Identification and Characterization of HIRIP3 As a Novel Histone H2A Chaperone Maria Ignatyeva

Total Page:16

File Type:pdf, Size:1020Kb

Identification and Characterization of HIRIP3 As a Novel Histone H2A Chaperone Maria Ignatyeva Identification and characterization of HIRIP3 as a novel histone H2A chaperone Maria Ignatyeva To cite this version: Maria Ignatyeva. Identification and characterization of HIRIP3 as a novel histone H2A chaperone. Ge- nomics [q-bio.GN]. Université de Strasbourg, 2017. English. NNT : 2017STRAJ028. tel-02917943 HAL Id: tel-02917943 https://tel.archives-ouvertes.fr/tel-02917943 Submitted on 20 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE STRASBOURG ÉCOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE [Institut de génétique et de biologie moléculaire et cellulaire (IGBMC) - UM 41/UMR 7104/UMR_S 964] THÈSE présentée par : [Maria IGNATYEVA] soutenue le : 31 Mai 2017 pour obtenir le grade de : Docteur de l’université de Strasbourg Discipline/ Spécialité : Aspects Moleculaires et Cellulaires Biologie Identification et caractérisation de HIRIP3 comme nouveau chaperon d'histone H2A [Identification and characterization of HIRIP3 as a novel histone H2A chaperone] THÈSE dirigée par : [M. HAMICHE Ali] Directeur de recherches, Université de Strasbourg RAPPORTEURS : [Mme. AMEYAR-ZAZOUA Maya] Chercheur statutaire, Institut Necker Enfants Malades [M. THIRIET Christophe] Directeur de recherches, Université de Nantes AUTRES MEMBRES DU JURY : [M. DAVIDSON Irwin] Directeur de recherches, Université de Strasbourg TABLE OF CONTENTS ACKNOWLEDGEMENT ....................................................................................................... 4 LIST OF ABBREVIATIONS .................................................................................................. 5 LIST OF FIGURES ................................................................................................................. 7 LIST OF TABLES ................................................................................................................... 7 1 FOREWORD ......................................................................................................................... 8 2 RÉSUMÉ EN FRANÇAIS ................................................................................................... 9 3 INTRODUCTION ............................................................................................................... 13 3.1 Nucleosome composition........................................................................................................... 13 3.2 Chromatin organisation ........................................................................................................... 14 3.3 Chromatin regulation ............................................................................................................... 16 3.3.1 Histone post-translational modifications ............................................................................. 17 3.3.2 Variant histones incorporation ............................................................................................. 20 3.3.3 Chromatin remodelling complexes ...................................................................................... 24 3.3.3.1 ISWI family ................................................................................................................................ 27 3.3.3.2 SWI-SNF family ......................................................................................................................... 29 3.3.3.3 CHD/Mi-2 family ....................................................................................................................... 30 3.3.3.4 INO80/SWR1 family .................................................................................................................. 32 3.4 Chromatin assembly ................................................................................................................. 35 3.5 Chromatin assembly machinery .............................................................................................. 36 3.5.1 Histone chaperones .............................................................................................................. 36 3.5.1.1 H3-group/H4 histone chaperones................................................................................................ 37 3.5.1.2 H2A-group/H2B histone chaperones .......................................................................................... 38 3.5.2 Chromatin machinery interplay ........................................................................................... 40 4 MATERIALS AND METHODS ....................................................................................... 44 4.1 Protein expression in E.coli ...................................................................................................... 44 4.2 Protein expression in SF9 insect cells ...................................................................................... 46 4.3 Protein expression in HeLa cells .............................................................................................. 47 4.4 Protein methods ........................................................................................................................ 48 4.4.1 Protein purification .............................................................................................................. 48 4.4.2 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) ...................................................... 50 4.4.3 Staining of protein gels ........................................................................................................ 50 4.4.4 Western blotting .................................................................................................................. 50 4.4.5 Mass spectrometry ............................................................................................................... 51 2 4.5 Structural modelling ................................................................................................................. 51 4.6 Phosphorylation assay .............................................................................................................. 51 5 RESULTS AND DISCUSSION ......................................................................................... 