Cytotaxonomy of Malvaceae III. Meiotic Studies of Hibiscus, Abelmoschus , Azanza, Thespesia, Malachra, Urena and Pavonia

Total Page:16

File Type:pdf, Size:1020Kb

Cytotaxonomy of Malvaceae III. Meiotic Studies of Hibiscus, Abelmoschus , Azanza, Thespesia, Malachra, Urena and Pavonia Cytologia 47: 109-116, 1982 Cytotaxonomy of Malvaceae III. Meiotic studies of Hibiscus, Abelmoschus , Azanza, Thespesia, Malachra, Urena and Pavonia Aparna Dasgupta and R. P. Bhatt1 Department of Pharmacy , S. V. Govt. Polytechnic., Bhopal, India Received January 22, 1980 Family Malvaceae includes many familier plants of cultivation notably cotton . Cytological work on economically important plants of this family has received greater attention, though work has also been done on a few wild species by some workers like Youngman (1927), Davie (1933), Skovsted (1935, 1941), Bates (1967), Bates and Blanchard (1970), Hazra and Sharma (1971), Kachecheba (1972), Bhatt and Dasgupta (1976). However, detailed meiotic study has not been done on many genera and species of the family which is necessary to know the type of ploidy and the basic numbers of chromosomes from which the evolution might have progressed . The present investigation includes 15 species belonging to the tribe Hibisceae and Ureneae of the family Malvaceae. The species of the tribe Ureneae are simple polyploids of seven (Skovsted 1935) which has also been noticed in the present work. However, different chromosome numbers have been reported in the tribe Hibisceae. This vast range of chromosome numbers in the tribe especially necessiated the study of chromosome numbers and the ploidy level. This investigation also aimed at understanding the basic chromosome numbers from which the evolution is supposed to have progressed and the evaluation of systematic position of different taxa as understood at present. Out of 15 species studied meiotic study has been done for the first time in Hibis cus vitifolius, H. hirtus, H. panduraeformis, H. caesius, Abelmoschus manihot, Malachra capitata and Pavonia zeylanica. Materials and methods Mature seeds for the cytological investigations were collected or obtained from different localities in Gujarat, Madhya Pradesh, Uttar Pradesh and Karnataka (Table 1). The seeds of all the populations were grown in the Botanical garden of M. S. University, Baroda for selecting suitable buds for meiotic studies. Difficulty was encountered in studying meiotic divisions which were obtained from both fresh and fixed flower buds. The fixed materials showed the best results in most of the cases. The flower buds were fixed in modified Carnoy's fluid (6:3:1) for at least 24 hours to clear the cytoplasm. In Thespesia populnea and Azanza lampas only the anther mass was fixed in the fixative after several washes in the same to get good preparations. Before smearing in 2% aceto-carmine, the anthers 1 Department of Botany , Faculty of Science, M. S. University, Baroda, India. 110 Aparna Dasgupta and R. P. Bhatt Cytologia 47 were transferred in 45% acetic-acid for at least 1 hour. The slides were made perma nent following Celariar's (1956) butyl-alcohol schedule and mounted in euparal. Drawings were made at table-level on steindorff research microscope using E. Leitz-Wetzlar camera lucida apparatus at 15•~120 (apochromat) magnification. Table 1. Observations Tribe-Hibisceae Genus-Hibiscus Linn. 1. H. sabdariffa Linn. Meiosis is regular in all collections showing 36 bivalents at metaphase I (Fig. 1). This is in confirmation with the earlier works of Skovsted (1935), Menzel and Wilson (1963). 2. H. cannabinus Linn. Meiosis is normal, showing 18 bivalents at diakinesis and metaphase I (Fig . 2). This confirms the reports by Skovsted (1935); Menzel and Wilson (1963) . In dia kinesis two bivalents near the nucleolus reveal the presence of 1 satellited and 1 secondarily constricted chromosomes in the somatic complement , reported by authors (1976). 