Su [4.64] for an ADC integrated into a doublet corrector for a 5 m, f/2 to f/4.5 strict RC (Cassegrain) focus. The glasses are from the Chinese glass catalogue ...... 387 4.31 Two types of lensm corrector designed by Wang and Su [4.65] for the PF of a 7.5 m, f/2 paraboloid ...... 387 4.32 Points in the field for the calculation of spot-diagrams, from Wang and Su [4.65] ...... 388 4.33 Spot-diagrams for lensm corrector type I for a field diameter of 45 arcmin with a 7.5 m, f/2 paraboloid. Rotation angles of the lensms are 0°, 0°, i.e. zero dispersion. Circle diameter = 1 arcsec. Reproduced from Wang and Su [4.65] ...... 388 4.34 Spot-diagrams for lensm corrector type II for a field diameter of 45 arcmin with a 7.5 m, f/2 paraboloid. Rotation angles of the lensms are 0°, 0°, i.e. zero dispersion. Circle diameter = 1 arcsec. Reproduced from Wang and Su [4.65] 389 4.35 Basic design (schematic) for an FR without intermediate image for a field of 0.9° diameter at the Cassegrain (RC) focus of the 3.5 m MPIA, f/3 to f/8 telescope [4.15]. mFR = 1/2.67 .. 392 4.36 Spot-diagrams for the FR system of Fig. 4.35 [4.15]. The circle is 0.98 arcsec = 50p,m ...... 393 List of figures 503

4.37 Basic design (schematic) for an FR with intermediate image for a field of 0.90 diameter at the Cassegrain (RC) focus of the 3.5 m MPIA f/3 to f/8 telescope [4.15]. mFR = 1/2.67 394 4.38 Spot-diagrams for the FR system of Fig. 4.37 [4.15]. The circle is 0.98 arcsec ...... 395 4.39 Basic focal reducer geometry using a Schmidt-based mirror system for the 3.5 m MPIA telescope. Reduction is f/8 to f/1.7 (mFR = 1/4.71) [4.15] ...... 396 4.40 Spot-diagrams for a focal reducer f/8 to f/1.7 designed for the 3.5 m MPIA telescope for a field diameter of 10. Doublet corrector (corrected intermediate image), one field lens and a Hawkins-Linfoot camera. Circle = 0.50 arcsec = 14/.tm. Image radius 1031 mm [4.15] ...... 397 4.41 Spot-diagrams for a focal reducer f/8 to f/1. 7 designed for the 3.5 m MPIA telescope for a field diameter of 10. Doublet corrector ( uncorrected intermediate image), 2 field lenses and Baker-type camera with 2 menisci and one plate. Circle = 0.50 arcsec = 14 /.tm. Plot field for axial spot-diagrams = 10 /.tm. Image radius = 1052 mm [4.15] 398 4.42 Focal reducer designed by Meinel et al. [4.72] for the Texas 7.6 m telescope project. The f/13.5 Nasmyth focus is converted to f/3.0 over a field of 8 arcmin diameter ...... 400 4.43 INCA (Inverted Cassegrain) focal reducer proposed by MacFarlane [4.73] ...... 401 4.44 FR concept using a field mirror proposed by MacFarlane [4.73] 401

Chapter 5 5.1 90 cm lightweighted, built-up blank made by Lord Rosse in 1839 (courtesy Rolf Riekher) ...... 404 5.2 Whiffle-tree support system in 4 stages designed by Thomas Grubb for the Rosse 6-foot reflector completed in 1845 (courtesy Rolf Riekher) ...... 405 5.3 Lord Rosse's 6-foot (1.82 m) telescope completed in 1845 (courtesy Deutsches Museum, Munich) ...... 406 5.4 Original single astatic counterweight described by Lassell in 1842 [5.7] (reproduced from Danjon and Couder [5.1]) ...... 407 5.5 Lassell's 1.22 m telescope set up in 1861 in Malta (reproduced from the original plate of [5.8]) ...... 408 5.6 James Nasmyth's 20-inch Cassegrain-Nasmyth telescope about 1845 (reproduced from King [5.2]) ...... 409 5.7 The 4-foot (1.22 m) Melbourne reflector erected in 1869 (reproduced from King [5.2]) ...... 411 5.8 Foucault's largest (80 cm) silver-on-glass reflector, completed in 1862 (reproduced from King [5.2]) ...... 412 504 List of figures

5.9 The 36-inch (91 cm) Crossley reflector, remounted at Lick in 1900 (courtesy Mary Lea Shane Archives of the Lick Observatory, through D. E. Osterbrock) ...... 415 5.10 Ritchey's 60 cm telescope at Yerkes, 1901 (courtesy Deutsches Museum, Munich) ...... 417 5.11 Ritchey's 60-inch Mt. Wilson reflector: optical arrangement (courtesy Rolf Riekher) ...... 418 5.12 Ritchey's 60-inch Mt. Wilson reflector, 1908 (courtesy Donald Osterbrock and the Observatories of the Carnegie Institute of Washington) ...... 420 5.13 The 100-inch Hooker telescope at Mt. Wilson (1917) (courtesy Deutsches Museum, Munich, and acknowledgement to the Observatories of the Carnegie Institute of Washington) .. 422 5.14 Pease's concept for a 300-inch (7.5 m) telescope in 1921 (reproduced from Dimitroff and Baker [5.17J, courtesy Churchill Livingstone, Edinburgh) ...... 423 5.15 George Willis Ritchey in Paris, 1927, with a built-up cellular mirror disk (courtesy D. E. Osterbrock, photograph by James Stokley) ...... 424 5.16 The primary of the 200-inch Mt. Palomar telescope in testing position (courtesy Palomar/Caltech) ...... 428 5.17 The Palomar 200-inch (5 m) telescope as drawn by R. W. Porter (courtesy Palomar/Caltech) ...... 429 5.18 The Russian 6 m telescope at the Zelenchuk Observatory in the Caucasus (courtesy "Ciel et Espace", Paris, through Serge Brunier) ...... 431 5.19 The 4.0 m Kitt Peak telescope (courtesy National Optical Astronomy Observatories, Tucson) 439 5.20 The 3.6 mESO telescope (courtesy ESO) .,...... 440 5.21 The building of the 3.6 mESO telescope with the smaller building of the 1.4 m Coude Auxiliary Telescope (CAT) on La Silla (2400 m) (courtesy ESO)...... 441 5.22 The 4.2 m William Herschel Telescope (WHT) with its Alt-Az mounting on La Palma (Roque de los Muchachos 2400 m) (courtesy Royal Greenwich Observatory, through Richard Bingham and Peter Andrews) ...... 442 5.23 The original optical layout of the "Universal Telescope" of the Karl-Schwarzschild Observatory at Tautenburg, Germany (courtesy Rolf Riekher) ...... 443 List of tables

Chapter 2

2.1 Gaussian optics of a prime focus reflecting telescope with a single powered mirror: sign of the paraxial parameters ... 41 2.2 Gregory and Cassegrain telescope forms: sign of paraxial ray trace quantities (*denotes sign inversion between Gregory and Cassegrain) ...... 43 2.3 Signs of derived quantities from the paraxial ray trace for the Gregory and Cassegrain forms...... 51

Chapter 3

3.1 Aberration types from the Characteristic Function...... 59 3.2 Paraxial values for deriving the Seidel coefficients (Table 3.3) for some basic telescope systems...... 65 3.3 Seidel coefficients for some basic telescope systems. The asterisk denotes the aspheric contribution ...... 66 3.4 Third order aberrations for a I-mirror telescope (concave primary) ...... 77 3.5 Third order aberrations and associated relations for a 2-mirror telescope in focal form...... 78 3.6 Third order aberrations and associated relations for a 2-mirror telescope in afocal form ...... " 79 3.7 Schwarzschild's data for the aplanatic telescope of Fig. 3.9 ...... 111 3.8 Comparison of the essential parameters in the evolution of the aplanatic telescope (from [3.13]) ...... 112 3.9 Constructional data of the Couder anastigmatic telescope (1926) [3.25] ...... 119 3.10 Angular spherical aberration, coma and astigmatism for three telescope cases of Table 3.3, with an f/10 image beam and a semi-field angle Uprl of 30 arcmin ...... 133 3.11 Data for the "short" Maksutov telescope giving the results of Fig. 3.35 with D = 400 mm, f/3.0 ...... 165 506 List of tables

3.12 Data for the "short" Maksutov system (D = 400 mm and f/3.0) optimized with an additional achromatic field flattener, giving the results of Fig. 3.37 ...... 167 3.13 Optical data of Baker Schmidt-Cassegrain Type B with f/3.0 and f' = 1 ...... 175 3.14 Design data for the Maksutov-Cassegrain of Fig. 3.53. Aperture 400 mm, f/3.5 - f/lO.71 ...... 194 3.15 d8D values (80% encircled energy diameters in /-tm) for the "short" system of Fig. 3.53 and Table 3.14 ...... 195 3.16 Design data for the Maksutov-Cassegrain of Fig. 3.55 ...... 197 3.17 Surface contributions for the aplanatic Maksutov-Cassegrain of Table 3.14 ...... 200 3.18 Data of the system of Fig. 3.72 (a), adapted from Korsch [3.73] .. 218 3.19 Optical design data of the first, 2-axis solution with 4 powered mirrors and flat of Fig. 3.80 with primary f/l.5 and final image f/7.29 ...... 235 3.20 Angular tangential coma produced by transverse decentering ofthe secondary in the 2-mirror telescopes of Table 3.2. Im21 = 4; IRAI = 0.225. The relative aperture at the final image is N = 10. The decenter is 18/f'1 = 10-4 ...... 257 3.21 Angular despace spherical aberration at best focus (BF) and angular despace field coma for 2-mirror telescopes defined as in Table 3.2: Im21 = 4, IRAI = 0.225, INI = 10 and the despace is Iddd i'l = 10-3 , or ddd ii = -4· 10-3 , ten times the decenter 8 of Table 3.20. The semi-field angle for the coma is Uprl = 15 arc min ...... 273 3.22 The Zernike radial polynomials R~(p) up to degree 8 (after Born-Wolf [3.120(a)]) ...... 280 3.23 Zernike polynomials resolved in the x, y directions. This table gives all terms up to R~ and subsequent terms up to n = 10 with n + m ~1O (after Dierickx [3.122]) ...... 281 3.24 The first five maxima of the rectangular aperture function I = [Si~/)]2 (after Born-Wolf [3.120(b)]) ...... 286 3.25 The first 3 subsidiary minima and maxima of the function [2J~w)]2 (after Born-Wolf [3.120(b)]) ...... 289 3.26 Coefficients of various aberrations giving a Strehl Intensity Ratio of 0.8 (incoherent light, point source, circular unvignetted pupil) 298 3.27 The effect of the obscuration factor c on the wavefront variance and the ratio (ptv/rms) with c = 0 ...... 300

Chapter 4

4.1 Refractive index values na as a function of wavelength .x, taken from von Hoerner and Schaifers [4.56]' for 760 Torr and ooe .... 380 List of tables 507

Chapter 5

5.1 Comparison of the lateral decentering coma with 8 = 1 mm of the 60-inch Mt. Wilson telescope and Ritchey's 40-inch RC telescope for the US Naval Observatory ...... 426 5.2 Principal optical characteristics of major telescopes following the Palomar 5 m telescope and with a conventional optical concept .. 437

Appendix

A.1 List of symbols for Chapter 2 ...... 449 A.2 List of symbols for Chapter 2 (continued) ...... 450 A.3 List of symbols for Chapter 2 (continued) ...... 451 A.4 List of symbols for Chapter 2 (continued) ...... 452 A.5 List of symbols for Chapter 2 (concluded) ...... 453 A.6 Additional symbols for Chapter 3 ...... 453 A.7 Additional symbols for Chapter 3 (continued) ...... 454 A.8 Additional symbols for Chapter 3 (continued) ...... 455 A.9 Additional symbols for Chapter 3 (continued) ...... 456 A.10 Additional symbols for Chapter 3 (continued) ...... 457 A.11 Additional symbols for Chapter 3 (continued) ...... 458 A.12 Additional symbols for Chapter 3 (continued) ...... 459 A.13 Additional symbols for Chapter 3 (continued) ...... 460 A.14 Additional symbols for Chapter 3 (continued) ...... 461 A.15 Additional symbols for Chapter 3 (continued) ...... 462 A.16 Additional symbols for Chapter 3 (continued) ...... 463 A.17 Additional symbols for Chapter 3 (continued) ...... 463 A.1S Additional symbols for Chapter 3 (continued) ...... 464 A.19 Additional symbols for Chapter 3 (concluded) ...... 465 A.20 Additional symbols for Chapter 4 ...... 466 A.21 Additional symbols for Chapter 4 (continued) ...... 467 A.22 Additional symbols for Chapter 4 (concluded) ...... 468 A.23 Additional symbols for Chapter 5 ...... 468 Name index

Abbe, E. 82, 83, 85 Brodie, J.P. 359 Adams, W.8. 421 Brown, M. 427,428 Airy, G.B. 250,288,379 Bruns, H. 83 Amon, M. 211 Buchroeder, RA. 207,251 Anderson, E. 358 Burch, C.R. 134,317,331,365 Anderson, J. 427,428 Andrews, P. 442 Calver, G. 414,416 Angel, J.RP. 358 Cao, C. 330,354-357 Ardeberg, A. 239 Caravaggi, C. 2 Ayscough, J. 14 Cassegrain, L. 4,9,10,13,84,86,87, 410 Babinet, J. 311 Cassini, J.D. 380 Bahner, K. 61,63,67,70,74,97,137, Chretien, H. 84,90, 107, 113, 142, 167, 139, 147, 148, 150, 154, 156, 160, 169, 315,317,360,424 173,202,256,268,283,343,350,424, Clairaut, A. 14 444 Clark, A. 414 Baker, J.G. 113,154,169,171,173, Clausius, R 82 174,176,177,184,202,220,221,223, Common, A.A. 414 230,232,238,312,346,347,415,423, Comstock, G.C. 379 444 Conrady, A.E. 161,256 Baranne, A. 239,241,244,256,356 Couder, A. 1,7,112,113,115,117, Barlow, P. 4,389 403,407,432,438,444 Bass, G. 14 Cox, J. 6 Baxandall, D. 13 Cox, RE. 313 Beddoes, D. 381 Crossley, E. 414 Bennett, H.F. 205 Czapski, 8. 83,161,210 Bhatia, A.B. 278 Czerny, M. 247 Bingham, R 384,387,437,442 Bird, J. 14 Daley, J. 214 Black, G. 310 Dall, H.E. 84,97,436 Born, M. 27, 280, 282, 283, 285-287, Dallmeyer, J.H. 4 289-294,304,310,311 Danjon, A. 1,7,115,403,407,444 Boulesteix, J. 399 Davis, J. 202 Bouwers, A. 143-145, 160-162, Day, A.L. 419 165,167,186,188,189,191,199, de Berce 9 201 De, M. 310 Bowen, 1.8. 335,361,427,433-435 Delabre, B. 215,234,238,239,402 Bradford, W.R 202 della Porta, G. 22 Bradley, J. 11 Descartes, R 2-5,8,10,11,84,403, Brashear, J. 414,421 426 Breckenridge, J.B. 381,382 Dierickx, P. 279, 281 510 Name index

