Exploring Weak Scalability for FEM Calculations on a GPU-Enhanced Cluster
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Importance of Data
The landscape of Parallel Programing Models Part 2: The importance of Data Michael Wong and Rod Burns Codeplay Software Ltd. Distiguished Engineer, Vice President of Ecosystem IXPUG 2020 2 © 2020 Codeplay Software Ltd. Distinguished Engineer Michael Wong ● Chair of SYCL Heterogeneous Programming Language ● C++ Directions Group ● ISOCPP.org Director, VP http://isocpp.org/wiki/faq/wg21#michael-wong ● [email protected] ● [email protected] Ported ● Head of Delegation for C++ Standard for Canada Build LLVM- TensorFlow to based ● Chair of Programming Languages for Standards open compilers for Council of Canada standards accelerators Chair of WG21 SG19 Machine Learning using SYCL Chair of WG21 SG14 Games Dev/Low Latency/Financial Trading/Embedded Implement Releasing open- ● Editor: C++ SG5 Transactional Memory Technical source, open- OpenCL and Specification standards based AI SYCL for acceleration tools: ● Editor: C++ SG1 Concurrency Technical Specification SYCL-BLAS, SYCL-ML, accelerator ● MISRA C++ and AUTOSAR VisionCpp processors ● Chair of Standards Council Canada TC22/SC32 Electrical and electronic components (SOTIF) ● Chair of UL4600 Object Tracking ● http://wongmichael.com/about We build GPU compilers for semiconductor companies ● C++11 book in Chinese: Now working to make AI/ML heterogeneous acceleration safe for https://www.amazon.cn/dp/B00ETOV2OQ autonomous vehicle 3 © 2020 Codeplay Software Ltd. Acknowledgement and Disclaimer Numerous people internal and external to the original C++/Khronos group, in industry and academia, have made contributions, influenced ideas, written part of this presentations, and offered feedbacks to form part of this talk. But I claim all credit for errors, and stupid mistakes. These are mine, all mine! You can’t have them. -
AMD Accelerated Parallel Processing Opencl Programming Guide
AMD Accelerated Parallel Processing OpenCL Programming Guide November 2013 rev2.7 © 2013 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo, AMD Accelerated Parallel Processing, the AMD Accelerated Parallel Processing logo, ATI, the ATI logo, Radeon, FireStream, FirePro, Catalyst, and combinations thereof are trade- marks of Advanced Micro Devices, Inc. Microsoft, Visual Studio, Windows, and Windows Vista are registered trademarks of Microsoft Corporation in the U.S. and/or other jurisdic- tions. Other names are for informational purposes only and may be trademarks of their respective owners. OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos. The contents of this document are provided in connection with Advanced Micro Devices, Inc. (“AMD”) products. AMD makes no representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the right to make changes to specifications and product descriptions at any time without notice. The information contained herein may be of a preliminary or advance nature and is subject to change without notice. No license, whether express, implied, arising by estoppel or other- wise, to any intellectual property rights is granted by this publication. Except as set forth in AMD’s Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty, relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or infringement of any intellectual property right. AMD’s products are not designed, intended, authorized or warranted for use as compo- nents in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of AMD’s product could create a situation where personal injury, death, or severe property or envi- ronmental damage may occur. -
Conga-TR4 User's Guide
COM Express™ conga-TR4 COM Express Type 6 Basic module based on 4th Generation AMD Embedded V- and R-Series SoC User’s Guide Revision 1.10 Copyright © 2018 congatec GmbH TR44m110 1/66 Revision History Revision Date (yyyy.mm.dd) Author Changes 0.1 2018.01.15 BEU • Preliminary release 1.0 2018.10.15 BEU • Updated “Electrostatic Sensitive Device” information on page 3 • Corrected single/dual channel MT/s rates for two variants in table 2 • Updated section 2.2 “Supported Operating Systems” • Added values for four variants in section 2.5 "Power Consumption" • Added values in section 2.6 "Supply Voltage Battery Power" • Updated images in section 4 "Cooling Solutions" • Added note about requiring a re-driver on carrier for USB 3.1 Gen 2 in section 5.1.2 "USB" and 7.4 "USB Host Controller" • Added Intel® Ethernet Controller i211 as assembly option in table 4 "Feature Summary" and section 5.1.4 "Ethernet" • Corrected section 7.4 "USB Host Controller" • Added section 9 "System Resources" 1.1 2019.03.19 BEU • Corrected image in section 2.4 "Supply Voltage Standard Power" • Updated section 10.4 "Supported Flash Devices" 1.2 2019.04.02 BEU • Corrected supported memory in table 2, 3, and added information about supported memory in table 4 • Added information about the new industrial variant in table 3 and 7 1.3 2019.07.30 BEU • Updated note in section 4 "Cooling Solutions" • Changed number of supported USB 3.1 Gen 2 interfaces to two throughout the document • Added note regarding USB 3.1 Gen 2 in section 7.4 "USB Host Controller" 1.4 2020.01.07 BEU -
Evolution of the Graphical Processing Unit