3. H. vitifolius Linn. As far could be ascertained from the available literature , this is the first report of meiotic study of the species. The meiotic behaviour of chromosomes is found to be regular in a majority of PMCs showing 17 distinct bivalents at diakinesis and metaphase I (Figs. 7 and 6). However , a few abnormalities like secondary associa tion of bivalents at metaphase I (Figs . 32), irregular distribution of chromosomes at anaphase I (Fig. 34), laggards at anaphase I and laggard at telophase I (Fig . 33) were noticed. Tetrads of linear as well as isobilateral types have been recorded . 1982 Cytotaxonomy of Malvaceae III 111 Figs. 1-15. Meiotic stages. 1, metaphase I. H. sabdariffa. 2, diakinesis. H. cannabinus. 3, dia kinesis. H. caesius. 4, diakinesis. H. hirtus. 5, metaphase I. Azanza lampas. 6, metaphase I. H. vitifolius. 7, diakinesis. H. vitifolius. 8, diakinesis. H. panduraeformis. 9, metaphase I. H. trionum. 10, metaphase I. Malachra capitata. 11, metaphase I. Pavonia zeylanica. 12, metaphase I. Abel moschus manihot. 13, diakinesis. H. ovalifolius. 14, diakinesis. Urena lobata wiht 2 nucleolus and 2B chromosomes (•¨). 15, metaphase I. Pavonia patens. 112 Aparna Dasgupta and R. P. Bhatt Cytologia 47 4. H. trionum Linn. Meiotic study shows the presence of 28 bivalents at metaphase I (Fig. 9). The present observation of n=28 confirms the earlier observation of Skovsted (1935), but differs from Rao's (1941) report of n=14. 5. H. hirtus Linn. No report on meiotic study is available in the literature. Meiosis is normal showing 32 bivalents at diakinesis and metaphase I (Fig. 4). 6. H. ovalifolius (Forsk.) Vahl Earlier workers like Skovsted (1941); Gill and Abubakar (1975) have reported n=32 for the species. In the present work 16 bivalents at diakinesis (Fig. 13) were observed with regular meiotic division. However, noncongressional bivalent (Fig. 18), grouping (5 groups) of bivalents (Fig. 16) at metaphae I; irregular distribution at anaphase I (Fig. 19) laggard at telophase I (Fig. 17) were noticed in few PMCs. 7. H. panduraeformis Burm. Regular meiotic division showing 12 distinct bivalents (Fig. 8) at diakinesis and metaphase I confirms the report by the authors (1976). The secondary associa tion of bivalents showing 6 groups (l(5)+2(2)+3(l)-Fig. 29) at metaphase I, grouping of chromosomes at metaphase II (Fig. 28) and nonsynchronization at anaphase II (Fig. 30) are some of the abnormalities recorded in few PMSs during meiotic study of different populations. 8. H. caesius Garcke No earlier record of the cytological work for the species is mentioned in the available literature. The meiosis is regular showing 18 bivalents at diakinesis and metaphase I (Fig. 3). Genus-Abelmoschus Medik. 9. A. manihot (Linn.) Medik. Meiosis is regular showing 65 bivalents at metaphase I (Fig. 12). No record of meiotic study is mentioned in the available literature . Genus-Azanza Alef. 10. A. lampas (Cav.) Alef. The meiotic behaviour is regular in all the populations . In contrast to Young man's (1931) and Rao's (1967) reports of n=13 , the present observation is n=14 at metaphase I (Fig. 5) and anaphase I. Genus: Thespesia Soland ex. Corr. 11. T. populnea (Linn.) Soland ex. Corr . Earlier reports are n=13 by Youngman (1931); n=12 by Hazra and Sharma (1971). In contrast to these findings the present observation is n=14 for the species. Figs. 16-34. Meiotic stages. 16-19: H . ovalifolius. 16, metaphase I showing 5 groups of biva lents. 17, telophase I showing laggards (•ª) . 18, metaphase I showing non-congressional bivalent (•ª). 19, anaphase I showing irregular distribution . 20-25: Thespesia populnea . 20, metaphase I (Sid e view) showing interlocking of 2 bivalents (•ª) . 21, metaphase I showing non-congressional bivalents (•ª). 22, metaphase I showing non-congressional bivalent (•ª) . 23, metaphase I (Side 1982 Cytotaxonomy of Malvaceae III 113 view) showing 14 bivalents. 24, anaphase I normal. 25, metaphase I (Polar view) showing group ing of some bivalents. 26, metaphase I Urena lobata showing 7 groups of bivalents. 