Dimitroff, G.Z. 113,171,173,312, Hall, C.M. 13, 14 415,423,444 Hamilton, W.F. 212,213 Ditchburn, R.W. 311 Hamilton, W.R. 57,58,60,61,82, Dollond, J. 13 246,278 Dollond, P. 13, 14 Hansen, G. 38 Doppler, C. 425 Harmer, C.F.W. 356,370,372 Draper, H. 413,414,416 Hartshorn, C.R. 391 Duffieux, P.M. 302 Hawkins, D.G. 201 Helmholtz, H. 30 Eichens, F.W. 414 Hendrix, D.O. 169,427 Ellery, R.L.J. 413 Henize, K.G. 202 Elsasser, H. 350 Henneberg, P. 356 Eppenstein, O. 83, 161,210 Herschel, J. 403,410,413 Epps, H.W. 222,358,359,372-374, Herschel, W. 2,15-19,37,86,308, 378,379,383 403-406,410,414,419,421 Euler, L. 13 Herzberger, M. 28,83,224 Hirayama, S. 312 Hopkins, H.H. 58,61,134,140,161, Faulde, M. 350,351,357,387 287,309,310,323,339,341 Fecker, J.W. 414,421 Houghton, J.L. 206 Fehrenbach, C. 445 Hubble, E. 421 Fermat, P. de 25,27,83 Humason, M.L. 421 Fibonacci, L. 99 Huygens, C. 9,11, 161 Forster, J. 246,247 Foucault, L. 410-412,414,416,418, 421,424 Ioannisiani, B.K. 433 Fourier, J. 302 Fran<;on, M. 283,292, 293, 296, 297, Jacquinot, P. 292 302-305,307,310 Jorsater, S. 399 Fraunhofer, J. 4,14,283,403 Fresnel, A. 158,283 Keeler, J.E. 415,416 Fritsch, K. 246,247 Kepler, J. 2,4,6,10 Kerber, A. 214 Gabor, D. 201 Kienle, H. 444 Galileo, G. 1,10,15 King, H.C. 1,4,7,9,14,403,409-412, Gascoigne, S.C.B. 317,320,324-326, 416,427 331,332,335,338,340,344,345 Kirkham, A.R. 84,97 Gauss, C.F. 22,27,224 Klingenstierna, S. 13 Gautier, P. 414 Kohler, H. 139,169,173,201,202, Geyer, E.H. 399 206,330,354,355,370,372 Gochermann, J. 444 Konig, A. 139, 169, 173,201,202, 213 Goodman, J. 302 Korsch, D. 215-219, 223, 224, 229, Grant, R. 1 231,233,236,239,243,245 Gregory, D. 13 Krautter, M. 97 Gregory, J. 5,6,8-10,13,84,86 Kuiper, G.P. 444 Grubb, H. 410,414 Kutter, A. 246,247,250,251,309 Grubb, T. 404,405,408,410,413,416, 441 Lagrange, L. de 30 Grundmann, W.A. 356 Lansraux, G. 293 Guinand, P. 14 Lassell, W. 403,404,406-408,410, 414,416,419,421 Hadley, J. 11,12 Laux, U. 81,84,230 Hale, G.E. 416,419,421,426,427 Le Sueur, A. 413 Name index 511

Learner, R 438 Paul, M. 219,222,232,233,315,317, Lemaitre, G. 239,241,244 319,323,324,326,340,342-346,348, Leonard, A.S. 251 350,353,357,368 Liebig, J. 410 Pease, F.G. 423,426,427 Linfoot, E.H. 134, 153, 154, 176, 184, Penning, K. 201 201,310 Petzval, J. 5,61 Lipson, H. 285,286,290 Piazzi Smyth, C. 152 Lloyd, J.M. 309 Plossl, G.S. 212 Loveday, N. 223,224,229 Porter, RW. 428,429 Lundin, C.A.R 421 Pound, J. 11 Lurie, RJ. 207 Pythagoras 99

MacFarlane, M. 400-402 Ramsden, J. 14,15,36 Mackintosh, A. 191,200,251 Rayleigh, J.W. Strutt, Lord 11, Maksutov, D.D. 144, 160, 162, 163, 290-292,297,308,309 165,167,186,188,189,191,199,204, Reeves, R 6 432 Refsdal, I.N. 377 Malacara, D. 282 Richardson, E.H. 356-358 Malus, E.L. 83 Richter, R 206 Mangin, A. 210,389 Riekher, R 1,169,173,201,202,206, Marechal, A. 256, 283, 292, 293, 296, 212,246,256,403-406,416,418,427, 297,302-305,307,310 430,443,444 Marsili, C. 2 Ritchey, G.W. 84,90,107,256,343, Martin, A. 414 413,416-421,423-427,433,445 Maskelyne, N. 14 Robb, P.N. 229,230,239,268 Maxwell, J. 201,202,205,211,212 Robinson, T.R 410 Mayall, N.V. 415,433 Roizen-Dossier, B. 292 McGraw, J. 222 Rosin, S. 211,346,353,370,372,377, Meinel, A.B. 229,263,317,327,330, 400 399,400 Ross, F.E. 338-343,348,350,353,368, Meinel, M.P. 263,399,400 430,434 Mellish 410 Rosse, W. Parsons, Lord 403-406, Melnikov, O. 433 410,414,415,418,419,421,423,441 Mersenne, M. 3-6,9, 10, 88 Rumsey, N.J. 229-231 Mertz, L. 268 Russell, H.N. 379 Meschkowski, H. 278 Rutten, H. 84,101,181,189,191,199, Messier, C. 18 200,202,206-208,210,211,214,223, Michelson, N. 433 224,247,250,251,391 Middlehurst, B.M. 444 Morbey, C.L. 358 Sagredo, G. 2 Sampson, R.A. 315,338,340,341,343, Nasmyth, J. 408,409,410 360,361 Nelles, B. 399 Sand, R. 268 Newton, I. 1,6,8-11,13,85 Sasian, J.M. 243,244,402 Nijboer, B.RA. 123,126,311 Schafer, D.R 245,268 Schaifers, K. 380 O'Neill, E.L. 308,309,311 Scheiner, J. 312 Opitz, A. 250 Schielicke, R. 444 Osterbrock, D.E. 415,416,420,421, Schmidt, B. 142-144,167,169,206 424,425 Schmidt-Kaler, T. 444 Schroeder, D.J. 27,113,160,168,169, Parseval, M.A. 305 173,176,181,215,219,248,256,268, Pasachoff, J .M. 438 275,276,283,293,297,299,301,302 512 Name index

Schulte, D.H. 330,335,337,346,371 Vasilevskis, S. 433 Schupmann, L. 212-214, 238 Vaughan, A.H. 335 Schwarzschild, K. 3,5,57,74,81, Violette, H. 315,360,361,367,369 83-85,90,107,109-113,117,119,134, von Hoerner, S. 380 142-144,167,170,315,317,360,400, 403,426 Walker, R. 425 Seidel, L. 5, 57, 59-63, 65, 66, 82, 85, Wallner, E.P. 379,381,382 122,142 Wang, Y.-n. 385,387-389 Serrurier, M. 430 Welford, W.T. 22,24,28,34,61-63, Shack, R.V. 229 122,134,140,156,283,293,295-297, Shapley, H. 389 302-304,307,311,323 Shectman, S.A. 245 Wetherell, W.B. 302,307,309,310, Short, J. 13 379,381,382 Silvertooth, E.W. 211 Willstrop, R.V. 222,232,233 Slevogt, H. 173, 176, 179, 184, 186, Wilson, R.N. 107,234,238,250,330, 206,256 350,351,354-357,370,371,373,375, Smith, R. 30 376,387,392,400-402 Snell, W. 26 With, G.H. 414 Sonnefeld, A. 206 Wolf, E. 27, 278-280, 282, 283, Southall, J.P.C. 161 285-287,289-294,304,310,311 Steinheil, C.A. 410 Wolf, R. 444 Steward, G.C. 293,308 Wolter, H. 5,97 Strehl, K. 290, 294 Woodbury, D.O. 427 Strong, J. 232 Worswick, S.P. 382-387 Su, D.-q. 377,384,385,387-389 Wright, F.B. 169-171,199 Sumita, H. 282 Wright, H. 427 Wynne, C.G. 205,206,316,327,329, Takeda, M. 222 330,338,340,342,344-346,348-351, Taylor, C.A. 285,286,290 353-357,361,363,368-370,372,373, Theissing, H. 97 381-387 Thompson, B.J. 285,286,290 Thomson, E. 427 Tobin, W. 411 Young, T. 309 Turner, A.F. 247 Yu, X.-m. 377

Viiisiilii, Y. 169-171 Zernike, F. 60,278-282,287 van Venrooij, M. 84,101, 181, 189, Zhou, B.-f. 377 191,199,200,202,206-208,210,211, Zimmer, H.G. 224 214,223,224,247,250,251,391 Zinke, O. 97 Varnish 410 Zucchi, N. 2,6,8 Subject index

Abbe number 148,150,179,188,213, - first order chromatic 140,338 391 - formulae 75 Abbe sine condition 36,82,83, 85, - function 57,58,260,278,303 113,115 - Gaussian see first order -, graphical demonstration 113 - geometrical 26 Aberration 2, 28, 32, 40, 55, 63, 68, 85, - higher order 55,60,79, 82, 113, 97,134,139,151,288,303,310 139,154,162,246,268,323,329,345, - angular see lateral 350,368 - astigmatism see Astigmatism - higher order chromatic 329,335, - axisymmetric 127 337,338,350,353,354,356,357,371, - "central" 339,341,362 393,395 - chromatic 5,6,10,14, 103, 118, - higher order field 146,341 139,141,146,153,160,176,179,184, - higher order theory 82,83 186,199,201,222,251,316,321,329, - large (relative to diffraction limit) 337,341,342,353,364,366,368-371, 301,310,311 391,394,396 - lateral (angular) 11,55,56,61,63, - chromatic (lateral) 163, 189,335, 82,83,86,116,123,124,126,127, 371,373,377,382,393 131,132,149,154,183,272 - chromatic (longitudinal) 140,156, - lateral chromatic see chromatic 186,188,205,207,210,339,382,383 (lateral) - chromatic variation 139,141,382 - longitudinal 55, 56, 63, 123, 124 - classical 278 - monochromatic 140,141,186, - coefficient 62, 63, 132, 224, 296, 329 301, see also Seidel - near diffraction limit 293-301 - coma see Coma - order 55,56,58,59,82,83,278 - decentering 252,260,381 - peak-to-valley (ptv) 301 - decentering astigmatism 260 - primary chromatic 162 - decentering coma see Coma -, primary longitudinal chromatic - defocus, pure 59, 133, 310 144,348 - despace see Despace - pupil 32, 396, 400 - distortion see Distortion -, quasi-telecentric 391 - family 59,61,281,282 - root-mean-square (rms) 301 - field 88,94,107,133,135,137, - Seidel 59,61,85, 110, 138, 317, 318, 142,143,152,195,246,315,338, see also third order 389,391 -, small 293-301,310,311 - field curvature see Field - spherical see Spherical aberration curvature - spherochromatism see Spherochro- - field dependence 60 matism - fifth order 58,82, 167 - symmetrical 301, 303 - first order (Gaussian) 58,59,67, - theory 5,40,41,46,48,53,55,67, 129,133,139 105,107,122,382,384 514 Subject index

- third order (Seidel) monochromatic - vacuum evaporation 197,232,427 57-61,63,67,77-79,82,86,122, Amateur 105,179,181,182,184,186, 134,137-139,151,170,178,194,229, 210,214,223,247,292,309,391 260,270 Analysis see also Theory - third order chromatic 140 -, chemical 250 - third order theory 121,122 -, third order 67,84,86,173 - total 296 Anastigmat see Reflector - transverse see lateral Anastigmatism 219,233,250,251, - transverse chromatic 90,118,153, 268,342 165,169,194,195,199,205,215, Angle 341,348 -, azimuth 58, 126 - type 59,246 Angular field see Field angle - wavefront 58,61-63,67,84, Aperture 21,30,58,63,69,79,82,122, 121-123,125,127-129,131-134, 259 139,146,147,151,161,272,303,318 -, annular 292,299,308,309 Aberration coefficient see Seidel - circular 287,290,306 Aberration function see Aberration - double slit 309 Absorption 158,303,350,381 - excentric 251 Access (image) 111 - finite 82 Accuracy - rectangular 282,283,287,306,312 -, third order 181 - relative 10,44,257,307,419,430, Achromat see Corrector 433-435 - thin doublet for FR or FE 390 - slit 285 Achromatic doublet (objective) 8,13, -, unobstructed 292,310 14,35,137,156,157 Aperture diaphragm 40 - manufacture 14 Aperture number 81 Achromatisation 156,157,329,350, Aperture ratio 107,181 390,394 Aperture stop 31,32,35,49,50 Achromatism 139,163,250,340,341, -, telecentric 33 357,358,360,367,372,414 Aplanatic see also Reflector Active control 60,67,107,233,236, Aplanatic 243,246,262,268,282,430,432,441, - supplement 92,256 444 Aplanatic Cassegrain (RC) 65,66,90, Active correction see Active control 254 Active optics see Active control Aplanatic Gregory 65,66 ADC see Atmospheric Dispersion Aplanatic modification 115 Correction Aplanatic solution (general) 91,97, Afocal case 31,33,35,36,39,42,52, 179 53,75-77,79,88,89,91,92,94,98, Aplanatism 92,112,116,117,194,195, 100,101,103-105,262,272,275 197,200,207,208,210,214 Afocal corrector see Corrector Apodisation 283,292,304 Afocal feed system 53, 229, 237, 241 Approximation Afocal mode 52 -, Gaussian optics 27 Afocal supplementary lens system 53 -, Seidel 55-57,61-64,79,92,121 Afocal system 46,53,214 -, third order see Seidel - definition 31 Array detectors 90 Air 29,30,35,38,42 Aspheric see also Reflector -, local 289,436 - form 2, 5, 10, 13,62,68,94,220, Airy disk 250,288,309,391 221,234,235,242,253,260 Alignment 15,259 - general form 79-81 - Schmidt 154 -, higher order 80 Aluminium (reflecting coat) 197,211, - mirror form relaxation 365 232,430 - off-axis 251 Subject index 515