University of Nevada Reno Evolution of the Graphical Processing Unit A professional paper submitted in partial fulfillment of the requirements for the degree of Master of Science with a major in Computer Science by Thomas Scott Crow Dr. Frederick C. Harris, Jr., Advisor December 2004 Dedication To my wife Windee, thank you for all of your patience, intelligence and love. i Acknowledgements I would like to thank my advisor Dr. Harris for his patience and the help he has provided me. The field of Computer Science needs more individuals like Dr. Harris. I would like to thank Dr. Mensing for unknowingly giving me an excellent model of what a Man can be and for his confidence in my work. I am very grateful to Dr. Egbert and Dr. Mensing for agreeing to be committee members and for their valuable time. Thank you jeffs. ii Abstract In this paper we discuss some major contributions to the field of computer graphics that have led to the implementation of the modern graphical processing unit. We also compare the performance of matrix‐matrix multiplication on the GPU to the same computation on the CPU. Although the CPU performs better in this comparison, modern GPUs have a lot of potential since their rate of growth far exceeds that of the CPU. The history of the rate of growth of the GPU shows that the transistor count doubles every 6 months where that of the CPU is only every 18 months. There is currently much research going on regarding general purpose computing on GPUs and although there has been moderate success, there are several issues that keep the commodity GPU from expanding out from pure graphics computing with limited cache bandwidth being one. -
View Annual Report
2013 ANNUAL REPORT ON FORM 10-K Dear Stockholders: In 2013, we made significant progress in bringing AMD closer to our mission of becoming the world’s leading designer and integrator of innovative, tailored technology solutions that empower people to push the boundaries of what is possible. Throughout the year, we achieved many goals the Company set going into 2013 despite broader PC industry challenges. Transformation and Progress: Profitability and Acceleration of Our Business Our strategic three-phase plan to transform AMD began with resetting and restructuring our business to lay the foundation for the acceleration of our growth. By the end of 2013, we successfully implemented phase one and phase two of our turnaround plan to create a more efficient and sustainable business model in the following ways: • Reducing our operating expenses more than 30 percent from the first quarter of 2012 to the fourth quarter of 2013. • Generating more than 30 percent of our net revenues in the second half of 2013 from our semi-custom and embedded businesses, both high-growth focus areas for AMD. • Exiting the year with cash balances, including marketable securities, of $1.2 billion, above our optimal cash balance target of $1.1 billion, and establishing an incremental secured revolving line of credit up to $500 million. • Returning to profitability and free cash flow in the second half of the year. I’m very pleased to report that AMD has also made steady progress on phase three of our plan: to transform our business into a high-growth market competitor. Our business transformation is being propelled by an increasingly diversified product portfolio and a focus on driving to 50 percent of AMD revenue from five high-growth markets by the end of 2015: semi-custom solutions, ultra-low power client PC, embedded, dense server, and professional graphics. -
Graphics Processing Units
Graphics Processing Units Graphics Processing Units (GPUs) are coprocessors that traditionally perform the rendering of 2-dimensional and 3-dimensional graphics information for display on a screen. In particular computer games request more and more realistic real-time rendering of graphics data and so GPUs became more and more powerful highly parallel specialist computing units. It did not take long until programmers realized that this computational power can also be used for tasks other than computer graphics. For example already in 1990 Lengyel, Re- ichert, Donald, and Greenberg used GPUs for real-time robot motion planning [43]. In 2003 Harris introduced the term general-purpose computations on GPUs (GPGPU) [28] for such non-graphics applications running on GPUs. At that time programming general-purpose computations on GPUs meant expressing all algorithms in terms of operations on graphics data, pixels and vectors. This was feasible for speed-critical small programs and for algorithms that operate on vectors of floating-point values in a similar way as graphics data is typically processed in the rendering pipeline. The programming paradigm shifted when the two main GPU manufacturers, NVIDIA and AMD, changed the hardware architecture from a dedicated graphics-rendering pipeline to a multi-core computing platform, implemented shader algorithms of the rendering pipeline in software running on these cores, and explic- itly supported general-purpose computations on GPUs by offering programming languages and software- development toolchains. This chapter first gives an introduction to the architectures of these modern GPUs and the tools and languages to program them. Then it highlights several applications of GPUs related to information security with a focus on applications in cryptography and cryptanalysis. -
Catalyst™ Software Suite Version 9.5 Release Notes