27-30: H. pan duraeformis. 27, metaphase II, normal. 28, metaphase II showing grouping of some chromosomes. 29, metaphase I showing secondary association of bivalents in 6 groups. 30, anaphase II showing non-synchronized division. 31, metaphase I Pavonia patens showing 2 groups of bivalents. 32 34: H. vitifolius. 32, metaphase I showing 6 groups of bivalents. 33, telophase I showing laggard (•ª). 34, anaphase I showing irregular distribution. 114 Aparna Dasgupta and R. P. Bhatt Cytologia 47 Meiosis is fairly regular showing 14 bivalents at metaphase I and anaphase I (Figs. 23 and 24). Abnormalities like non-congressional (Figs. 21 and 22) interlocking (Fig. 20) and tendency towards association of bivalents (Fig. 25) are observed in few PMCs. Tribe-Ureneae Genus-Malachra Linn. 12. M. capitata Linn. Meiotic study for the species is done for the first time. PMCs show 28 bivalents at metaphase I (Fig. 10) and regular distribution at anaphase I. Genus-Urena Linn. 13. U. lobata Linn. The present report of n=14 is in line with the previous report by Hazra and Sharma (1971). In addition to normal bivalents (n=14), two darkly stained bodies were observed at diakinesis (Fig. 14). This confirms the report of the same by Hazra and Sharma (1971). The meiosis is fairly regular in the majority of the populations studies. However, grouping of bivalents at metaphase I (2(3)+3(4)+ 2(1)=7 groups) is noticed in a few PMCs (Fig. 26). Genus-Paivonia Cav. 14. P. zevlanica Cav. It is apparent from the available literature that the species has remained un explored cytologically. Number of PMCs examined in two populations, show normal behaviour of chromosomes with n=28 at metaphase I (Fig. 11). However, non-congressional bivalent was observed in metaphase I. 15. P. patens (Andr.) Chiov. The meiotic study shows the presence of 14 bivalents at metaphase I (Fig. 15) which confirms the earlier report of n=14 by Bates (1967). Except for occasional grouping of bivalents at metaphase I (Fig. 31) meiosis is normal. Discussion The meiosis is regular in most of the taxa analysed. However, a few irregulari ties like laggards in anaphase and telophase I and II, irregular distribution at anaphase I and non-congressional bivalents, secondary association of bivalents at metaphase I are noticed in a few species.
Recommended publications
  • Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
    YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work.
    [Show full text]
  • Scientific Name Species Common Name Abies Lasiocarpa FIR Subalpine Acacia Macracantha ACACIA Long-Spine
    Scientific Name Species Common Name Abies lasiocarpa FIR Subalpine Acacia macracantha ACACIA Long-spine Acacia roemeriana CATCLAW Roemer Acer grandidentatum MAPLE Canyon Acer nigrum MAPLE Black Acer platanoides MAPLE Norway Acer saccharinum MAPLE Silver Aesculus pavia BUCKEYE Red Aesculus sylvatica BUCKEYE Painted Ailanthus altissima AILANTHUS Tree-of-heaven Albizia julibrissin SILKTREE Mimosa Albizia lebbek LEBBEK Lebbek Alnus iridis ssp. sinuata ALDER Sitka Alnus maritima ALDER Seaside Alvaradoa amorphoides ALVARADOA Mexican Amelanchier laevis SERVICEBERRY Allegheny Amyris balsamifera TORCHWOOD Balsam Annona squamosa SUGAR-APPLE NA Araucaria cunninghamii ARAUCARIA Cunningham Arctostaphylos glauca MANZANITA Bigberry Asimina obovata PAWPAW Bigflower Bourreria radula STRONGBACK Rough Brasiliopuntia brasiliensis PRICKLY-PEAR Brazilian Bursera simaruba GUMBO-LIMBO NA Caesalpinia pulcherrima FLOWERFENCE NA Capparis flexuosa CAPERTREE Limber CRUCIFIXION- Castela emoryi THORN NA Casuarina equisetifolia CASUARINA Horsetail Ceanothus arboreus CEANOTHUS Feltleaf Ceanothus spinosus CEANOTHUS Greenbark Celtis lindheimeri HACKBERRY Lindheimer Celtis occidentalis HACKBERRY Common Cephalanthus occidentalis BUTTONBUSH Common Cercis canadensis REDBUD Eastern Cercocarpus traskiae CERCOCARPUS Catalina Chrysophyllum oliviforme SATINLEAF NA Citharexylum berlandieri FIDDLEWOOD Berlandier Citrus aurantifolia LIME NA Citrus sinensis ORANGE Orange Coccoloba uvifera SEAGRAPE NA Colubrina arborescens COLUBRINA Coffee Colubrina cubensis COLUBRINA Cuba Condalia globosa