52 5.1 PROJECT I. Identification and characterization of HIRIP3 as a novel histone H2A chaperon........................................................................................................................................... 52 5.1.1 Results ................................................................................................................................. 54 5.1.1.1 H2A/H2B dimers are co-purified with HIRIP3 in vivo .............................................................. 54 5.1.1.2 HIRIP3 interacts with H2A/H2B and H2A.Z/H2B dimers in vitro ............................................ 57 5.1.1.3 HIRIP3 CHZ motif is critical for H2A/H2B interaction ............................................................. 58 5.1.1.4 H2A interacts with HIRIP3 through its alphaC domain ............................................................. 62 5.1.1.5 Structural considerations of HIRIP3 and H2A/H2B interaction ................................................. 63 5.1.1.6 CK2 phosphorylates H2A within eHIRIP3 complex .................................................................. 64 5.1.2 Discussion ............................................................................................................................ 65 5.1.2.1 HIRIP3 interaction with H2A/H2B dimers in vivo and in vitro ................................................. 65 5.1.2.2 Structural basis of HIRIP3 interaction with H2A/H2B dimer .................................................... 66 5.1.2.3 CK2 kinase function within HIRIP3 complex ............................................................................ 67 5.1.2.4 HIRIP3 as a novel H2A/H2B histone chaperone ........................................................................ 67 5.2 PROJECT II. Reconstitution of SRCAP complex functional complex ................................ 68 5.2.1 Results ................................................................................................................................. 71 5.2.1.1 YL1 interacts with TIP49A and TIP49B ATPases ..................................................................... 71 5.2.1.2 TIP49A/B, YL1 and H2A.Z/H2B form a complex in vitro ........................................................ 73 5.2.1.3 SRCAP, TIPA49/TIP49B, YL1 and H2A.Z/H2B is a functional sub-complex within SRCAP complex .................................................................................................................................................. 75 5.2.2 Discussion ............................................................................................................................ 78 5.2.2.1 YL1 interaction with TIP49A and TIP49B ................................................................................. 78 5.2.2.2 TIP49A/B ATPases functions within SRCAP complex ............................................................
Recommended publications
  • Analysis of Gene Expression Data for Gene Ontology
    ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Robert Daniel Macholan May 2011 ANALYSIS OF GENE EXPRESSION DATA FOR GENE ONTOLOGY BASED PROTEIN FUNCTION PREDICTION Robert Daniel Macholan Thesis Approved: Accepted: _______________________________ _______________________________ Advisor Department Chair Dr. Zhong-Hui Duan Dr. Chien-Chung Chan _______________________________ _______________________________ Committee Member Dean of the College Dr. Chien-Chung Chan Dr. Chand K. Midha _______________________________ _______________________________ Committee Member Dean of the Graduate School Dr. Yingcai Xiao Dr. George R. Newkome _______________________________ Date ii ABSTRACT A tremendous increase in genomic data has encouraged biologists to turn to bioinformatics in order to assist in its interpretation and processing. One of the present challenges that need to be overcome in order to understand this data more completely is the development of a reliable method to accurately predict the function of a protein from its genomic information. This study focuses on developing an effective algorithm for protein function prediction. The algorithm is based on proteins that have similar expression patterns. The similarity of the expression data is determined using a novel measure, the slope matrix. The slope matrix introduces a normalized method for the comparison of expression levels throughout a proteome. The algorithm is tested using real microarray gene expression data. Their functions are characterized using gene ontology annotations. The results of the case study indicate the protein function prediction algorithm developed is comparable to the prediction algorithms that are based on the annotations of homologous proteins.
    [Show full text]
  • Identifying Developing Interneurons As a Potential Target for Multiple Genetic 3 Autism Risk Factors in Human and Rodent Forebrain
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.03.446920; this version posted June 3, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 TITLE 2 Identifying developing interneurons as a potential target for multiple genetic 3 autism risk factors in human and rodent forebrain. 4 5 AUTHORS/AFFILIATIONS 6 Yifei Yang1,2, Sam A. Booker1,2, James M. Clegg1,2, Idoia Quintana Urzainqui1,2, 7 Anna Sumera1,2, Zrinko Kozic1,2, Owen Dando1,2, Sandra Martin Lorenzo3, Yann 8 Herault3, Peter C. Kind1,2, David J. Price1,2, Thomas Pratt1,2, * 9 1Simons Initiative for the Developing Brain, 10 2Centre for Discovery Brain Sciences, 11 Hugh Robson Building, Edinburgh Medical School Biomedical Sciences, 12 The University of Edinburgh, Edinburgh, EH8 9XD, United Kingdom. 13 3Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie 14 Moléculaire et Cellulaire, IGBMC, 1 rue Laurent Fries, 67404 Illkirch, France 15 16 CONTACT INFO 17 *Correspondence : [email protected] 18 19 ABSTRACT 20 Autism spectrum condition or ‘autism’ is associated with numerous monogenic and 21 polygenic genetic risk factors including the polygenic 16p11.2 microdeletion. A central 22 question is what neural cells are affected. To systematically investigate we analysed 23 single cell transcriptomes from gestational week (GW) 8-26 human foetal prefrontal 24 cortex and identified a subset of interneurons (INs) first appearing at GW23 with 25 enriched expression of a disproportionately large fraction of risk factor transcripts.