Catalyst™ Software Suite Version 9.5 Release Notes This release note provides information on the latest posting of AMD’s industry leading software suite, Catalyst™. This particular software suite updates both the AMD Display Driver, and the Catalyst™ Control Center. This unified driver has been further enhanced to provide the highest level of power, performance, and reliability. The AMD Catalyst™ software suite is the ultimate in performance and stability. For exclusive Catalyst™ updates follow Catalyst Maker on Twitter. This release note provides information on the following: z Web Content z AMD Product Support z Operating Systems Supported z New Features z Performance Improvements z Resolved Issues for the Windows Vista Operating System z Resolved Issues for the Windows XP Operating System z Resolved Issues for the Windows 7 Operating System z Known Issues Under the Windows Vista Operating System z Known Issues Under the Windows XP Operating System z Known Issues Under the Windows 7 Operating System z Installing the Catalyst™ Vista Software Driver z Catalyst™ Crew Driver Feedback ATI Catalyst™ Release Note Version 9.5 1 Web Content The Catalyst™ Software Suite 9.5 contains the following: z Radeon™ display driver 8.612 z HydraVision™ for both Windows XP and Vista z HydraVision™ Basic Edition (Windows XP only) z WDM Driver Install Bundle z Southbridge/IXP Driver z Catalyst™ Control Center Version 8.612 Caution: The Catalyst™ software driver and the Catalyst™ Control Center can be downloaded independently of each other. However, for maximum stability and performance AMD recommends that both components be updated from the same Catalyst™ release. -
The Shallow Water Equations on Graphics Processing Units
Compact Stencils for the Shallow Water Equations on Graphics Processing Units Technology for a better society 1 Brief Outline • Introduction to Computing on GPUs • The Shallow Water Equations • Compact Stencils on the GPU • Physical correctness • Summary Technology for a better society 2 Introduction to GPU Computing Technology for a better society 3 Long, long time ago, … 1942: Digital Electric Computer (Atanasoff and Berry) 1947: Transistor (Shockley, Bardeen, and Brattain) 1956 1958: Integrated Circuit (Kilby) 2000 1971: Microprocessor (Hoff, Faggin, Mazor) 1971- More transistors (Moore, 1965) Technology for a better society 4 The end of frequency scaling 2004-2011: Frequency A serial program uses 2% 1971-2004: constant 29% increase in of available resources! frequency 1999-2011: 25% increase in Parallelism technologies: parallelism • Multi-core (8x) • Hyper threading (2x) • AVX/SSE/MMX/etc (8x) 1971: Intel 4004, 1982: Intel 80286, 1993: Intel Pentium P5, 2000: Intel Pentium 4, 2010: Intel Nehalem, 2300 trans, 740 KHz 134 thousand trans, 8 MHz 1.18 mill. trans, 66 MHz 42 mill. trans, 1.5 GHz 2.3 bill. trans, 8 X 2.66 GHz Technology for a better society 5 How does parallelism help? 100% The power density of microprocessors Single Core 100% is proportional to the clock frequency cubed: 100% 85% Multi Core 100% 170 % Frequency Power 30% Performance GPU 100 % ~10x Technology for a better society 6 The GPU: Massive parallelism CPU GPU Cores 4 16 Float ops / clock 64 1024 Frequency (MHz) 3400 1544 GigaFLOPS 217 1580 Memory (GiB) 32+ 3 Performance -
Lewis University Dr. James Girard Summer Undergraduate Research Program 2021 Faculty Mentor - Project Application
Lewis University Dr. James Girard Summer Undergraduate Research Program 2021 Faculty Mentor - Project Application Exploring the Use of High-level Parallel Abstractions and Parallel Computing for Functional and Gate-Level Simulation Acceleration Dr. Lucien Ngalamou Department of Engineering, Computing and Mathematical Sciences Abstract System-on-Chip (SoC) complexity growth has multiplied non-stop, and time-to- market pressure has driven demand for innovation in simulation performance. Logic simulation is the primary method to verify the correctness of such systems. Logic simulation is used heavily to verify the functional correctness of a design for a broad range of abstraction levels. In mainstream industry verification methodologies, typical setups coordinate the validation e↵ort of a complex digital system by distributing logic simulation tasks among vast server farms for months at a time. Yet, the performance of logic simulation is not sufficient to satisfy the demand, leading to incomplete validation processes, escaped functional bugs, and continuous pressure on the EDA1 industry to develop faster simulation solutions. In this research, we will explore a solution that uses high-level parallel abstractions and parallel computing to boost the performance of logic simulation. 1Electronic Design Automation 1 1 Project Description 1.1 Introduction and Background SoC complexity is increasing rapidly, driven by demands in the mobile market, and in- creasingly by the fast-growth of assisted- and autonomous-driving applications. SoC teams utilize many verification technologies to address their complexity and time-to-market chal- lenges; however, logic simulation continues to be the foundation for all verification flows, and continues to account for more than 90% [10] of all verification workloads. -
Virtualization: Comparision of Windows and Linux