    [Show full text]
  • Aflatoxin Contamination of Non-Cultivated Fruits in Zambia
    fmicb-10-01840 August 9, 2019 Time: 11:48 # 1 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Arizona ORIGINAL RESEARCH published: 09 August 2019 doi: 10.3389/fmicb.2019.01840 Aflatoxin Contamination of Non-cultivated Fruits in Zambia Paul W. Kachapulula1,2*, Ranajit Bandyopadhyay3 and Peter J. Cotty1* 1 USDA-ARS Aflatoxin Laboratory, School of Plant Sciences, The University of Arizona, Tucson, AZ, United States, 2 Plant Pathology Laboratory, School of Agricultural Sciences, Department of Plant Science, University of Zambia, Lusaka, Zambia, 3 International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria Wild fruits are an important food and income source for many households in Zambia. Non-cultivated plants may be as susceptible as crops to aflatoxin contamination. Concentrations of aflatoxins in commonly consumed wild fruits from markets and characteristics of associated aflatoxin-producers need to be determined to assess the aflatoxin risk posed by handling, processing, storage, and consumption. Samples of Schinziophyton rautanenii (n = 22), Vangueriopsis lanciflora (n = 7), Thespesia garckeana (n = 17), Parinari curatellifolia (n = 17), Ziziphus spp. (n = 10), Adansonia digitata (n = 9), and Tamarindus indica (n = 23) were assayed for aflatoxin using lateral-flow immunochromatography from 2016 to 2017. Aflatoxins were above Zambia’s regulatory Edited by: limit (10 mg/kg) in S. rautanenii (average = 57 mg/kg), V. lanciflora (average = 12 mg/kg), Mehdi Razzaghi-Abyaneh, Pasteur Institute of Iran (PII), Iran and T. garckeana (average = 11 mg/kg). The L strain morphotype of Aspergillus flavus Reviewed by: was the most frequent member of Aspergillus section Flavi in market samples, although Kanniah Rajasekaran, Aspergillus parasiticus and fungi with S morphology were also found.
    [Show full text]
  • Characterization of Some Common Members of the Family Malvaceae S.S
    Indian Journal of Plant Sciences ISSN: 2319–3824(Online) An Open Access, Online International Journal Available at http://www.cibtech.org/jps.htm 2014 Vol. 3 (3) July-September, pp.79-86/Naskar and Mandal Research Article CHARACTERIZATION OF SOME COMMON MEMBERS OF THE FAMILY MALVACEAE S.S. ON THE BASIS OF MORPHOLOGY OF SELECTIVE ATTRIBUTES: EPICALYX, STAMINAL TUBE, STIGMATIC HEAD AND TRICHOME *Saikat Naskar and Rabindranath Mandal Department of Botany, Barasat Govt. College, Barasat, Kolkata- 700124, West Bengal, India *Author for Correspondence: [email protected] ABSTRACT Epicalyx, staminal tube, stigma and trichome morphological characters have been used to characterize some common members of Malvaceae s.s. These characters have been analyzed following a recent molecular phylogenetic classification of Malvaceae s.s. Stigmatic character is effective for segregation of the tribe Gossypieae from other tribes. But precise distinction of other two studied tribes, viz. Hibisceae and Malveae on the basis of this character proved to be insufficient. Absence of epicalyx in Malachra has indicated an independent evolutionary event within Hibisceae. Distinct H-shaped trichome of Malvastrum has pointed out its isolated position within Malveae. Staminal tube morphological similarities of Abutilon and Sida have suggested their closeness. A key to the genera has been provided for identification purpose. Keywords: Malvaceae s.s., Epicalyx, Staminal Tube, Stigma, Trichome INTRODUCTION Epicalyx and monadelphous stamens are considered as key characters of the family Malvaceae s.s. Epicalyx was recognized as an important character for taxonomic value by several authors (Fryxell, 1988; Esteves, 2000) since its presence or absence was employed to determine phylogenetic interpretation within the tribes of Malvaceae s.s.