- steep 171 Atmospheric dispersion 380-382,385 - surface 2,8,79-81,232,353, Atmospheric Dispersion Corrector 356-359,368,372,377,379,396,400 (AD C) 379--389 - term 80 - Cassegrain focus 382,384 -, third order 81 diffraction limited 381 Aspheric contribution 66 oiled contact 383 Aspheric parameter 68 prime-focus 382,384-387 Aspheric plate 133-135, 139, 178 prime-focus, 3- or 4-lens 384 - third order 135 prisms 384 Asphericity 57,79-81,85,87,99,101, RC (Cassegrain) focus 387 103,112,157,158,173,177,184,186, Risley variable dispersion prism 205,319,320,323,328,335,337,340, 381 343,351,354,360,361,367,372,404, - two plane-parallel plates 379 414,425 - with existing corrector 383 - three mirror solution 215 -, zero-deviation 379,381 - total 328 Atmospheric refraction 379,380 -, very high 171 Atmospheric turbulence see Seeing Aspherising 13,201,356,418,427,432 Autocollimation 92,419 Astigmatic Axial imagery see Imagery - lines 97, 129-131, 183 Axial obstruction ratio see Obstruc• - patch 130 tion - radial line 130 Axis 2,22,23,58,59,84,97,142,144, - sagittal line 129,130 145,154,246,253 - sagittal surface 129 - altitude 233,237,242,408 - tangential line 129,130 - aspheric 252 - tangential surface 129 - optical system (definition) 22, 23, Astigmatic types 60 27,246,444 Astigmatism - second 217,219,223,233,234,238 - angular 131,183 -, single 232, 233 - chromatic difference 141,335,337 Axis of symmetry 22,57,246 - definition 128-131 Azimuth angle see Angle, azimuth - field 2,14,60,62-64,73,76,85, 86,88-90,93,94,97,101,104,105, Back focal distance 35, 71 110-113,119,128,130,132-134,136, Back-reflection 211, see also 137,142,163,171,176,177,179,181, Reflector, Mangin 183,184,197,205,207,208,214,219, BafRe 137,237,292 221,233-235,247,248,250,251,281, -, front 173 282,301,317,320,323-326,329,331, -, stray-light see BafRing 333,337,340,344-348,350,354,361, BafRing 111,118,145,173,222,230, 363-366,370,371,383,390,391,394, 231,236,245,268 396,413,435 - by secondary 219 - lateral 130 -, stray-light 6,173,219,222 - longitudinal 130 Bandwidth - quadratic field dependence 260 -, spectral 144 - sagittal 111,112 Barlow lens 389,391 - tangential 111,112 Beam - third order 129,145,296-298,300, - afocal 220 310 - converging 151,323,381 Astrometric reflector see Telescope - diverging 151 Astronomical observation -, telecentric 259 -, visual 37 Beam compression 3,36,248 Atmosphere 141,380 - factor 36-38 -, equivalent homogeneous 380 - laws 38 516 Subject index

- ratio 36,37,46,53,248 -, photographic 21,25 Beam compressor 3, 75, 223 -, pinhole 22 - Mersenne afocal anastigmatic 75, -, Schmidt see Reflector 219,221,223,342 - Schmidt semi-solid 168, 169 -, two-mirror, afocal see Mersenne - Schmidt solid 168, 169 afocal anastigmatic - Schmidt solid (direct form) 168 Bending 391 - Schmidt solid (folded form) 168 - lenses 163,214 -, spectrograph 110, 168, 169 - meniscus 197, 199,211 Camera objective -, optical 211 -, triplet 137 - photographic plates 153 Camera obscura 21,22 Best focus see Focus, best Carl Zeiss (optical works) 356,392 Binocular 37 Cartesian Blank (mirror) - oval 2 - aluminium 432 - system 24,34,74 - beryllium 432 - theory 3, 11 - borosilicate 432,437, see also Case see also Reflector Pyrex - afocal see Afocal case - fused quartz 425,427,436,437 -, aplanatic 90, 92 - lightweighted 423,427,430,432, - Cassegrain see Reflector and 436,437 Corrector -, lightweighted, built-up 404 - focal 82,89,272,275 - massive 404,423,427,432,436, prime focus see Reflector and 437 Corrector -, meniscus 432,437 see Reflector - 100-inch 419,427 Cassegrain system with concave - Palomar 5 m 427,433 secondary 110 - Pyrex 427,437 CAT (ESO) see Telescope - 6 m 432,437 Catoptric system 15, 83 -, 60-inch 416,427 CCD (Charge Coupled Device) 90, -, speculum 10, 14, 15,403,404,408, 94,230,316,438 413,414 CCD array 230, 236 -, stainless steel 432 Cement -, thin 432,437 -, optical 158 -,3m Pyrex (Lick) 433 Centered optical system 55,57,151, -, 200-inch see Palomar 199 Bore - definition 22 -, cylindrical 428 -, ideal 22 Bowen camera 107,399 Centering 10, 199 Boyden station (South Africa) 176 - tolerances 107 Buchroeder design see Reflector Central obscuration factor 293 Building see also Dome and Air, local Cervit (glass ceramic) 436,437 - ESO 1.4 m Coude Auxiliary Characteristic Function 57,59-63,82, Telescope 441 121,246,278,282 - ESO 3.6 m telescope 441 Chromatic limitation 146 Chromatic variation 141,146,154, Cage 323,329,382 -, prime focus 430,433,434 - astigmatism 140,394 Calculation data - coma 140,329,335,337,348,349, -, input 94 354,394 Camera see also Reflector -, first order (Gaussian) terms 141 -, Baker flat-field 176 - focus (longitudinal colour) 140 -, Baker-Nunn 202, 204, 207 - higher order terms 146 Subject index 517

- spherical aberration 140 - sagittal 127 - wavefront tilt (lateral colour) 140 - stop-independent 88 Chromatism - tangential 19, 126 -, primary 14 third order 60,125-127,145,233, Circle (equation) see Equation, circle 296,298,300 Classical Cassegrain see Reflector - third order (with optimum tilt) Classical Gregory see Reflector 298,300 Coat - total 261 - aluminium 211,232,427,430 - translation (lateral, transverse) - cleaning 232 decentering see decentering - durable 232 -, triangular 60 - multi-dielectric 235, 246 Coma limits -, silver 211,232,246,410,411 -, acceptable 260 Coefficients Coma-free point 261-265,267,268 -, chromatic 140,339 Combination see also Reflector -, third order aberration 61,86,122 -, aspheric plate-meniscus 201 -, third order aspheric 81 -, thin-lens 38, 177 Coherence 287 -, two-mirror 41-53,69-106 -, partial 287 Committee (telescope design) 414 Colour see also Chromatic variation Companar see Reflector -, lateral 141 Compression ration see Beam -, longitudinal 139 compression, ratio Coma Computer drawing 94 - angular tangential 333 Computer program (optical design) - chromatic difference see colour - ACCOS V 200, 276 - coefficient 128 - ZEMAX-EE 94 - colour (chromatic variation) 140, Computers 82,83,94, 113, 154 329,335,337,348,349,354,394 Concentric zones (ripple) 297-300 - compensation 248 Concentricity 144,177, 189, 199 - decentering 252-262, 265-268, 277, Condensor 425,426,430 -, two-mirror 250 - definition 125-128 Condition - field 2,4, 14, 19,60,62,64,72, - aplanatic 111,182,377 73,76,82,85-87,91,93,94,97,99, - Bouwers 162 101,103-105,113,116,125,127, - coma-free 250 128,131-134,136,142,156,170,176, - effective flat field 112 197,210,211,215,219,221,234,235, -, flat field (Petzval) 90,111,112, 246-251,253-255,259,260,262, 217,220,230,232,236,242 263,265-267,276,277,281,282,303, -, Maksutov 163 317,319,323-325,329,331-334,337, Conditions see also Air, local 338,340,344,346,350,361,364-367, -, thermal (in dome) 432 369-371,383;390,391,394,405,416, Conic (Schwarzschild) constant 423,435,444 57,62,79,81,218,234,322,350,353, - field (linear dependence) 260 359,364,366,404 - field-uniform (decentering) see Conic form 81 decentering Conic parameter 81 - fifth order 351 Conic section 2, 13,28, 56, 57, - figure (pattern) see patch 79-81,92 - inward 128,195 - higher order variations from - outward 195, 197 260 - patch 94, 97, 126-128, 133 -, strict 56,57,81,260 - rotation decentering 260,261,265, Conjugate plane 23,30 267 Conjugate point 23, 25 518 Subject index

Constant - Cassegrain focus 321,330-338, -, aspheric (plate) 139,144,318,335 353-378,436,438 -, dimensionless profile 147 -, COSTAR 2-mirror 338 Construction (primary) - Dialyte 212 -, monolithic 233 -, double meniscus 208,214 -, segmented 233,240,358 -, double-pass Mangin 214 Contrast -, doublet lens 204,206,207,338-348, - imagery 247,302,305,308,313 353,360,363,365-372,387,444 - loss 309 -, doublet plus aspheric 346 - negative 310 - doublet with ADC 384 - reduction 308,309 - doublet with hyperboloid 346, 353 Contribution - doublet with single glass 377 -, "central" see Aberration, "central" - doublet with two different glasses Control 364 -, telescope (pointing and tracking) - doublet, fused silica 377 433 -, Epps 358-359,372-374,379,383 Convex lens see Lens -, Faulde-Wilson three-lens 351 Convolution 308 -, field 113, 139,276,315-389 Coordinates - for paraboloids 348,350,356,357 -, Cartesian 24, 113,295 - for RC primaries 350, 353 -, "optical" 293 -, four-lens all spherical 348-350,356 -, polar (secondary mirror) 113 -, Gascoigne 317,320,324,325,331, - system (diffraction) 284 332,335,338,340,344,345 Correction - Gascoigne PF aspheric plate -, chromatic 144,212 320-322,344,345 -, field 137,316 - Gascoigne plate (Cassegrain) -, fifth order 184 331-338 -, monochromatic 145,393 -, Gregory focus 330 Corrector 93,117,154,201,244, - Hawkins-Linfoot aspheric achro- 315-379,435 matic 202, 204 - achromatic 201 - Houghton-type lens 204,206-210 - achromatised doublet meniscus - Kohler (Cassegrain) 355 372 - lens 315,329,330,338-378 - afocal 207, 208, 212, 315, 338-340, - "lensm" 387-388 353,360 - lens-mirror 214 -, afocal doublet 342-345,360,368, - Meinel 317,327 370 -, meniscus 144,342, see also -, afocal doublet plus plate 348 Reflector, Bouwers and Maksutov -, afocal doublet with single glass -, modern RC 353-357 360,370,372 - multi-element 328 - aspheric 346 - multiple plate 319,337,346 - aspheric (Schmidt) 143 - multiple plates at Cassegrain 337 - aspheric plate 315,317-339,342, - multiple thin lenses 342 363 - nearly afocal doublet (Harmer- - aspheric plate plus field flattener Wynne) 372 371 -, nearly afocal spaced doublet - Atmospheric Dispersion (ADC) (Sampson) 360 358,373,379-389 -, Paul 315,317,319,323,340, - Baker concave mirror pair 241 342-348,350,353 - Baker reflector-corrector 346,347 -, Paul-Baker reflecting-type 358 - Baranne three-lens 356 - plate 317-338 -, bigger 357 - position (relative to stop) 319,330, -, bigger, with aspheric 356 331,361 Subject index 519

- powered 391 - three weak aspheric lenses 356 - prime focus (PF) 93, 132, 317- - three-element (Epps et al.) 373, 330, 334,335, 338-361, 394, 399, 374,378 400,402,430,434,435,438,444 - three-element (meniscus) 205 - quasi-afocal (with FR) 390,391, - three-lens 330,338,342,346,348, 395 350,353-355,357-359,372,379 - refracting 144,316,359 - three-lens plus one aspheric - Ritchey-Chretien (RC) 331,357, 350-352 361,369,377 -, three-lens with aspherics 356 - Ross 338-343,348,350,353,368, - three-lens, one glass (Wynne) 354 430,434 - three-plate 327-330,337 - Ross three-lens 342,343,348,430, - three-plate plus field flattener 330, 434 354,355 - Ross-type doublet 346,347,353, - tilt 156 354 - two aspheric plates 323-326 - Sampson 315,338 - two fused quartz lenses with quite - Schmidt 145, 154, 158,207,441 large separation (Su et al.) 377 - Schmidt achromatic 156-158 - two plates at Cassegrain 337 - Schulte 335, 346, 371 - two separated lenses 347,348,367, - Schwarzschild-Bowen pair 241 373,377 - secondary focus see Cassegrain - two separated thin afocal doublets focus 347,348 - secondary focus with aspheric plates - two-element (with FR) 395 330 - two-glass 373,399 - secondary focus with lenses 360, - two-glass doublet 346,368 370 - two-glass meniscus 377 - separated doublet, single glass 338, - two-lens afocal see thin afocal 367-369 doublet - separated doublet, two glasses 341 - two-lens solutions 372 - simple meniscus 165 - two-lenses with one glass type 375 - single glass 158,207,343 - two-lenses with two different glasses - single lens 342, 344, 354, 363, 364, 376 369-371 - two-plate 323-328,337 - single thick meniscus 371,377 - weak achromatic (Hawkins-Linfoot) - single-plate 319,326,327,330-338 201 - size 357 Wilson 350-352,355-357,370,371, - Su 377,387-389 373,375 - supplementary (plate) 133 - Wynne 316,327,338,340, - system 140,246,361 342,344-350,353-357,361,363, - thin 344,364,366-368 368-370,372,373,381-387 - thin afocal 339,340,344 - Wynne four-lens 349,351,356 - thin afocal doublet 338-340, - Wynne three-lens, all spherical 344-346,348,363,370 354-356 - thin doublet with one glass type Corrector (Cassegrain focus) 366,367,369 -, aspheric plate 330-338 - thin doublet with two different -, lens 360-378 glasses 365, 366, 369 Corrector (PF) - thin singlet lens 363,365 -, aspheric plate 317-330 - three aspheric plate 319,327-330, -, lens 338-360 337,354-356,372 Corrector plate 97,154,181,184,186, - three quartz lenses 359 189 - three separated thin lenses 368, -, achromatic (doublet) 156-159,184, 369,372 185, 187 520 Subject index