VIRTUALIZATION: COMPARISION OF WINDOWS AND LINUX Ms. Pooja Sharma Lecturer (I.T) PCE, Jaipur Email:[email protected] Charnaksh Jain IV yr (I.T) PCE, Jaipur [email protected] Abstract Full-Virtualization, Para-Virtualization, hyper- visior(Hyper-V), Guest Operating System, Host Virtualization as a concept is not new; computational Operating System. environment virtualization has been around since the first mainframe systems. But recently, the term 1. Introduction "virtualization" has become ubiquitous, representing any type of process obfuscation where a process is Virtualization provides a set of tools for increasing somehow removed from its physical operating flexibility and lowering costs, things that are environment. Because of this ambiguity, important in every enterprise and Information virtualization can almost be applied to any and all Technology organization. Virtualization solutions are parts of an IT infrastructure. For example, mobile becoming increasingly available and rich in features. device emulators are a form of virtualization because the hardware platform normally required to run the Since virtualization can provide significant benefits mobile operating system has been emulated, to your organization in multiple areas, you should be removing the OS binding from the hardware it was establishing pilots, developing expertise and putting written for. But this is just one example of one type virtualization technology to work now. of virtualization; there are many definitions of the In essence, virtualization increases flexibility by term "virtualization" floating around in the current decoupling an operating system and the services and lexicon, and all (or at least most) of them are correct, applications supported by that system from a specific which can be quite confusing. -
A Survey of Reconfigurable Processors
Hindawi Publishing Corporation VLSI Design Volume 2013, Article ID 683615, 18 pages http://dx.doi.org/10.1155/2013/683615 Review Article Ingredients of Adaptability: A Survey of Reconfigurable Processors Anupam Chattopadhyay MPSoC Architectures, UMIC Research Centre, RWTH Aachen University, Mies-van-der-Rohe Strasse 15, 52074 Aachen, Germany Correspondence should be addressed to Anupam Chattopadhyay; [email protected] Received 18 December 2012; Revised 14 May 2013; Accepted 1 June 2013 Academic Editor: Yann Thoma Copyright © 2013 Anupam Chattopadhyay. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. For a design to survive unforeseen physical effects like aging, temperature variation, and/or emergence of new application standards, adaptability needs to be supported. Adaptability, in its complete strength, is present in reconfigurable processors, which makes it an important IP in modern System-on-Chips (SoCs). Reconfigurable processors have risen to prominence as a dominant computing platform across embedded, general-purpose, and high-performance application domains during the last decade. Significant advances have been made in many areas such as, identifying the advantages of reconfigurable platforms, their modeling, implementation flow and finally towards early commercial acceptance. This paper reviews these progresses from various perspectives with particular emphasis on fundamental challenges and their solutions. Empowered with the analysis of past, the future research roadmap is proposed. 1. Introduction Circuits (ASICs) in terms of flexibility and performance. Since this work, notable research has been done in accel- The changing technology landscape and fast evolution of erator design (application-specific processors), multicore application standards make it imperative for a design to homogeneous and heterogeneous System-on-Chip (SoC) be adaptable. -
ATI Catalyst™ Software Suite Version 10.2 Release Notes
ATI Catalyst™ Software Suite Version 10.2 Release Notes This release note provides information on the latest posting of AMD’s industry leading software suite, ATI Catalyst™. This particular software suite updates both the AMD Display Driver, and the ATI Catalyst™ Control Center. This unified driver has been further enhanced to provide the highest level of power, performance, and reliability. The ATI Catalyst™ software suite is the ultimate in performance and stability. For exclusive ATI Catalyst™ updates follow CatalystMaker on Twitter. This release note provides information on the following: z Web Content z AMD Product Support z Operating Systems Supported z New Features z Performance Improvements z Resolved Issues for All Windows Operating Systems z Resolved Issues for the Windows 7 Operating System z Resolved Issues for the Windows Vista Operating System z Resolved Issues for the Windows XP Operating System z Known Issues Under All Windows Operating Systems z Known Issues Under the Windows 7 Operating System z Known Issues Under the Windows Vista Operating System z Known Issues Under the Windows XP Operating System z Installing the ATI Catalyst™ Vista Software Driver z ATI Catalyst™ Crew Driver Feedback ATI Catalyst™ Release Note Version 10.2 1 Web Content The Catalyst™ Software Suite 10.2 contains the following: z ATI Radeon™ display driver 8.702 z HydraVision™ for both Windows XP, Vista and Windows 7 z WDM Driver Install Bundle z Southbridge/IXP Driver z ATI Catalyst™ Control Center Version 8.702 Caution: The ATI Catalyst™ software driver and the ATI Catalyst™ Control Center can be downloaded independently of each other.