    [Show full text]
  • Binalo Thespesia Populnea
    Binalo March 2017 Thespesia populnea Native Plants of Guam inalo is a medium-sized tree that can be found throughout tropical Bareas of the Pacific. It may grow up to 50 ft. tall and is common on beaches, rivers, river mouths and limestone terraces not far from the coast. Other Common Names: Aden apple, Amae, Badrirt, Banalo, Bang-beng, Indian tulip tree, Kilulo, Malapuso, Milo, Mio, Miro, Mulomulo, Pacific rosewood, Panu, Polo, Pone, Portia tree, Seaside mahoe, Surina Synonyms: Hibiscus populneus, Thespesia macrophylla Family Name: Malvaceae Plant Appearance Distinctive feature: The Hibiscus-like a flowers are yellow when they open in Binalo flower . the morning and darken during the day. They fade to a rose purple color before dropping off the tree in the evening. Leaf Shape: Heart-shape Arrangement: Alternate Type: Simple Flower Size: 2-3 in. with five petals Color: Pale yellow with reddish centers Binalo leavesa. Binalo fruita. in the morning, darkening during the day and turning purple before falling off. Shape: Bell-shaped Arrangement: Solitary axillary flower Flowering period: Year-round Habit Typical height: 25-40 ft. Ave. crown radius: 20-35 ft. Fruit Type: Dehiscent fruit (the pods open Binalo seedsa. Binalo seedlingsa. when mature to release the seeds) College of Natural & Applied Sciences USDA is an equal University of Guam | Unibetsedåt Guahan opportunity employer and provider. Size: 1-2 in. in diameter, rounded but https://archive.org/stream/ flattened Risks emergencyfoodpla00merr/ Color: Green to brown/grayish emergencyfoodpla00merr_djvu.txt (mature) Near surface roots: None www.ctahr.hawaii.edu/forestry/trees/ Number of seeds: 4-10 seeds per pod Limb breakage: Low little_skolmen.html Edible: No Special considerations: Binalo is www.en.wikipedia.org sometimes considered messy as it www.herbpathy.com drops leaves and dry seed capsules www.nativeplants.hawaii.edu Growing Your Own year-round.