-, aspheric 179,201,330 - spherical aberration 270-273, - bending 154 276 - for astigmatism of an RC telescope -, transverse 277 331 -, zero sensitivity (spherical aberra- - Gascoigne (for a quasi-RC system) tion) 273 333-338 Detector 21,40,117,118,162,183, - Gascoigne (for a strict RC system) 222,232,234,291,292,308,358, 331-334 390,395,399,433,435 -, Gascoigne (for PF) 320,321, 323, -, CCD 90,94,316,416,438 328 -, CCD-array 90,94,230,236,316, - non-achromatic (singlet) 146,158, 321,399,402 160,179,180,184,207 -, electronic 316,438,441 - sag 154 - faceplate 358 -, Schmidt see non-achromatic - image-intensifier tube 433 -, Schmidt-type 346 -, non-linear 132 -, singlet (Paul) 319 - photomultiplier 433, 434 Cosine effect 236 Diagram Cost advantage (spherical primary) -, optical glass 159 233 -, see-saw (Burch) 365 Coude Auxiliary Telescope (ESO CAT) Diameter see Telescope -, field 31,35,435 Crystals 139, see also Glass -, free 52 Curvature 27 Diaphragm 134, see also Stop -, vertex 57,80 Diffraction 282-313 Czerny-Turner - annular aperture 291-293 - condition 248 - circular aperture 287-291 - monochromator 247,248 - cross 312,313 - effects of spider 312,313 Dall-Kirkham (DK) see Reflector -, Fraunhofer 283,285,286,289-291 Decentering 52,256,257,260,263, - Fraunhofer integral 283 277, see also Aberration - Fresnel 283 - angular 260 - image 285,286,288,290,294 - lateral (transverse) 154,252-260, - integral 287,303,304,307 265,267,271,425 - limit 290, 302 -, rotational 260,261 - rings 289,293,308 -, transverse see lateral - small aberrations 293-301 Definitionshelligkeit (Strehl Intensity - spike 312,313 Ratio) 294 Diffraction limited 19,207,222,291, Defocus 59, 152, 281, 296-301, 309 301 - effect 128 Diffraction pattern 284-286,290,292 -, pure 59,310 Diffraction point-spread-function (PSF) Deformation 282,287,291,293,299,301,308 -, aspheric 151 Diffraction theory 26,282-313 Derived quantity see Quantity, - with aberrations 283,293-311 derived Disk Design see Reflector - Airy see Airy disk Despace - of least confusion 124,149,150, - angular field coma 276 272,297,341,343 -, axial 268-276 -, Ramsden see Ramsden disk - field coma 273-276 Dispersion - Gaussian terms 268, 269 - abnormal 202 - pointing change 277 -, atmospheric 141,358,373,379, - sensitivity 269,276 380,382,383,385, see also ADC Subject index 521

- chromatic 6,13,139,141,148, Ellipse 6,56,57,80,87,92,98, 118, 150,157,165,186,188,189,201,207, 183,221,265,350,351,360 341,350,364,385 Emissivity - curve 156 -, infra-red 50 - glasses for ADC 382,384 Emulsion - mismatch (ADC) 382 -, photographic 84, 112, 113 - properties 156 -, slow 413 - vector (ADC) 381 Energy Displacement theorem 294, 295, 301 - concentration 195,200,202 Distinct vision -, encircled 195,290,291 -, minimum distance of 38 Energy transfer 82 Distortion 60,62,64,131,134,142, Entrance pupil see Pupil, entrance 153,169,173,219,341,342,360,367 Equation - barrel 132 - analytical 167 - chromatic difference 335 - circle 56,57 -, pincushion 132 - conic section 56,57 Dome - Korsch (3-mirror) 215,217,229 - air mass 438 linear 28 - concept 438 - linear diophantine 224 - fixed 410 - Newton's conjugate distance 24 - large 430 - Nijboer 124, 126 - seeing 421,438 parabola 56,57 - volume 438 - paraxial 34,224 Double star (resolution) 290 - plate profile 332 Double-pass (autocollimation test) - refraction 34 419 - Schwarzschild 57 Doublet see Achromatic doublet - stop-shift 64, 74,85,87, 138, 176 -, afocal see Corrector -, transfer 34 Dust 235 Equatorial mount 13 Dutch 0.9 m national telescope (ESO) Error see also Aberration see ESO Telescope - defocus 133 - Gaussian 129 Eccentricity 57,91,115,182,218,321, - guiding 59 326,343,345,346,354 - manufacturing (corrector plates) Edge 158 -, "turned-down" 428 - pointing 59 -, "turned-up" 428 -, tracking 59, 133 Effect ESO (European Southern Observatory) -, photometric 132,342 94,96,97,102,106 -, stop-shift see Stop shift ESO La Silla Observatory see Eikonal 82,83,360 Observatory Electronic detector see also Detector ESO Telescopes - array 94 - Coude Auxiliary Telescope (CAT) Element 98 - centered 22 - Dutch 0.9 m (national) 98 - double-pass 210 - New Technology Telescope (NTT) - optical powered 260 52,94-96,101,102,105,106,389, - reflecting (catoptric) 84 408,416 - refracting (as corrector) 358,389, - Schmidt 1 m achromatic 158, 159 see also Corrector - Schmidt 1 m f/3.0 154 - refracting (in catadioptric systems) - 2.2 m MPIA 312 94,139,140,212 - 3.6 m 321-323,335,336,354-357, - tilted 246 370,371,437,438,440 522 Subject index

Euler relation 284,303 Field flattener 90,117,118,152,153, Exit pupil see Pupil, exit 165,167,184,189,195,200,321, Expansion coefficient (glasses for mirror 335,356,370,400 blanks) 414,421,427,436 - achromatic 165-167 Eye 21,291 - Gascoigne (for a quasi-RC system) (ocular) 3,5,6,21,22,35-39, 321-323,335,336 52,53,139,433 -, plano-concave 118,323 - Galilean negative 2,39 Field imagery 3,14,60 - Kepler, positive (convex) 6,8,10, Field stop 31,35 15,37,40,53 Field-flattening lens see Field - refracting 9 flattener Figure fjno 47,52,137,223,241,256,285, -, aspheric see Aspheric, form 306,315,359 Figuring techniques 405,417,425 -, primary 15, 18,410,438 Figuring term Feeder telescope 105,233 -, fourth power 144 Fermat's principle 27,83, 113 Film (photographic) 153 Fibres (multi-object spectrograph) Film (reflecting) see Coat 359 Filter 151,152,323 Field 58,63,79,82,247,259 - blue 152 - angular see Field angle - interference 335 - flat 89,101, 106, 110, 171, 173, - low bandpass (spatial frequency) 176,177,181,184,186,187,200,208, 306 220,230,247,347,359 - narrow-band 169 - non-flat 191 -, red 152 - optimum flat 171 Five-fold (aberration) 282, see also - small 316 Aberration, family -, small visual 84 Flat field see Field, flat Field angle 21,31,52,94,122,230, Flat mirror 273,315,390,391 -, folding 68,85,88,99,143,234 Field correction -, full-aperture 92 - fundamental design principles -, Newton 8,68,85,242,408 90 Flexure (PF correctors) 348,355-357, Field corrector 60,315-378 359 - afocal see Corrector, afocal Flexure problem (mirrors) 19 - Cassegrain focus 330-338, see Focal also Corrector, Cassegrain focus - case 82,89,100,101,262,272,275 - PF 93,317-330, see also Focal extender (FE) 315, 389-391 Corrector, PF - Barlow (diverging) doublets -, refracting 103,315,316 389-391 Field curvature 14,60,62,63,72,74, - cemented achromat 391 76,89,90,94-97,101,105,107,110, - small-field doublet 392 112,118,128,131,142,152-154, - thin 390 171,177,179,183,197,220,222, - without intermediate image 229,232,233,235,239,241-243,338, 389-391,394 340,346,347,361,363,365,366, Focal length 21,22,29,33,36-39,44, 370-372,383,394,435 71,121,131,315,389,434 - definitions 128-131 - effective 39, 52, 53, 168 - effective 66,89,90, 112, 128, 171, - equivalent 6,29,35,168 183,208 - image-side 23 - improved 241 - long 84 - instruments 236 -, object-side 23 - mean 321 Focal point 23 Subject index 523

Focal reducer (FR) 31, 113,315, - error (aberration) 60,281 389-402 -, final 97 -, Baker-type 396,398,399 - fixed (Nasmyth) 408 - Bouwers-Maksutov-type 396 - Gaussian 122-125,128,146,150, - Cassegrain pair (Wilson-Delabre) 294,310 402 -, Herschel (front-view) 19 - flat-field anastigmat (MacFarlane) -, marginal 3, 123,297 400 -, mean astigmatic 131 -, four-mirror (Meinel) 399 - Nasmyth 408,444 -, Hawkins-Linfoot-type 396,397,399 - Nasmyth-type 233,236-238 -, ideal 392 -, Newton see Newton focus -, INCA (Inverted Cassegrain) -, optimum 301 399-401 -, paraxial 3,28, 123,297 - inverse (FE) 315 -, prime see Prime focus - Konica camera objective (Stock- - Ritchey-Chretien (RC) see holm) 399 Cassegrain (RC) - Leitz Summicron photographic - sagittal 130 objective (Meinel) 399 -, tangential 130 - lens solutions 394-395 Focus shift 146,147,151,282,297 - lens system with field lens 394 - lateral 67, 125, 133 - mirror solutions 393, 395-402 - longitudinal 67, 133, 146 -, Nasmyth (MacFarlane) 400 - transverse (image height) see - non-spectral mode (spectrograph) lateral 394,402 Focusing 269 - power 395 Folded Cassegrain 75 - replacing a PF facility 389,395 Folding flat see Flat mirror, folding -, Schmidt camera 401,402 Form see also Reflector -, Schmidt-Cassegrain 401 -, afocal see Afocal case -, small-field doublet 389,392 - angular (aberration) 124 -, Stockholm 399 - aplanatic 92,271 -, supplementary, Schmidt-based - aspheric 2,5, 10, 13,62,68,94, 144, 395,396 145,220,221,234,235,271,272,320 - thin lens theory 389,391 -, brachy 268 -, wide-field 392-402 - concentric 160, 177 - with dispersive means (spectro- - normalized 88 graph) 394 -, parabolic 92 - with intermediate image 394-402 -, paraxial (Snell's law) 29 - with Tessar-type collimator 399 -, stop-shifted 143 - with uncorrected intermediate image Formulae 396 -, aberration 62,77-79,181 - without intermediate image - analytical 67-79,224 392-394 - Cassini 380 Focus -, conversion (aberration forms) 122, -, best 123,125,150,272,332 132,272 -, best astigmatic 131 - decentering (telescope) 252 -, Cassegrain 110,113,315-317, - G-sum 161 325,331,337,360,361,381,396, -, Korsch 3-mirror 216,217 399,416,419,421,430,434,435,438 -, Maksutov 186 - Cassegrain (RC) 392,393,399,425, -, paraxial (reflectors) 40-53,181 436,438 -, recursion 53,68,224,225,227,229, - compensation 123 248 -, coude 419,421,430,434-436,444 - recursive forms 225 - diffraction 294 - stop-shift 64,85,87, 163, 173 524 Subject index

-, thick lens 163 Gaussian parameters 48 Formulation Gaussian properties 40 - explicit (Seidel) 62 Gaussian relationships 40 - general, afocal 79,88 Gaussian terms 59,280-282 - Hamilton 60,61 Geometrical optics 22,24-27,57,83, -, Zernike 278 282,284,302,311 Foucault "knife-edge test" 411,414, Geometry 416,418 - Baker 2-axis 223 Fourier theory 302, 304 - Brachymedial 215 Fourier transformation 123,304,307, - Cassegrain 90,94, 105, 107,317 311 - Korsch 2-axis 217,239 Free diameter 52 - normalized 100 Freedom -, Schmidt 168, 222 -, degrees of (for corrector lenses) - single-axis 234 363 - three-mirror 217 Frequency (spatial) 301 -, two-axis 223,234 -, limit 306,309 Ghost image see Image, ghost -, low 308 Ghost reflections 316 -, normalized atmospheric limit 309 Glass 14,139,141,148,158, 159, 186, Fresnel law (of reflection) 158 188,189,199,208,211,341 Function - Astro-Sitall (ceramic) 432,436 - aberration 57-61,278-281,304 - block 168, 169 - aspheric 87 - borosilicate (Pyrex) 421,425,427, - aspherising 417 430,432,436,437 - autocorrelation 305,307 - bubbles 419 axisymmetrical 58,59,279 - ceramic 432,436,437 - Bessel 288,291 - Cervit (Owens Illinois) 436,437 - circular aperture 289-291 - choice 189 - dispersion 156,157,213 - classical main sequence 213 - line spread 304, 306 - common 14,391 - normalizing 67 - crown 189,323,329 - orthogonal or non-orthogonal 278 - diagram (optical glass) 159,186 phase 307 - expensive 186,391 - profile 148 - filter 316 - pupil 304,305,307,309 - flint 14, 179,202 - rectangular aperture 283-286 - lead 158 - sinusoidal spatial intensity 306 - low-expansion 425,432 - slit 285,287,290 - low-expansion borosilicate (Pyrex) - variance (Strehl Intensity Ratio) see borosilicate (Pyrex) 297 - mass 419,432 , wavefront aberration 121 - near zero-expansion 436 Fused quartz 425,427,436,437 - normal 156, 167,212, 213 - optical 156, 157, 186, 188,210,403 Galaxies - pairs (ADC) 381 -, external 406 - plate 414,416,421,427,436 Gauss-error see Spherochromatism -, plate (crown) 414 Gaussian (paraxial) region 28,36,55, - quartz see Quartz 59,82 - real (ADC) 380 Gaussian brackets 224 - Schott UBK7 150, 156,444 Gaussian condition 58 - silvered 410-412,414,416 Gaussian optics 21,22,28,30,35, - single type 207,329,338,348,350, 40-42,53,55,58,82,115 353,363,365-367,372 Gaussian optics approximation 27,28 - special 139, 189,202,211,212 Subject index 525