    [Show full text]
  • Autism Multiplex Family with 16P11.2P12.2 Microduplication Syndrome in Monozygotic Twins and Distal 16P11.2 Deletion in Their Brother
    European Journal of Human Genetics (2012) 20, 540–546 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg ARTICLE Autism multiplex family with 16p11.2p12.2 microduplication syndrome in monozygotic twins and distal 16p11.2 deletion in their brother Anne-Claude Tabet1,2,3,4, Marion Pilorge2,3,4, Richard Delorme5,6,Fre´de´rique Amsellem5,6, Jean-Marc Pinard7, Marion Leboyer6,8,9, Alain Verloes10, Brigitte Benzacken1,11,12 and Catalina Betancur*,2,3,4 The pericentromeric region of chromosome 16p is rich in segmental duplications that predispose to rearrangements through non-allelic homologous recombination. Several recurrent copy number variations have been described recently in chromosome 16p. 16p11.2 rearrangements (29.5–30.1 Mb) are associated with autism, intellectual disability (ID) and other neurodevelopmental disorders. Another recognizable but less common microdeletion syndrome in 16p11.2p12.2 (21.4 to 28.5–30.1 Mb) has been described in six individuals with ID, whereas apparently reciprocal duplications, studied by standard cytogenetic and fluorescence in situ hybridization techniques, have been reported in three patients with autism spectrum disorders. Here, we report a multiplex family with three boys affected with autism, including two monozygotic twins carrying a de novo 16p11.2p12.2 duplication of 8.95 Mb (21.28–30.23 Mb) characterized by single-nucleotide polymorphism array, encompassing both the 16p11.2 and 16p11.2p12.2 regions. The twins exhibited autism, severe ID, and dysmorphic features, including a triangular face, deep-set eyes, large and prominent nasal bridge, and tall, slender build. The eldest brother presented with autism, mild ID, early-onset obesity and normal craniofacial features, and carried a smaller, overlapping 16p11.2 microdeletion of 847 kb (28.40–29.25 Mb), inherited from his apparently healthy father.
    [Show full text]
  • Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 As
    cells Article Endoglin Protein Interactome Profiling Identifies TRIM21 and Galectin-3 as New Binding Partners 1, 1, 2, Eunate Gallardo-Vara y, Lidia Ruiz-Llorente y, Juan Casado-Vela y , 3 4 5 6, , María J. Ruiz-Rodríguez , Natalia López-Andrés , Asit K. Pattnaik , Miguel Quintanilla z * 1, , and Carmelo Bernabeu z * 1 Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 28040 Madrid, Spain; [email protected] (E.G.-V.); [email protected] (L.R.-L.) 2 Bioengineering and Aerospace Engineering Department, Universidad Carlos III and Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Leganés, 28911 Madrid, Spain; [email protected] 3 Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain; [email protected] 4 Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), IdiSNA, 31008 Pamplona, Spain; [email protected] 5 School of Veterinary Medicine and Biomedical Sciences, and Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; [email protected] 6 Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas (CSIC), and Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain * Correspondence: [email protected] (M.Q.); [email protected] (C.B.) These authors contributed equally to this work. y Equal senior contribution. z Received: 7 August 2019; Accepted: 7 September 2019; Published: 13 September 2019 Abstract: Endoglin is a 180-kDa glycoprotein receptor primarily expressed by the vascular endothelium and involved in cardiovascular disease and cancer.