    [Show full text]
  • 15. HIBISCUS Linnaeus, Sp. Pl. 2: 693. 1753, Nom. Cons
    Flora of China 12: 286–294. 2007. 15. HIBISCUS Linnaeus, Sp. Pl. 2: 693. 1753, nom. cons. 木槿属 mu jin shu Bombycidendron Zollinger & Moritzi; Fioria Mattei; Furcaria (Candolle) Kosteletzky (1836), not Desvaux (1827); Hibiscus sect. Furcaria Candolle; H. sect. Sabdariffa Candolle; Ketmia Miller; Sabdariffa (Candolle) Kosteletzky; Solandra Murray (1785), not Linnaeus (1759), nor Swartz (1787), nom. cons.; Talipariti Fryxell. Shrubs, subshrubs, trees, or herbs. Leaf blade palmately lobed or entire, basal veins 3 or more. Flowers axillary, usually solitary, sometimes subterminal and ± congested into a terminal raceme, 5-merous, bisexual. Epicalyx lobes 5 to many, free or connate at base, rarely very short (H. schizopetalus) or absent (H. lobatus). Calyx campanulate, rarely shallowly cup-shaped or tubular, 5-lobed or 5-dentate, persistent. Corolla usually large and showy, variously colored, often with dark center; petals adnate at base to staminal tube. Filament tube well developed, apex truncate or 5-dentate; anthers throughout or only on upper half of tube. Ovary 5-loculed or, as a result of false partitions, 10-loculed; ovules 3 to many per locule; style branches 5; stigmas capitate. Fruit a capsule, cylindrical to globose, valves 5, dehiscence loculicidal and sometimes partially septicidal or indehiscent (H. vitifolius Linnaeus). Seeds reniform, hairy or glandular verrucose. About 200 species: tropical and subtropical regions; 25 species (12 endemic, four introduced) in China. According to recent molecular studies (Pfeil et al., Syst. Bot. 27: 333–350. 2002), Hibiscus is paraphyletic, and as more taxa are sampled and a more robust phylogeny is constructed, the genus undoubtedly will be recast. Species of other genera of Hibisceae found in China, such as Abelmoschus, Malvaviscus, and Urena, fall within a monophyletic Hibiscus clade.
    [Show full text]
  • Download PDF (2126K)
    _??_1994 The Japan Mendel Society Cytologia 59: 295 -304 , 1994 Cytotypes and Meiotic Behavior in Mexican Populations of Three Species of Echeandia (Liliaceae) Guadalupe Palomino and Javier Martinez Laboratorio de Citogenetica, Jardin Botanico , Instituto de Biologia, Apartado Postal 70-614, Universidad Nacional Autonoma de Mexico, D . F. 04510, Mexico Accepted June 2, 1994 Echeandia Ort. includes herbaceous perennials distributed from the Southwestern United States to South America. More than 60 species have been described from Mexico and Central America, many of which are narrow endemics (Cruden 1986, 1987, 1993, 1994, Cruden and McVaugh 1989). Mexico is considered the center of origin and evolution for this genus (Cruden pers. comm.). They are commonly found in pine and pine/oak forest, grasslands; xerophyte shrublands, and disturbed areas, (Cruden 1981, 1986, 1987, Cruden and McVaugh 1989). Except polyploidy species based on n=8, as E. longipedicellata n=40, (Cruden 1981); E. altipratensis n=24, and 48; E. luteola n=32, and 64; E. venusta n=84, (Cruden 1986, 1994), chromosomes those exist, little information on interspecific or intraspecific variation in karyo types in Echeandia. In 1988, Palomino and Romo described the karyotypes of E. flavescens (Benth.) Cruden (as E. leptophylla) and E. nana (Baker) Cruden, both of which are characterized by 2 pairs of chromosomes with satellites. Cytotype variation has been observed commonly in the families Liliaceae, Iridaceae, Commelinaceae, and some Poaceae, Acanthaceae and Leguminosae. It is usually due to the presence of spontaneous aberrations in number or structure, heterozygous inversions, Roberts onian translocations, exchanges, deletions and duplications (Sen 1975, Araki 1975, Araki et al.