- two types 353,357,360,367,379, - stability 265 382,390 - uncorrected intermediate (FR) 396 - volume 432 -, virtual 99,108 - zero-expansion 436 Image formation 23,27,123 - Zerodur (Schott) 436,437 -, ideal 23, 28 Glass catalogue Image height 69 -, Chinese 387 Image shift -, Schott 159,186 -, despace 269 Glasses -, transverse (despace) 277 -, different (PF correctors) 353 Image space 23 Glassworks Imagery - Corning 427,436,437 -, axial 3, 11 - General Electric Company 427, -, direct 169, 199,232 436 -, field 3 - Owens Illinois 436 Imaging 21 - Schott 159, 186,432,436 -, direct 394,434 -, St. Gobain 417,419,425 Incidence Graticule 33 -, angle of 27 Grating 248 Incident beam see also Czerny-Turner Grazing incidence 5,97 - compression 248 Gregory see Reflector - expansion 248 Incoherent illumination 287,290,297, Hamilton theory 57-61,246,278 298,302-304,307-310 Herschel condition 405 Index see Refractive index Higher order (aberration) theory Infra-red observation 49,93 79-81 Instrument (auxiliary) 21,107,389, (HST) see 394 Telescope Intensity 284 Hubble's redshift law 421 - distribution 284, 289, 292 Hyperbola 9,57,81,87,92,98,104, Interferometry 218,229,233,325,326,338,358,372 -, Fabry-Perot 399 Invariance 62, 278 Image 24 Isoplanatism 303 - "axial" (Schiefspiegler) 247-251, 268 Lagrange Invariant 30,31,38,43,46, - comatic 97 62,68,134,321,339,361 - diffraction 282-311 Lateral (transverse) decentering - Gaussian see paraxial 252-254 - Gaussian lateral shift (despace) - Schiefspiegler interpretation 252 277 - strict case 253,254 - geometrical quality 83 Layout (telescope) - ghost 158,316,317,321,335,350, -, initial 47,74,181 355,371,399 Lead see Glass - motion 308 Length 173,179,186,208,211,426 - paraxial 36, 123 - constructional 160,171,184 - position (final) 44-47,90,245,263, - effective 179 264 - favourable 171 - primary 52,92,316,317 optical 118, 208 - quality 79 - physical 110, 156 - real 21,32,99,100 - reduced 176 - round geometrical 97 -, total 194 - secondary 92 Lens 2,5,6,141,153,201,212,316 - shift (despace) 269,272,273 -, additional corrector 189,191 526 Subject index

- aspherised 202,346 Losses - bending 161,339,341,343,344, -, absorption 38 346,348,354,363,368,369,371 -, reflection 38 - field 321,390,394,399-401 LSF see Line Spread Function - field-flattening 90,117,152,153, Luminous wire 184,321,356, see also Field -, incoherent 287 flattener - finite thickness 341,346,394 Magic number (Fibonacci) 99, 263, - liquid 389 264 - meniscus (PF corrector) 371 Magnification 22-25,36,37,52,53, - negative 184, 186 56,139,216,233,250,291,303,365, - negative Mangin 215 390-392,395,400,406 - negative, field-flattening (RC - afocal system 46 corrector) 370 - angular 53 - objective 5 - Barlow 391 - power 137, 139, 141,339-341,348, - empty 291 354,366,368 - field angle 53 powered 139 - inverse 225 - quartz (correctors) 353 - secondary 43,71,109-111,136, - shape 162, 163,340 178,183,184,237,247,276,343,366, - singlet, field (FR) 394,396 434 - spectacle quality 8, 11 - transverse 30 - thick 161, 162 -, unit 22,23,30 - thickness see finite thickness Magnification factor (lens) 341 - thin 40,62, 139, 153, 160-162, 188, Magnification laws 38, 53, 269 338,341,342,344,346,360-363,368 Magnifying power 19 - thin positive (biconvex) 40,62 Magnitude - tilted plano-convex 251 -, limiting 434 - triplet group corrector 202 Maintenance (telescope optics) 122, Lens corrector see also Corrector 259 -, Houghton-type 206-208,210 Major planets (Schiefspiegler -, Lurie-Houghton 207-209 advantage) 247 -, Richter-Slevogt 206 Maksutov circulars 191 Lens forms 97 Malus' theorem 83 Lens formula 25,42 Mangin-type systems see Reflector Lens system Manufacture' 1,2,8,10,11,13,44,84, -, afocal supplementary 53 97,101,103,105,134,158,179,184, Lenses 200,244,247,251,268,329,334,337, - off-axis sections (ADO) 384 351,410,413,414,424,426,435 - separated and powered 350 - errors 308 - thin, separated 39,212, 213, 368, - specification 94 377 Mask (testing) 405 Light -, zonal 405,418 -, incident 24 Material (mirror blank) see also - wave nature 26 Blank Light ray see also Ray -, low-expansion 421 - definition 25, 27, 55 -, zero-expansion 421 Light transmission power 38,45,48 Matrix spot-diagram Light-gathering power 10, 15, 18, -, single-column 84 246 -, single-focus field-wavelength 83,94 Limit case (afocal telescope) 94 -, through-focus 84,94 Line Spread Function (LSF) 304,306 Maximum (diffraction PSF) Linearity 28,34 -, central 285,286,288,292,294,295 Subject index 527

-, secondary 285,286,288-290,292 - Newton, plane 8,85 Mechanics - plane 51,68,85,135, 169, 179, 233, -, telescope 18,433 246,258,268,335,401,419,424,426 Medium (optical) 23, 25, 26, 29, 33, - powered 85, 135 35,139,141,167 - primary see Primary mirror -, image 24,38 Schmidt-type spherical 233 -, object 24,38 - secondary see Secondary mirror Meniscus 160,161,163,186,189,195, - segmented 240 210,215 - silver-on-glass 410-414,416 - achromatic 211 - speculum 10, 14, 15, 246, 403, 406, - back surface (as secondary) 195 408,432 - Bouwers 189 - spherical 2,8, 65, 66, 85, 93, 142, - concave 161 146,162,176-178,180,181,207,221, - concentric 143,144,161,162,165, 232,233,247,248,400 188,202,206,383 - support 19, 84, 236 - concentric Bouwers 145,160,186 - tertiary 220,229,231 - concentric shells 202 -, toroidal 243,244,251 - contribution 186 Mirrors - double-pass 210 - four, powered 223,232-235,238, - Maksutov 163, 165, 186, 188, 199, 245 211 - three aspheric 242 - Mangin 211 - two aspheric (Schwarzschild) 110 - quasi-concentric 206 - two spherical (concentric Schmidt- - simple 189 Cassegrain) 176 - solution 160 -, two tilted (Schiefspiegler) 246 - strongly asymmetric thickness 206 Modal concept - thick 162 - aberration function 296 - thick concentric 160 Mode - two-glass achromatic Bouwers -, natural vibration 60, 282 concentric 186,211 Modulation Transfer Function (MTF) Mersenne afocal telescope see 268,303,307-311 reflector - degradation (aberrations) 310 Metric (length) 343,361 - diffraction 306-310 Microscope 82 Monocentric (system) 184, 186 Miniature camera format 194,197 Monocentricity 177 Minimum (diffraction PSF) Monomial functions 282 -, secondary 286,289,290,292 Mounting 84 Mirror 2,5,6,212,395, see also - altazimuth (alt-az) 18,233,236, Blank (mirror) 407,433,437,438,442,444 - aspheric 3,101,138, 167, 170, 173, - English cradle-type 421,428 215,231,243,248,315,365,367 - equatorial 407,410,416,437,438 - built-up cellular 424 - fork-type 419 - centered concave 68,85 - horseshoe equatorial (Palomar type) - concave 2,3,6, 13 428,444 - confocal, paraboloidal 88 MTF see Modulation Transfer - cylindrical Nasmyth 243,402 Function - deformed plane 315 - field 396,400-402 Natural (vibration) mode 60,282 - field, concave 401 Nebula - flat (2-axis solutions) 233,244,402 - M31 in Andromeda 416,421 - large 232 -, spiral 406 - Mangin 206,210-212,214 Negative (test glass) - metal 432 -, concave 97 528 Subject index

Neutral point (coma) 261 Observatory Neutral point (pointing) 261,262 - Armagh 176, 408 Newton focus 8,68,85,315,407,408, - Bjurakan 444 410,415,416,419,421,430 - Dublin 176 Nodal point 25,33 -, ESO La Silla 98,437,441 Normalization 63,67,69,74,85,86, -, Harvard College 176 88,101,103-105,111,112,115-117, -, Karl Schwarzschild (Tautenburg) 121,122,128,138,146,171,173, 150,443 175,178,183,188,217,226,229,266, -, Lick 359, 425 273,276,278,279,282,284,296,298, - Michigan 437 303-306,309,310,318-335,339,340, - Mt. Palomar 150, 426, 428, 429 343,361,362,366 -, Mt. Wilson 421 NTT (ESO) see ESO Telescopes - Royal Greenwich 442 Null test (system) 92,351,418,426 - St. Andrews University 176 -, Tautenburg see Karl Schwarzschild Object -, Urania, Berlin 214 -, extended 302,413,438 -, US Naval, Washington 52,90,256, Object space 23,26,32,52, 136 425,426 Objective -, Zelenchuk 431 -, achromatic (doublet) 8,13,15,21, Obstruction 111,112,184,186,215, 35,37-39,137,156,157,211,390 237,242,243,267,268,372,392, -, camera 22 395,399,425,426,434 -, convex lens (singlet) 2,6,13-15 - central (axial) 222,247,250,251, -, lens 211-213,389 267,268,276,291,292,305,308, -, photographic 4,21,40,52,53,110, 309,312,342,400,425 140,142,394,399 - detector 399 -, singlet (Dialyte) 212 - field supplement 119,222 -, telescope 22,35-39 - front-view 8 -, thin 35,38,40 -, linear 118 -, triplet 14 - ratio (axial) 44,52,74,87,109, Objective prism (ADC) 383,384 111,112,153,173,178,179,181,202, Oblate spheroid 57,103,112,171,175, 222,230,234,263,266,308,360, 264,265,273 434 -, convex 104 Ocular see Eyepiece (ocular) Obscuration factor 292-293,299,300 Oil Observation -, optical immersion 382 - astrometric 132 Oiled contact 382 - astronomical programme 414 Opera glasses 40 - bird-watching 37 Operation (telescope) 84 - Cepheid variables 421 Optical design 24,61,67,74,137,163 - galaxy M31 in Andromeda 416, Optical design program 80,94,147, 421 154,163,260,278,311 -, infra-red 49,93,262 -, ACCOS V 200,276 - Jupiter (test object) 421 -, ZEMAX-EE 94 - Milky Way 421 Optical figuring 18 - Moon and major planets 247 Optical geometry see also Layout, -, photographic 181,413 telescope -, planetary 309,419 -, Bowen 433 - spectroscopic 413 Optical glass see Glass, optical - spiral structure 406 Optical length see Length - Sun 38 Optical path 25,26,34, 113, 156 - Vega (test object) 421 - length 26,83,154,283 -, visual 181,183,197,247,419,433 -, total 82 Subject index 529

Optical power 40,49,85,141,144,246 - derived 74 -, zero (plane secondary) 52,317 - independent 268,274 Optical system - natural 224,225 -, centered 22,26,27,31,64 - normalized 74 -, ideal 22,23 - paraxial 40,53 -, non-centered 22,246 - profile 148 Optical theory -, ray tracing 44 -, Gaussian 21 Paraxial 29 -, third order see Theory - calculation 123 Optical Transfer Function (OTF) 292, - quantity 34 301-305,307,308,311 - ray 28,42,49 - multiplicative form 308 - region 28, 32, 82 - theory 302 Paraxial aperture ray 53,63,64,68, Optical works 136,225,252 -, Carl Zeiss 356,392,423,445 Paraxial data 64,65 -, Grubb-Parsons 441 Paraxial equations Optics - linear nature 63 - Gaussian see Gaussian optics Paraxial parameter 40, 53 - geometrical 22,24,25,27,57,83 Paraxial principal ray 53,63,64,68, - large 246 70,71,136,216,225,253 - physical 26,282-313 Paraxial ray-trace 35 - spectrograph 107 Paraxial relations (2-mirror) 41-53, -, telescope 25,389 70,74-76,254,259,274 Optikzentrum, Bochum 232 Parseval's theorem 305,307 Optimization 163, 167, 184,229,278, Petzval curvature 68, 184,321, see 315 also Field curvature -, computer 94,147 Petzval sum 62, 140, 152, 153, 173, Order (aberration) see Aberration, 177,184,220,360,366,401 order - chromatic variation 140 Orthogonality 278, 282 Phase error 26,55 OTF see Optical Transfer Function Phase shift 63, 302, 303 Output data (optical design) 94 Photographic camera see Camera Overcorrection (spherical aberration) Photographic emulsion 107 152 Photographic grain 207 Overhang method 13 Photographic law 413 Photographic system 32 Parabola 2,3,11, 15,27,28,56,57, Photography 21,183,199,391,414, 65,66,80,81,85,86,92,98,99,123, 416,419,424,438 171,175,183,210,221,235,246,326, -, classical 434 338,341-343,347,357,360,379,385, -, nebular 416 388,389,404,405,417,427,438 Photometry Parabolic primary mirror 65, 66, 80, -, photographic 425 85 Physical length see Length, physical Parabolising 13,405,417 Pitch lap (polisher) 8,15 Paraboloid see also Parabola Plane -, confocal (Mersenne) 219, see also -, tangential see Section Reflector Plane mirror see Mirror, plane Parameter Plane-parallel plates see Plate, - aplanatic 62 plane-parallel - aspheric 62, 228, 333 Plant growth 99 - basic system (constructional) 67, Plate 137,145-147,154,317-338 225,229 - achromatic 118, 156-159, 176, - dependent 269,274 179,184,186,204,329 530 Subject index