    [Show full text]
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]
  • Supp Material.Pdf
    Supplementary Information Estrogen-mediated Epigenetic Repression of Large Chromosomal Regions through DNA Looping Pei-Yin Hsu, Hang-Kai Hsu, Gregory A. C. Singer, Pearlly S. Yan, Benjamin A. T. Rodriguez, Joseph C. Liu, Yu-I Weng, Daniel E. Deatherage, Zhong Chen, Julia S. Pereira, Ricardo Lopez, Jose Russo, Qianben Wang, Coral A. Lamartiniere, Kenneth P. Nephew, and Tim H.-M. Huang S1 Method Immunofluorescence staining Approximately 2,000 mammosphere-derived epithelial cells (MDECs) cells seeded collagen I-coated coverslips were fixed with methanol/acetone for 10 min. After blocking with 2.5% bovine serum albumin (Sigma) for 1 hr, these cells were incubated with anti-ESR1 antibody (Santa Cruz) overnight at 4˚C. The corresponding secondary FITC-conjugated antibody was applied followed by DAPI staining (Molecular Probes) for the nuclei. Photographs were captured by Zeiss fluorescence microscopy (Zeiss). The percentages of ESR1 subcellular localization were calculated in ten different optical fields (~10 cells per field) by two independent researchers. References Carroll, J.S., Meyer, C.A., Song, J., Li, W., Geistlinger, T.R., Eeckhoute, J., Brodsky, A.S., Keeton, E.K., Fertuck, K.C., Hall, G.F., et al. 2006. Genome-wide analysis of estrogen receptor binding sites. Nat. Genet. 38: 1289-1297. Neve, R.M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F.L., Fevr, T., Clark, L., Bayani, N., Coppe, J.P., Tong, F., et al. 2006. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell 10: 515-527. S2 Hsu et al. Supplementary Information A Figure S1. Integrative mapping of large genomic regions subjected to ERα-mediated epigenetic repression.
    [Show full text]
  • Oas1b-Dependent Immune Transcriptional Profiles of West Nile
    MULTIPARENTAL POPULATIONS Oas1b-dependent Immune Transcriptional Profiles of West Nile Virus Infection in the Collaborative Cross Richard Green,*,† Courtney Wilkins,*,† Sunil Thomas,*,† Aimee Sekine,*,† Duncan M. Hendrick,*,† Kathleen Voss,*,† Renee C. Ireton,*,† Michael Mooney,‡,§ Jennifer T. Go,*,† Gabrielle Choonoo,‡,§ Sophia Jeng,** Fernando Pardo-Manuel de Villena,††,‡‡ Martin T. Ferris,†† Shannon McWeeney,‡,§,** and Michael Gale Jr.*,†,1 *Department of Immunology and †Center for Innate Immunity and Immune Disease (CIIID), University of Washington, § Seattle, Washington 98109, ‡OHSU Knight Cancer Institute, Division of Bioinformatics and Computational Biology, Department of Medical Informatics and Clinical Epidemiology, and **Oregon Clinical and Translational Research Institute, Oregon Health & Science University, Portland, Oregon 97239, ††Department of Genetics and ‡‡Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27514 ABSTRACT The oligoadenylate-synthetase (Oas) gene locus provides innate immune resistance to virus KEYWORDS infection. In mouse models, variation in the Oas1b gene influences host susceptibility to flavivirus infection. Oas However, the impact of Oas variation on overall innate immune programming and global gene expression flavivirus among tissues and in different genetic backgrounds has not been defined. We examined how Oas1b acts viral infection in spleen and brain tissue to limit West Nile virus (WNV) susceptibility and disease across a range of innate immunity genetic backgrounds. The laboratory founder strains of the mouse Collaborative Cross (CC) (A/J, C57BL/6J, multiparental 129S1/SvImJ, NOD/ShiLtJ, and NZO/HlLtJ) all encode a truncated, defective Oas1b, whereas the three populations wild-derived inbred founder strains (CAST/EiJ, PWK/PhJ, and WSB/EiJ) encode a full-length OAS1B pro- Multi-parent tein.