    [Show full text]
  • Ornamental Garden Plants of the Guianas Pt. 2
    Surinam (Pulle, 1906). 8. Gliricidia Kunth & Endlicher Unarmed, deciduous trees and shrubs. Leaves alternate, petiolate, odd-pinnate, 1- pinnate. Inflorescence an axillary, many-flowered raceme. Flowers papilionaceous; sepals united in a cupuliform, weakly 5-toothed tube; standard petal reflexed; keel incurved, the petals united. Stamens 10; 9 united by the filaments in a tube, 1 free. Fruit dehiscent, flat, narrow; seeds numerous. 1. Gliricidia sepium (Jacquin) Kunth ex Grisebach, Abhandlungen der Akademie der Wissenschaften, Gottingen 7: 52 (1857). MADRE DE CACAO (Surinam); ACACIA DES ANTILLES (French Guiana). Tree to 9 m; branches hairy when young; poisonous. Leaves with 4-8 pairs of leaflets; leaflets elliptical, acuminate, often dark-spotted or -blotched beneath, to 7 x 3 (-4) cm. Inflorescence to 15 cm. Petals pale purplish-pink, c.1.2 cm; standard petal marked with yellow from middle to base. Fruit narrowly oblong, somewhat woody, to 15 x 1.2 cm; seeds up to 11 per fruit. Range: Mexico to South America. Grown as an ornamental in the Botanic Gardens, Georgetown, Guyana (Index Seminum, 1982) and in French Guiana (de Granville, 1985). Grown as a shade tree in Surinam (Ostendorf, 1962). In tropical America this species is often interplanted with coffee and cacao trees to shade them; it is recommended for intensified utilization as a fuelwood for the humid tropics (National Academy of Sciences, 1980; Little, 1983). 9. Pterocarpus Jacquin Unarmed, nearly evergreen trees, sometimes lianas. Leaves alternate, petiolate, odd- pinnate, 1-pinnate; leaflets alternate. Inflorescence an axillary or terminal panicle or raceme. Flowers papilionaceous; sepals united in an unequally 5-toothed tube; standard and wing petals crisped (wavy); keel petals free or nearly so.
    [Show full text]
  • Thespesia Populnea (Milo) Left: Newly Opened Flower
    April 2006 Species Profiles for Pacific Island Agroforestry ver. 2.1 www.traditionaltree.org Thespesia populnea (milo) Malvaceae (mallow family) badrirt (Palau); banalo (Northern Marianas); bang-beng (Yap); kilulo (Guam); mi‘o (Marquesas); milo (Hawai‘i, Mar- shall Islands, Samoa, Tonga); miro (Pitcairn Island); miro, ‘amae (Rarotonga, Society Islands); mulomulo (Fiji); panu (Kosrae); polo (Chuuk); pone (Pohnpei); purau (Tahiti); portia tree, seaside mahoe, Pacific rosewood, Indian tulip tree, cork tree, umbrella tree (English) J. B. Friday and Dana Okano photo: J. B. Friday B. J. photo: Milo tree on a beach in Lahaina, Maui, Hawai‘i. IN BRIEF Growth rate Moderate, 0.6–1 m/yr (2–3 ft/yr) for the first Distribution Coastal areas of the Indian and Pacific few years. Oceans; throughout Oceania. Main agroforestry uses Soil stabilization, windbreak. Size Small tree typically 6–10 m (20–33 ft) at maturity. Main uses Craftwood, ornamental. Habitat Tropical and warm subtropical, usually found at Yields Heartwood in 30+ years. sea level to 150 m (500 ft). Intercropping Compatible with many coastal species, al- Vegetation Associated with a wide range of coastal spe- though it requires full sun. cies. Invasive potential Has potential to become an invasive Soils Thrives on sandy coastal soils as well as volcanic, weed—should not be introduced into new areas. limestone, and rocky soils. INTRODUCTION Current distribution Milo (Thespesia populnea) is one of the most important trees Milo has been planted throughout the tropics and is natu- to Pacific Island peoples. The rich, dark wood is carved into ralized in tropical climates throughout the world from the beautiful bowls, tools, small canoes, and figures.