- aspheric 137-139,141,158,167, - singlet corrector (pupil) 137,144, 170,173,175-177,186,206,219,245, 150,154,156,179,184 316-338,346,396 - spacing 137,327, see also power - aspheric refracting corrector - strength see power (Schmidt) 144, see also Schmidt - strong 179,329 corrector - theory 133-139,186,219,221 - aspheric singlet 176 - thickness 148,151,316,323 - aspheric surface 146 - triplet corrector 137,327-330,337, - asphericity 151, 171, 179, 184, 201, 351-357 327,333 - two separated 317,324,337 - bending see photographic, -, virtual 139,317,318,330,331 bending Plate theory - conjugate, virtual see virtual -, aspheric 133-139,186,219,221 - corrector 135-137,145,146,154, Plateholder 111,153 158,170-186,201,317-338 Point source 21,25,282,287,297, - deformation 171 298 - diagram (Burch) 134 Point Spread Function (PSF) 282, - distance (from primary) 184 287,291,293,304,306-308 - doublet corrector 156, see also -, geometrical (optical) 83,311 achromatic Pointing (tracking) 21,59,141,262, - filter 152 381 - form 184 Points - full-size aspheric (object space) -, coma-free (neutral) 261 136-139,330 -, pointing-free (neutral) 261 - Gascoigne (Cassegrain) 331-337 Polarisation 283 - Gascoigne (PF) 320-323,327, Polishing 404,438, see also Figuring 332 techniques - Gascoigne (with field flattener) - repolishing (speculum) 413 321-322,436 Polynomial - glass, in air 139 - aberration 280,296, 298 - larger (corrector, PF) 326 - aspheric surface 57,80 - non-existent 184 - degree 279 - photographic 111,132, 153, 156, - Hermite 282 158,159,316,361,370,433,434 - Jacobi 279,282 - photographic (baked) 353,434 - Laguerre 282 - photographic (unbaked) 434,438 - Legendre 279, 282 - photographic, bending 153,370 - orthogonal 278, 282 - plane-parallel 147,151,165,316, - radial 279-282 323,379,381-383 - Tschebyscheff 282 - power (strength) 137,327,329, -, Zernike 60,278-282 332,337,368 Power - profile 139,149-151 - aspheric 137 - profile constant 139 cylindrical 251 - real aspheric ( corrector) 318,330, dispersive 186, see also 331 Dispersion - refracting 134, 135 finite (FE and FR) 390,394 - Schmidt corrector 144,148, high individual (separated lenses) 150-152,157,160,169,202,206, 350,372 320,323,327,332,335,444 individual (achromatic Schmidt - shift 138 plates) 157 - single-glass set 329 lens 25,39,356 - singlet corrector (field) 137, optical 26,29,68, 137, 139, 163, 317-326,330-338 233,390 Subject index 531

-, residual optical 42,157 - Schmidt 144, 152 -, total 39,139,161,390,391 - segmented 233,240,358 Power of penetration 19 - single concave 68,77 Powered mirror - spherical 65,66,84,85,93,101, -, single 40 103,118,122,132,143-145,171, -, third 215 181,184,206,210,231,233,234, -, two 41 238-246,257,266,320,324,328,347, Primary image 52,92 402,444 -, real 44,105,108 - Spherical Primary (SP) 101 Primary mirror 5,6, 10, 11,40,48-50, - steep 145, 184, 233, 238, 402 63,68,69,71,74,86-92,98,99,101, - strongly hyperbolic 326-328 104,109,110,113,117-119,134,136, - structure (blank) 426, see also 138,139,141,142,145,146,152, Blank (mirror) 154,169,173,177,184,235,248,249, Prime focus (PF) 40,42,49,85, 252,253,256,258,259,262,264,274, 86,93,97,113,191,210,262,263, 317,319,320,329,361,404,410,426 265,315,317,319-330,335,337- - aberration coefficients for 70 360,392,399-402,430,433-435, - asphericity 156,327,360,436 438 - Cassegrain 69,179 Prime focus field corrector see - classical 86, 92, 115 Corrector, prime focus - concave 103,108,142 Principal plane 22,23,26,29-31,35, - convex 107,109 36,38,39,42,82,115 Dall-Kirkham (DK) 98 -, image 23,24,39,41,42 - eccentricity 321,326,335,344,354, -, object 23, 24 379,434 Principal point 23,25,40, 82 - elliptical 360 Principal ray 27,31-33,36,165 - ESO 3.6 m, f/3.0 quasi-RC 330 Principal section 27 - fast 356,416 Prism 6,381 - field curvature 152,321 -, curved face 384 - fixed spherical 268 -, objective 383,384 hyperbolic 93,112,317,320,324, - pair 383 325,327,328,343-346,348,378,379 Problem - Kitt Peak 3.8 m, f/2.8 RC 330 - flexure see Flexure - lightweighted structure see Blank - handling (FR) 392 (mirror) - manufacturing (massive blanks) - modern RC 357 423 - naked 435 - mechanical 18,403,406 - Newton paraboloidal see parabolic - tarnishing 10, 18,413,414,428 - non-parabolic (with correctors) 319 - thermal 421,423,427,432,436 - oblate-spheroidal 171,347 -, 2-axis tracking 433 - overcorrection (RC) 438 Procedure (third order theory) - Palomar 200-inch 427,428,430,434 -, non-normalized 67 - parabolic 97,115,144, 171, 179, Profile 221,223,233,245,255,317,319, -, corrector plate 146 323-329,337-348,362,370,372, Program 373,379,384,403,423,426,432, -, optical design see Optical design 435 program - perforated 221,222 Projection - quasi-Ritchey-Chretien 327,328, -, solar 22,38 333,369,436,437 Proof plate - Ritchey-Chretien (RC) 91,93, -, interference 173 115,320,326-328,344-346,350, Protection 353,354,358,435-437 - dust and wind 413 532 Subject index

PSF see Point Spread Function Radiation 26 Pupil 27,126,131,134,141,145, Ramsden disk 14, 15,36, 37, 40, 150,154,210,215,233,235,236, 291 241,243,249,250,278,279,295, Ray see Light ray 296,304,311,312,317,394,396, - aperture 136, 259 399 - definition 25,27,55,282 - circular 287,291,293,298,299, - finite 82,83, 113 307,308 - marginal 62,123,126,129,151, - division 83 311 - entrance 31-33,35-37,40,49, - paraxial 3,28,53,62,67,82, 123, 50,63,68,83,138,216,223,233,235, 129,136,151,216,224,225,252, 262,263,265,274 329,330,341 - exit 5,6,8,14, 15,31,32,36,37, - paraxial aperture 63, 64, 68 39,40,49,50,53,126,129,219,223, - paraxial principal 62-64,68, 70, 71, 233, 262-265, 284, 294, 306, 389, 216,226,249 392,394,400 - principal 26, 31, 32, 33, 69, 125, - eye 37-39 126,128,129,136,142,143,163, - free from aberrations and obstruction 165,168,226,259,316,329,337, 308 351,395 - full circular (unvignetted) 287, - skew 27 293,298,299 - wavefront normal 55 - masking 313 Ray-tracing 14, 28, 40, 55, 63, 79, 82, - non-axial symmetrical obstruction 83,147,154,225,229,276,278 311 -, paraxial 34,42,50,51,61,67,68, - position see Pupil position 86,224 - shearing 305,306 Rayleigh criterion 290,291,295,306 - spider obstruction 312,313 Rectangular aperture 282-287 - telecentric 33, 389 Rectangular grid (for spot-diagrams) - theory of 53 83 - transfer 402 Recursion formulae 53,68, 224, 227, - transferred 233,237,239,241-245, 229,248,252,253,258,259,270,273 394,396 Redundant digits 94 Pupil position 33,62,64,91,138,142, Reference sphere 59, 123, 125,405,417 263 Reflecting telescope see Reflector Pupil shift 64,222,249, see also Reflection 27,33,34,158 Stop shift Reflection equation 34,48 Pupil transfer Reflectivity 10, 14, 19, 212, 232, 235, - Schmidt-type see Pupil, trans• 246,268,406,413,414,428 ferred -, low 10,403,414 Pyrex 427,437, see also Blank Reflector 1-6,8,10,11,13-15,17,19, (mirror) 35,94,107,141,238,291,403,413, 414,416,445, see also Telescope Quadratic (aberration term) 281, - advances 84 282, see also Aberration, family - afocal 36,79,271 Quantity - afocal (Mersenne) 3,5,6,8,46,53, -, derived 51,269 75,87,88,91,99,113,219,222,232, -, normalized 74 233,258,275 Quantum efficiency 434, 438 - afocal Dall-Kirkham (DK) 101, Quartz 258 - fused 425,427,436,437 - afocal Spherical Primary (SP) 104, - fused segments (boules) 427, 105,258,264 436 - anastigmatic 88, 177, 184, 217-219, - ULE fused 425, 436 250 Subject index 533

- aplanatic (2-mirror) 4,85,88, - Cassegrain Spherical Primary (SP) 90-94,97,107,110-117,119,255, see Spherical Primary 256,262,263,273,275,277,361,424, -, centered 246 425,435 -, centered, two-mirror (off-axis) - aplanatic Gregory 91,93,97,257, 251 263,264,267,273,332 - Chretien (original RC) 112, 113 - aplanatic Maksutov-Cassegrain - classical (2-mirror) 4,84,87-89, 191,194,200 91-94,97,103-105,107,128,145, - aplanatic Ritchey-Chretien (RC) 256,262,271,275,426,433-435, 90,94,96,115,117,256,424,435, 437,444 437 - classical afocal Mersenne see afocal - aplanatic Schmidt-Cassegrain (Mersenne) (Baker-type) 181-186 - classical Cassegrain 65,66,84,86, - Ardeberg et al. (Nordic) 25 m 239 87,90,94,95,98,100,101,115-117, - Arecibo (fixed primary) 245,268 132,133,245,255,257,258,261, - Baker 3-mirror, 2-axis anastigmatic 262,265-267,271,273,276,337, 223,238,241 360-369,372-374,378,390,391,425, - Baker reflector-corrector 347 438,441, see also Cassegrain - Baker Schmidt-Cassegrain - classical Gregory 65,66,84,86, 173-179,184 87,257,258,262,273, see also - Baker Super-Schmidt 202, 204, Gregory 205 - Companar 202 - Baker-Nunn Super-Schmidt 202 - compound (2-mirror) 3,5,6,9, - Baker-type FR see Focal reducer 10,41,42,44,48,52,67,69,74, - Baranne-Lemaltre 4-mirror, single 75,77-79,84,86,91,94,97,105, axis 239 107,110,118,121,131,137-139, - Baranne-Lemaltre 4-mirror, two axis 143,167 244 - concentric (monocentric) Cassegrain - basic forms 40 201, see also Hawkins-Linfoot - Bouwers (concentric) 141,143-145, - Couder (anastigmat) 107, 112, 113, 160,161,167,186,199,201 117-120, 145, 152 - Bouwers achromatic concentric PF - Dan-Kirkham (DK) 65,66,84, or Cassegrain 179,186-189,201 97-105,257,262,263,265-267, - Bouwers concentric (with additional 271-273, 360 weak lens) 189,191-193 - Dan-Kirkham (DK) Gregory 100, - Bouwers-Maksutov-type FR see 257,272,273 Focal reducer - decentered 246, see also - Buchroeder Houghton-type 207 Schiefspiegler - Burch anastigmatic 268 - Delabre 4-mirror, single axis 239, - Cassegrain 3,4,8,9,13,15,39, 240 41-51,53,84,86,89-93,97,98,103, - Delabre Brachymedial 215 104,107,110,119,127,136,141,145, - design (third order) 84 177,178,197,210,219,231,232,242, - double or multiple meniscus 204, 247,252,256,258,261,263-266,271, 205 276,277,292,311,316,330,331, - double-pass Cassegrain 231,245 337,338,360,361,369,393,400,403, - Epps and Takeda 3-mirror 222 407,410,413,414,425 - fast, wide-field 4-mirror see - Cassegrain afocal see afocal Delabre 4-mirror (Mersenne) - first modern (Crossley) 415 - Cassegrain Dan-Kirkham (DK) - five-mirror 2-axis (Wilson-Delabre) see Dall-Kirkham 242 - Cassegrain Ritchey-Chretien (RC) -, folded (flat) Cassegrain 52,75,85, see Ritchey-Chretien (RC) 99 534 Subject index

- folded Gregory 75 - lens telescopes with catadioptric - Forster and Fritsch Brachy correction 212 Cassegrain 246 - Leonard Schiefspiegler (Solano and - four-mirror 215, 226, 227, 229, Yolo) 251 231-241,243,245 - Linfoot monocentric (concentric) - four-mirror, single-axis Cassegrain• Schmidt-Cassegrain 176-181,184, Gregory 241,242 186,188,189,191,201 - Gregorian equivalent of Paul-Baker - "long" Maksutov 163,194,195 (Baker) 223 - Loveday 223, 224, 229, 231 - Gregory 3,6-9,13,15,39,41-51, - Lurie (Houghton) 207,208 53,84,86,90-93,97-99,104, 105, - Maksutov 144,160-169, 171, 189, 108,110,119,257,258,261,263-266, 199,200,204,205,207,210 330,331,360,400,403 - Maksutov-Cassegrain 186,191, - Gregory afocal 75, see also afocal 194, 197, 198, see also "long" and (Mersenne) "short" Maksutov - Gregory Dall-Kirkham (DK) see - Maksutov-Cassegrain, secondary on Dall-Kirkham meniscus 197-199 - Gregory limit case 99 - Maksutov-Newton 208 - Gregory Spherical Primary (SPG) - Mangin 210-212 273,276 - Mangin (achromatic) 211 - Hamilton Brachymedial 212, 213 - Mangin prime focus 211 - Harmer-Wynne 370,372 - Mangin-type, Delabre 215 - Hawkins-Linfoot monocentric - Mangin-type, Rosin and Amon 211 Cassegrain 201-203 - Mangin-type, Silvertooth 211 - Hawkins-Linfoot Schmidt-Bouwers - meniscus, double (Wynne) 205, PF 201,202 206 - Hawkins-Linfoot-type (FR) see - meniscus, multiple 205 Focal reducer - meniscus-type 144, 186, see also - Herschel (front-view) 2,6,10, 19, Bouwers 40,86,246 - Mersenne (afocal) see afocal - Houghton afocal doublet corrector (Mersenne) (Richter-Slevogt) 206-210 - Mersenne (grazing incidence) 5, - hyperbolic primary (high eccentric• 97, see also Wolter ity) 326,327 - Mersenne afocal feeder 233 - inverted Cassegrain (INCA-type) - Mersenne-Schmidt 222, see also FR see Focal reducer Willstrop - Korsch 3-mirror, 4-refiection 231, - mirror forms 3 232 - modern 403 - Korsch 3-mirror, single-axis 65,66, - modern aplanatic Schmidt- 215-219,229,230,268 Cassegrain 181-184 - Korsch 3-mirror, two-axis 216-217, - modern RC 112, 113,426,438 223,229,237,238 - monocentric Schmidt-Cassegrain - Korsch double Cassegrain (4-mirror) (Linfoot) see Linfoot 245 - multi-mirror (centered) 215 - Kutter anastigmatic see Schief• - Newton 8,10-13,15,18,40,85, spiegler 127,197,207,210,211,223,231, - Kutter catadioptric see Schief• 319,338,403,407,410 spiegler - non-aplanatic (with decentering - Kutter coma-free see Schiefspiegler coma) 277 - Kutter Schiefspiegler 246-250,268, - normal (focal) 75,77,78 309, see also Schiefspiegler - normal Cassegrain (with AD C) - laterally decentered 2-mirror 254 381 - Laux 3-mirror 230 - normalized see Normalization Subject index 535

-, off-axis (Schiefspiegler) 246 -, Schupmann Brachymedial 212- - original Ritchey-Chretien (RC) 214,238 112,113 -, Schupmann Medial 211-214, 238 - Paul 3-mirror 219-222,233,315, - Schwarzschild 426 342 - Schwarzschild (aplanatic) 90,107, - Paul-Baker 3-mirror 220-224,230, 110-114,117-119,171 232,268 - Schwarzschild (impractical) 109, - Piossl Dialyte 212-214 119,268,360 - plate-meniscus systems 200 - Schwarzschild-Couder types 264 - prime focus form 40,68,77,84, - Shack and Meinel 3-mirror 229 201,231,319 -, "short" Maksutov 163-167,191, - quasi-classical Cassegrain 364, 366, 194-196 367,372,379 -, single-axis, 4-mirror 233,240-241, -, quasi-concentric (mono centric) 245,246 Bouwers-Cassegrain 186 -, single-mirror 44,67-69,77, -, quasi-Ritchey-Chretien 321,322, 84-89,107,122,128,131-133, 325,329,333,335-338,354-356, 137-139,143,218 360,366,369-371,373,375,377, - Slevogt (aplanatic Schmidt• 434,436,437 Cassegrain) 176, 179, 184, 186, - RC modification (of classical 187 Cassegrain) 115 - small-field (Mangin) 210 - Richter-Slevogt (afocal doublet - Solano Schiefspiegler (Leonard) corrector) see Houghton 251 - Ritchey-Chretien (RC) 65,66, -, Sonnefeld (Mangin with corrector) 84,90,91,93,94,97,101,105,107, 206,212 115,132,133,171,245,256,257, - Spherical Primary (SP) 97, 262-264,267,271,273,276,315, 103-106,117,184,257,264-267,273, 320,325,326,329,331-334,337, 276,444 343,345,346,353,357,360,361, - Spherical Primary (SP) Gregory 364,365,369,370,373,379,390, 101,257,273 424-426,433,434,436-438 - Spherical Secondary see Dall• -, Robb 3-mirror 229-230,268 Kirkham (DK) -, Rosin (with doublet field corrector) -, strict aplanatic 331 370,372 -, strict classical Cassegrain 362-364, - Rumsey 3-mirror 229 372 - Sampson (Mangin secondary -, strict Ritchey-Chretien (RC) 335, corrector) 360 337,365-369,376,434 -, Sand excentric 3-mirror 268 -, TC,O (insensitive to lateral decenter) -, Sasian two-axis, 4-mirror 243 265-267 -, Schafer 4-mirror Schiefspiegler 268 -, TC,O (off-axis) 266 -, Schiefspiegler see Schiefspiegler - TC,O (with spherical primary) 266 - Schmidt 113, 118, 138, 139, 144, - three-mirror (centered) 215-223, 145,150-154,156,158,160,167- 229-233,335 171,173,176,177,179,184,189, - three-mirror excentric (uniaxial) 202,207,222,232,233,243,347, (Sand) 268 396,401,441,444 - total afocal (zero power system) - Schmidt achromatic 156 342 - Schmidt, basic principles 144 - Tri-Schiefspiegler (three-mirror) - Schmidt, solid or semi-solid 168 246,251, see also Schiefspiegler - Schmidt-Cassegrain 171-186,391 - two-axis Baker 223,238,241 - Schmidt-type with afocal doublet -, two-axis Baranne-Lemaitre 244 see Houghton - two-axis Korsch 217,232,238,243 -, two-axis Sasian 243 536 Subject index

-, two-axis Wilson-Delabre 234-242 -, large 414,416,419,433 -, two-glass concentric (mono centric) -, long 10, 13,433 Bouwers-Cassegrain 188-189,201 -, normal equivalent to Schupmann - two-mirror 41-53,69-79,86- Medial 214 119,218,224,229,254-258,261, Relative aperture 110,153 265,267,268,270,273,317,330,367, Remittance 22 369 Resolution 15, 19,26,37,290,295, -, two-mirror afocal see afocal 306,308,416 (Mersenne) -, angular 291 -, two-mirror and plate 171,215, - limit 290, 309 see also Schmidt-Cassegrain -, linear 291,306 -, two-mirror non-aplanatic (with Resolving power 290,292, see also decentering coma) 276 Resolution - two-mirror Schiefspiegler 246-252, Reticle 6 see also Schiefspiegler Ripple 298-301 -, wide-field 21,53,133,137-139, -, idealized sinusoidal 298,299 141-246 Ritchey-Chretien (RC) see Reflector -, Willstrop 3-mirror 222, 229, 230, Rotation 233,234,237 -, secondary (angular decenter) 260, -, Wilson 4-mirror, single-axis with 261 Bowen camera 241 -, Wilson-Delabre 4-mirror, two-axis Sagitta (sag) 40,81 234-242 Sagittal section see Section -, Wilson-Delabre 5-mirror, two-axis Satellite tracking (Baker-Nunn camera) 242 204 -, Wolter 5,97, see also Mersenne Scale 25,39,44,52,121,169,258,277, -, Wright-VaisiWi 169-172,207-209, 316 347 -, inverse 52 -, Wynne three-meniscus 205 -, linear 131, 132 -, Wynne two-meniscus 205 Scaling 122 -, Wynne two-meniscus (asymmetric) Scaling factor (correctors) 361 205,206 Scaling laws 121,345,348,357 - Yolo Schiefspiegler (Leonard) 251 Schiefspiegler 246-254,258,263,267, Reflector-corrector (Baker) 346,347 292,309 Refracting telescope see Refractor - analysis 260 Refraction 6,13,27,33,34,165 -, anastigmatic (Kutter) 248,250, -, angle of 27 251 -, atmospheric 379,380 - basic 250 -, Snell's law of 26 - catadioptric (Kutter) 251 Refraction equation 34 -, coma-free (Kutter) 247-249,251 Refractive index 14,23,26,33,42, -, excentric (off-axis) section 251,252 118,124,139,141,148,151,154,157, - formula (decentering coma) 158,168,202,364,369,381 252-256 Refractor 1,3,5,6,10,11,13-15,21, -, four-mirror 268 22,139,184,212-214,403,414, see - lateral decenter, strict case 253 also Telescope -, perfect 251 -, afocal 38,53 - Solano 251 -, conventional 35,52 -, spherical primary (TC,O form) 267 -, conventional visual 75 - term (decenter) 255 -, defocused 39,41,42 -, three-mirror (Sand) 268 - Galileo 4-6,8,39-41 - with off-axis sections 251,252, - Galileo-type (afocal) 390 266-268 -, Kepler 4,5,37,40,41 - with three or more mirrors 268 Subject index 537

- Yolo 251 - spider 311-313 Schmidt plate see Plate -, steep 5,90 Schmidt telescope see Reflector - vertex (Paul telescope) 219 Schwarzschild (conic) constant 57, -, virtual 119 62,79,81,218,234,322,350,353, -, weakly curved 89 359,404 Secondary spectrum see Spectrum, Schwarzschild formulation (two-mirror secondary telescope) 74 Section Schwarzschild theorem 85,94,97,107, -, sagittal 126, 129,303 110,170,233,315 -, tangential 125, 126, 129,246,303 Schwarzschild theorem generalisation Seeing 85,138,232,233,239,242 -, atmospheric 19,37, 132,289,302, Searchlights 210 309,406,432,438 Secondary mirror 10, 13, 48-53, 70, -, dome 421,438 71,86,89-93,103,107-110,113,136, - limit 399 141,143,177,182,184,200,222,247, Segment 253,259-261,263-267,269-271,273, -, aspheric 233 276,361,392 -, fused quartz 427 - aplanatic form 92 Segmented construction (primary -, aspheric 183,220,372 mirrors) 103, 233 - Cassegrain (convex) hyperbolic 4, Seidel 9,15,87,88,97,103,107,113,115, - aberrations 121 276,410 - approximation 55-57,61-63,92 - changed asphericity 372 - coefficients 61-66,132 - circular (obstruction) 292 - monochromatic conditions 107, - combined with (coated on) meniscus 232 197 Seidel sum 61 -, concave 109,110,118,264 Self-achromatic (2-meniscus system) -, concave (Schwarzschild impractical) 205 109,110 Sensitivity (despace) see Despace -, convex (virtual image) 108 Separation 137 -, decentered 253,277 - aspheric plates 137,323,327,346 -, dummy flat 179,317,318,340,345 - thin lenses 39,346 -, elliptical (convex) 223 Series -, Gregory (concave) elliptical 6,8, - aspheric surface (Schwarzschild) 87,97,105,268,276 57 -, high magnification 276 - Fibonacci 99 -, hyperbolic concave 223 Serrurier truss 430 - magnification see Magnification, Shape see Lens secondary Shape factor 162, 163, 199,341,343 -, Mangin-type 211,214,215,360 Shearing - oblate spheroid 112,117,184 - circular pupil 305 -, parabolic 88,233,275 Shellac (speculum protection) 413 -, plane 179,258,317,318,340,345 Shift of image (transverse despace) - plane (folding) 51,75 277 - power 52,111 Short constructional length 184 - Ritchey-Chretien (RC) 91,115 Sign convention 24,34,40,42,50,51, - rotation (angular decenter) 260, 53,61,63,74,224,225 261,277 -, Cartesian 24,30,61,67,224 -, separate (from meniscus) 199 -, strict 216 -, spherical 97,99,173,175,184,186, Signal/noise ratio 291 219,234,238,242-246,262,370, Silica see also Quartz 372,402 -, fused 335,337,373,377,427 538 Subject index

Silver (reflecting coat) 246,410,414, - multi-fibre (multi-object) 94,316, 427 353,359,379 Silvering - optics 107,210 -, chemical 410,414,427 Spectroscopy 232,416,434 Sine condition (Abbe) see Abbe - multi-object 94,316,353,359, Single surface 33 379 Singlet objective 212 - with fixed equipment 416,435 Singularity 226, 227, see also Spectrum 6, 141, 169 Recursion formulae - normal secondary 156 Sitall (glass ceramic) 432,436 - primary 156,213 Site 438,444 - secondary 14, 139, 156, 167, 202, Site selection 438 211-214,338,341,342,348,350, Skew ray 27 353,357,360,364,366,369,373, Sky 385,391,396,403 - background 434 Speculum metal 10, 14, 15,403,404, - limited coverage (mounting) 406 406,410,413,414 Slit 283,285,288 - casting large mirrors in 18,403, -, long 285 411 -, two, at right-angles 312 - crystallisation 403 Snell Invariant 62 - tarnishing see Problem, tarnishing Snell's law 26,28,29,34,55 Speed (photographic) 45,168,258, Solar projection 22,38 361,425 Solution see also Reflector Sphere 5,10,11,15,28,57,81,82,405, - effective flat field 113 427 - quasi-RC 321,434,436,437 Spherical aberration 2, 3, 5, 6, 8, 14, - strict-RC 321,434,436,437 60,62,64,70,73,84,86,87,92,93, - third order limitation 268 98,113,122-125,127,133-135,137, -, three reflection 231 142,143,145,149, 151, 152, 157, Solution matrix 162,170,176,199,210,233,235,239, -, well-conditioned 234 241,246,254,255,258,265,270,271, Source 273,281,282,288,301,317,319, -, extended 282,287 324,325,331,332,334,335,337,338, -, point 287 340-348,351,353,354,357,360,361, Space 364,369,372,383,391,436 -, image 23,25,33,35,321 definition 2,122-125 -, object 23,25,26,33,35,139,142, - fifth order 160,188, 191, 195, 317,318,330,331 199-201,205,208,211,296,297 Space telescope - lateral 124 -, Hubble see Telescope - longitudinal 146, 161 -, Next Generation Large 231 - third order 123, 124, 138, 139, Spatial frequency 302-304,310 144-146,152,160,162,210,273, Speckle camera 381 296-298, 300, 310 Spectral band - third order (with optimum focus) -, narrow 141 298,300 -, wide 141 Spherical mirror see Mirror, spherical Spectral line (resolution) 290 Spherical primary see Primary Spectral range (FR using lenses) 394, mirror, spherical 395 Spherical Primary (SP) 2-mirror system Spectrograph 168,241,251,444 see Reflector - design 394 Spherochromatism 140, 144, 146- - echelle 434 150,152,156,158, 160, 176, 179, - fixed 416,435 184,189,195,199,205,207,208,210, - Mayall slit less 415 329,338,396 Subject index 539