    [Show full text]
  • In Achiasmate Or Non-Chiasmate
    Heredity (1975),34(3), 373-380 ACHIASMATEMEIOSIS IN THE FRITILLARIA JAPONICA GROUP I. DIFFERENT MODES OF BIVALENT FORMATION IN THE TWO SEX MOTHER CELLS S. NODA Biological Institute, Osaka Gakuin University, Suita, Osaka 564, Japan Received22.vii.74 SUMMARY The Fritillaria japonica group consists of six related species with x =12and its derivative x =11.Irrespective of basic chromosome number, the pollen and embryo sac mother cells in all these species show clearly difrerent modes of bivalent formation. Although meiosis in EMC's of five species is typically chiasmate, PMC's of all six species show achiasmate meiosis with the following characteristics: (a) Synapsis of homologous chromosomes is prolonged up to metaphase I. Separation of non-sister chromatids is suppressed and there is thus no typical diplotene/diakinesis. (b) The homologous chromosomes apposed in parallel are usually devoid of chiasmata at metaphase I. Occasionally, concealed chiasmata are observed to be hidden in the synaptic plane. (c) Separation of homologues is initiated at the kinetochore regions at early metaphase I and progresses toward the distal ends. (d) Meiotic behaviour of the small telo- centric B chromosomes seems to be independent of, or incompletely controlled by, the achiasmate meiotic system. Achiasmate meiosis is assumed to have arisen from the chiasmate one through a transitional step like eryptochiasmate meiosis. 1. INTRODUCTION REGULAR segregation of the homologous chromosomes at meiosis is essential for production of genetically balanced gametes. The synapsis of homologues and its maintenance are prerequisites of regular assortment of the chromo- somes into daughter nuclei. In typical chiasmate meiosis, the synapsed homologues are maintained by lateral association irrespective of the presence of chiasmata until opening-out between non-sister chromatids occurs at late pachytene.
    [Show full text]
  • Evolutionary Consequences of Dioecy in Angiosperms: the Effects of Breeding System on Speciation and Extinction Rates
    EVOLUTIONARY CONSEQUENCES OF DIOECY IN ANGIOSPERMS: THE EFFECTS OF BREEDING SYSTEM ON SPECIATION AND EXTINCTION RATES by JANA C. HEILBUTH B.Sc, Simon Fraser University, 1996 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Department of Zoology) We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA July 2001 © Jana Heilbuth, 2001 Wednesday, April 25, 2001 UBC Special Collections - Thesis Authorisation Form Page: 1 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. The University of British Columbia Vancouver, Canada http://www.library.ubc.ca/spcoll/thesauth.html ABSTRACT Dioecy, the breeding system with male and female function on separate individuals, may affect the ability of a lineage to avoid extinction or speciate. Dioecy is a rare breeding system among the angiosperms (approximately 6% of all flowering plants) while hermaphroditism (having male and female function present within each flower) is predominant. Dioecious angiosperms may be rare because the transitions to dioecy have been recent or because dioecious angiosperms experience decreased diversification rates (speciation minus extinction) compared to plants with other breeding systems.
    [Show full text]
  • Downloaded from Brill.Com10/07/2021 08:53:11AM Via Free Access 130 IAWA Journal, Vol
    IAWA Journal, Vol. 27 (2), 2006: 129–136 WOOD ANATOMY OF CRAIGIA (MALVALES) FROM SOUTHEASTERN YUNNAN, CHINA Steven R. Manchester1, Zhiduan Chen2 and Zhekun Zhou3 SUMMARY Wood anatomy of Craigia W.W. Sm. & W.E. Evans (Malvaceae s.l.), a tree endemic to China and Vietnam, is described in order to provide new characters for assessing its affinities relative to other malvalean genera. Craigia has very low-density wood, with abundant diffuse-in-aggre- gate axial parenchyma and tile cells of the Pterospermum type in the multiseriate rays. Although Craigia is distinct from Tilia by the pres- ence of tile cells, they share the feature of helically thickened vessels – supportive of the sister group status suggested for these two genera by other morphological characters and preliminary molecular data. Although Craigia is well represented in the fossil record based on fruits, we were unable to locate fossil woods corresponding in anatomy to that of the extant genus. Key words: Craigia, Tilia, Malvaceae, wood anatomy, tile cells. INTRODUCTION The genus Craigia is endemic to eastern Asia today, with two species in southern China, one of which also extends into northern Vietnam and southeastern Tibet. The genus was initially placed in Sterculiaceae (Smith & Evans 1921; Hsue 1975), then Tiliaceae (Ren 1989; Ying et al. 1993), and more recently in the broadly circumscribed Malvaceae s.l. (including Sterculiaceae, Tiliaceae, and Bombacaceae) (Judd & Manchester 1997; Alverson et al. 1999; Kubitzki & Bayer 2003). Similarities in pollen morphology and staminodes (Judd & Manchester 1997), and chloroplast gene sequence data (Alverson et al. 1999) have suggested a sister relationship to Tilia.
    [Show full text]