Spider - astatic principle 404,407 - diffraction effects 312,313 - primary mirror 404,407,419,427, Spot-diagram 83,84,94-97,101, 430 102,105,106,113,114,119, 120, -, whiffle-tree 404,405,410 154,158,159,163-167,171,172, Support (mirror) see Mirror and 179,180,184-187,189,191-198, Support 202,203,207-209,234,236,239,240, Support system 243,244,250,251,311,322,323,330, -,200-inch primary 428 336,348-355,358,359,370-379,382, Surface 384-389,391,393-398,400 - aspheric 57,79-81,141,170,171, - single-column matrix 84 210,338,339,343,344,346,350,351, - single-focus field-wavelength matrix 356,357,359,368,388,389 84,94 - centered reflecting 53 -, through-focus matrix 84,94 - chemically silvered 210,410,412, Stop 85-88,109,118,134-136, 414,427 142, 144, 154, 160, 165, 176, 177, - concave (for aspheric testing) 351 201,204,205,246,247,253,260, - contributions (Seidel) 200 274,339,347,362,365, see also - first of 2-mirror system 69 Aperture stop, Field stop - glass 158 at primary 101,104,141,361 - ii-mirror 224 - central 341, 394 - reflecting 10,33,55,224,225 - concentric 163 - refracting 10,33,55,135 - front 163-165,189,346 - second of 2- mirror system 70 - quasi-telecentric (FE or FR) 390 - spherical 10,15,56,68,160,191, -, shifted 176, 211 200,208,211,215,246,268,348,359, Stop position 64,85,144,163,173, 373,384,399 194,220,222,235,258,318 -, toroidal 244,251 - different 67 Symmetry 57,143,246, see also - front 163-165,189,346 Axis - meniscus 169 -, axial 56, 57 - original (zero shift) 134 -, concentric 141-144,177,191 - symmetrical 141 System see also Reflector -, uncritical 163,219 -- aberration-free 309 Stop shift 64,69, 134, 135, 138, 139, - afocal Cassegrain feed 53 141,142,154,157,163,165,194, - afocal Gregory feed 53 219,248 - catoptric 229 - formulae 64,74,85,163 - centered 268 -, normalized 74 - concentric (obstruction problem) Stray light 145 202 Strehl criterion see Strehl Intensity - Czerny-Turner (monochromator) Ratio 247,248 Strehl Intensity Ratio 290, 294, - evaluation 79,83 297-298,310,311 - Milky Way 421 Structure - mirror (for optical power) 139,315 -, spiral 406 - ii-mirror 68,224 Sun (observation) 38 - normalized 63,67, 88, see also Superposition Normalization -, linear (of Seidel coefficients) 61 - push-pull (active mirror support) Supplementary feeder system 53,219, 236 222,233,234 - reflecting (catoptric) 94 Support see also Mirror - reflecting and refracting (catadiop- -, active (push-pull) 236 tric) 94 -, astatic lever 407,419 - Schmidt equivalent (Paul) 219 540 Subject index

- Schmidt-Cassegrain (for FR) 399 -, Doppler 1 m RC 425 -, supplementary feeder 53 - Dorpat refractor 403 -, telecentric see Telecentric system -, Dunlap 74-inch 421 -, telephoto see Telephoto system -, equatorially-mounted Bowen-type -, tilted 248 437,444 -, Wilson-Opitz 2-mirror condensor - ESO see ESO Telescopes 250 - fast 107,110 - flexure 19, see also Support Tangential section see Section - 40-inch Ritchey-Chretien (RC) Tarnishing see Problem, tarnishing (USNO) 90,256,425,426 Telecentric see also Pupil -, Foucault 33 cm 411 - output (corrector) 359,379 -, Foucault 80 cm 411,412 Telecentric system 33,36 - Gaussian layout 41,47,179,182, Telecentricity (FR) 393 275 Telecommunications (off-axis system) -, giant (25 m) USSR 103 268 - glass optics 413,414 Telephoto effect 4, 5,6,9,32,39,43, -, ground-based 302 52,89,94,105,136,179,183,231, - Grubb 15-inch Newtonian- 316,410 Cassegrain 408 -, true 44 - Herschel 15, 403 Telephoto objective 39 - Herschel 20-foot focus 17-19,419 Telephoto system -, Herschel 4-foot aperture see -, lens 4,39,389 40-foot focus -, mirror 4,42 -, Herschel 40-foot focus 18, 19,403 Telescope 21, 22, 25, see also -, Herschel tilted single mirror 405 Reflector or Refractor - history 1, 403 - aberration theory 57,64 - Hubble Space Telescope (HST) - afocal 31,38,46,79,435 134,136,137,283,337 - afocal feeder 53, 105, 219, 229, 233, - 100-inch Hooker (Mt. Wilson) see 237,241 Mt. Wilson 100-inch Hooker - alt-az 233 - Isaac Newton 2.5-m 348,437 -, Anglo-Australian 3.9 m (AAT) - Keck 10 m 233, 358, 359 356,383,437 - Kitt Peak 3.8 m, f/2.8 RC (concept) -, aplanatic 85,90,105,107,416 353,354,373 - Astrometric Reflector (USNO) 52 -, Kitt Peak Mayall 4 m 436-439 - basic function 21 -, Lassell 9-inch 407 -, Bergedorf 1.22 m (later Crimea) -, Lassell's largest (4-foot) 406-408, 423 410 - Bergedorf 1 m 423 - layout 41,47,179,182,275 -, Bjurakan 1-m Schmidt 444 - Lick 120-inch (3 m) Shane 342, -, Bowen-type 434,438 359,427,433,437 - Brown University 12-inch - Lick 36-inch refractor 414 (Schwarzschild) 426 -, lists of 437,444 - centering 10,252 - LITE (project) 230 -, Cerro Tololo 4.0 m 437 - Magellan 315-inch 373,379 -, CFHT (Hawaii) 3.6 m 437 - manufacture see Manufacture -, Chinese 2.16 m RC 377 - McDonald 105-inch 353 -, classical 403,435, see also -, McDonald 82-inch 399,421 Reflector - mechanical problems 18, 403, 406 - Columbus 2x8 m 379 -, Melbourne 48-inch 410,411,413, - conventional refractor 35 414,416,419 -, Crossley 36-inch 414-416 -, modern astronomical 52, 105,410, -, defocused 39 416 Subject index 541

-, MPIA 2.2 m (A), Calar Alto 373, -, two-mirror 41,69,84 375,376 - UKIRT (Hawaii) 3.8 m 437 -, MPIA 2.2 m (B), La Silla 312 -, Universal K. Schwarzschild, -, MPIA 3.5 m, Calar Alto 350,351, Tautenburg 150,443,444 356,392-398,437,444,445 -, University of Indiana 24-inch - Mt. Wilson 100-inch Hooker 419, (Schwarzschild) 426 421-423,426,430,433 -, University of Texas 7.6 m (project) - Mt. Wilson 60-inch 107,338,342, 356,357,400 343,416-421,426,433 -, vertical siderostat 424 - Multi-Mirror Telescope (MMT) -, Victoria 72-inch 421 373 -, visual use of 37,291, see also - Nasmyth 20 inch 408,409 Eyepiece - Newton form 403,406, see also -, wide-field survey 230 Reflector - William Herschel Telescope (WHT) -, Nordic 25 m (project) 239 4.2 m 382-387,437,438,441,442 -, Nordic Optical 2.5 m (NOT) 399 - Yerkes 40-inch refractor 414,416, -, normalized 63,67, see also 419 Normalization Telescope design parameters 47, 179, - obstruction problem 215, 232 182 -, 1.52 m quasi-RC, Cerro Tololo 335, Telescope form see Reflector or 337 Refractor - optical specifications (quality) 289, Telescope manufacture see Manufac- 293,311 ture - optimization (functional, on site) Telescope optics 414 - active control see Active control - Palomar 1.22-m Schmidt 441 - adjustment 67, 246, 251 - Palomar 200-inch (5 m) 342,343, Telescopes 348,349,426-438 -, optical characteristics of major 437 - Pease 300-inch concept 423,426 Television (OTF theory) 302,304 - Perkins 69-inch 421 Temperature (mirror) - photographic 256 - changes 419 - prime focus 40, see also Reflector Terms - reflectivity problem 232 -, aspheric 57,62, 134, 135, 344 - Ritchey 100-inch optics see Mt. -, Gaussian optical 59,137 Wilson 100-inch -, higher order 28,58,260, see also -, Ritchey 24-inch (60 cm) 416-419, Aberration 423 -, non-orthogonal 278,297 - Ritchey 40-inch (RC) see 40-inch -, orthogonal 278,282 RC (USNO) -, stop-shift 64,69,88,104,141,165, - Ritchey 60-inch see Mt. Wilson 370,390,391 60-inch Testing 44,60,84,87,90,97,105, - Rosse 6-foot 403-406,419 112,268,351,410,413,414,417, -, Russian 6-m, Zelenchuk 431-433, 418,421,425,427,428,438 437,438 -, autocollimation 419,426,433 -, solar 44,97,105 - autocollimation pinhole 11 -, solar (Snow) 419 -, double-pass 419 -, space 231,290,302, see also - flat 418,433 Hubble Space Telescope -, Hartmann 421,432,433 - specifications see optical specifica• - interferometer 432 tions -, null (compensation) 436 - TEMOS (project) 103,239,244 - problems 87 - 300-inch concept (correctors) 373, - procedures (Ritchey) 418,421,426 379 -, zonal 405,426,427 542 Subject index

Theorem -, wavefront 59,132,281,296,300, -, binomial 11 301 -, displacement 294,295,301 Tolerance -, Fermat 27,83, 113 - criterion (Rayleigh) 290, 295 -, general, of plates 133-139,186, - criterion (Strehl) 294-297 219,221 Tolerances - Malus 83 -, centering 107,236,260,425 - Parseval 305,307 -, manufacturing 11,158 - Schwarzschild 85,94,97,107,110, -, Schmidt 154 170,233,315 Tolerancing 26,94,200,268,293,296, - Schwarzschild (generalized) 85, 297,329,335 138,232,233,239,242 Tracing see ray-tracing Theory Tracking 21 - analytical (third order) 55,67,79, Transfer equation 34 84,113,142,154,167,218,220,259, Transformation 260,278,329,361,369 -, paraxial (virtual corrector plate) - aspheric plate 133-139,186,219, 318,330 221,368 Transit instrument (Paul-Baker -, Big Bang 421 reflector) 221 -, diffraction 282 Transmission -, Fourier 302,304 -, UV 399 -, Hamilton 57-61,246,278 Transmission (optical glass) 14,158 -, higher order 82 Triangular aberration (comatic) 60, - "island universe" 421 281,282 - reflector (Schwarzschild) 74,90, Triplet objective see Objective 110,315 Thbe - Schiefspiegler (for decenter) 252 -, open frame (ventilated) 407,410, - thin lens 160-162,189,360,361, 416 368,390, see also Lens, thin Thbe extension 117, 173 Thermal see also Problem, thermal Thbe length see also Length - effects (dome seeing) 289,436 -, physical 145 Thermal conductivity (mirrors) 414, Thrned-down edge 8 432 Thermal sensitivity (mirrors) 19,421, Ultra-violet (aluminium coats) 428 425,432,436 Ultra-violet (transmission for FR) Thermodynamics 31,38 392 Thickness (meniscus) 199, see also Undercorrection (spherical aberration) Meniscus, Maksutov 152 -, finite 348, 394 Unit circle (Zernike polynomials) 278, Thin lens 279 - approximation 160-162, 199,340, Unit magnification 22,23,30 341 Use Thin objective 35,38,40 -, ground-based (specification) 290 Third order approximation see Seidel Third order calculation 61 Vacuum 29, 30 Third order theory see Theory, Variance (Strehl theory) 295, analytical 299-301,311 Throughput 38, 134 Variation Tilt -, chromatic see Chromatic variation - in one plane 246, 248 Velocity of light 26 - in two dimensions 246 Ventilation 410 -, mirror 86 -, natural 407,410,416 -, small 86 Vertex curvature 57,80 Subject index 543

Vignetting 32,48,50,111,119,142, -, secondary 152 144,153,186,197,234,295,296,305, -, visible light 122 328,330,354,355,381,400,425 Wedge (prismatic correction) 251 Visual use see Observation, visual Wind-shake 413 Windloading 410 Wave Window 323, 358 -, sinusoidal (OTF) 302 - cold-box 358 Wave theory of light 11,26,282 Winkeleikonal 83, 113 Wavefront 26-29,55,58,59,63,69,82, Wire 131,282,283 -, fine (diffraction) 313 - geometrical 25, 26, 282 - higher order effects (decentering) Z-form (Czerny-Turner) 248,249 260 Zenith 141 - imaging 58,59,67 Zenith distance (ADC) 379 - spherical 25, 59 Zernike (circle) polynomials 60, - tilt 59,132,281,296 278-281 - variance 295,299-301,311 Zernike (radial) polynomials 279,280 Wavefront (phase) aberration 55,56 Zero optical power - coefficient (Seidel) 61-63,66,127 - plane mirror 260 -, peak-to-peak 127 - plane plate 260 Wavefront concept - plane secondary 52, 179, 258, 317, - image formation 25,55,56,82 318,340,345 - Seidel contributions 62 Zerodur (glass ceramic) 436,437 Wavefront error Zonal error 144, 145, see also -, rms 282 Aberration, fifth order Wavelength Zonal mask 405,418 - central (correction) 148,149,152, Zone 405,418 156,186,195,201,202,381,382 -, neutral 151 - light 283,313 -, neutral (Schmidt plate) 151 In rotation

R.N. Wilson Reflecting Telescope Optics II Manufacture, Testing, Alignment Modern Developments Approx. 400 pages. Hardcover. Due mid 1997

Volume I of this work is concerned with a presen• Astronomy tation of the historical development until about 1980 and the complete basic theory of reflecting and telescope systems. Volume IT de-als with technical aspects such as manufacture, testing and adjust• Astrophysics ment, as weU as the revolutionary modern deve• Library lopments which have taken place since about 1980 as a result of systematic applications of electronics and computer technology to telescope optics. The two volumes are structured in such a way that they may be used as a source book on the subject,

From tbe contellts oJVoIu/Ile II 1. Manufacture and test procedures 2. Tolerances, alignment of telescopes and test procedures in function

3. Modem telescope developments: general pupil Price subject 10 change \\;lhOUI nollce. segmentation and techniques to reduce mass In E coumrics Ihe lorn! VAT is elfeclil'e, 4. Image quality specification and optical efficiency criteria 5. Atmospheric optics, adaptive optics, telescope •••••••••• quality for interferometry 6. Mirror reflecting coaK production and cleaning 7. Adapters and beam combination aspects, baftles 8. Maintenance and operation of telescope optics , Springer

Springer-Verlag, Postrach 3t I3 40, D- I0643 Berlin, Fax 0 30/82 07 - 3 01 /4 48, e-mail: uruCf>\!!,>I""'"er.ue