    [Show full text]
  • Signaling Pathway Activities Improve Prognosis for Breast Cancer Yunlong Jiao1,2,3,4, Marta R
    bioRxiv preprint doi: https://doi.org/10.1101/132357; this version posted April 29, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Signaling Pathway Activities Improve Prognosis for Breast Cancer Yunlong Jiao1,2,3,4, Marta R. Hidalgo5, Cankut Çubuk6, Alicia Amadoz5, José Carbonell- Caballero5, Jean-Philippe Vert1,2,3,4, and Joaquín Dopazo6,7,8,* 1MINES ParisTech, PSL Research University, Centre for Computational Biology, 77300 Fontainebleau, France; 2Institut Curie, 75248 Paris Cedex, Franc; 3INSERM, U900, 75248 Paris Cedex, France; 4Ecole Normale Supérieure, Department of Mathematics and their Applications, 75005 Paris, France; 5 Computational Genomics Department, Centro de Investigación Príncipe Felipe (CIPF), 46012 Valencia, Spain; 6Clinical Bioinformatics Research Area, Fundación Progreso y Salud (FPS), Hospital Virgen del Rocío, 41013, Sevilla, Spain; 7Functional Genomics Node (INB), FPS, Hospital Virgen del Rocío, 41013 Sevilla, Spain; 8 Bioinformatics in Rare Diseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), FPS, Hospital Virgen del Rocío, 41013, Sevilla, Spain *To whom correspondence should be addressed. Abstract With the advent of high-throughput technologies for genome-wide expression profiling, a large number of methods have been proposed to discover gene-based signatures as biomarkers to guide cancer prognosis. However, it is often difficult to interpret the list of genes in a prognostic signature regarding the underlying biological processes responsible for disease progression or therapeutic response. A particularly interesting alternative to gene-based biomarkers is mechanistic biomarkers, derived from signaling pathway activities, which are known to play a key role in cancer progression and thus provide more informative insights into cellular functions involved in cancer mechanism.
    [Show full text]
  • Associated 16P11.2 Deletion in Drosophila Melanogaster
    ARTICLE DOI: 10.1038/s41467-018-04882-6 OPEN Pervasive genetic interactions modulate neurodevelopmental defects of the autism- associated 16p11.2 deletion in Drosophila melanogaster Janani Iyer1, Mayanglambam Dhruba Singh1, Matthew Jensen1,2, Payal Patel 1, Lucilla Pizzo1, Emily Huber1, Haley Koerselman3, Alexis T. Weiner 1, Paola Lepanto4, Komal Vadodaria1, Alexis Kubina1, Qingyu Wang 1,2, Abigail Talbert1, Sneha Yennawar1, Jose Badano 4, J. Robert Manak3,5, Melissa M. Rolls1, Arjun Krishnan6,7 & 1234567890():,; Santhosh Girirajan 1,2,8 As opposed to syndromic CNVs caused by single genes, extensive phenotypic heterogeneity in variably-expressive CNVs complicates disease gene discovery and functional evaluation. Here, we propose a complex interaction model for pathogenicity of the autism-associated 16p11.2 deletion, where CNV genes interact with each other in conserved pathways to modulate expression of the phenotype. Using multiple quantitative methods in Drosophila RNAi lines, we identify a range of neurodevelopmental phenotypes for knockdown of indi- vidual 16p11.2 homologs in different tissues. We test 565 pairwise knockdowns in the developing eye, and identify 24 interactions between pairs of 16p11.2 homologs and 46 interactions between 16p11.2 homologs and neurodevelopmental genes that suppress or enhance cell proliferation phenotypes compared to one-hit knockdowns. These interac- tions within cell proliferation pathways are also enriched in a human brain-specific network, providing translational relevance in humans. Our study indicates a role for pervasive genetic interactions within CNVs towards cellular and developmental phenotypes. 1 Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA. 2 Bioinformatics and Genomics Program, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • A Rare Duplication on Chromosome 16P11.2 Is Identified in Patients with Psychosis in Alzheimer’S Disease
    A Rare Duplication on Chromosome 16p11.2 Is Identified in Patients with Psychosis in Alzheimer’s Disease Xiaojing Zheng1,7*, F. Yesim Demirci2, M. Michael Barmada2, Gale A. Richardson3,6, Oscar L. Lopez4,5, Robert A. Sweet3,4,5, M. Ilyas Kamboh2,3,5, Eleanor Feingold1,2 1 Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America, 2 Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America, 3 Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America, 4 Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America, 5 VISN 4 Mental Illness Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America, 6 Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America, 7 Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, United States of America Abstract Epidemiological and genetic studies suggest that schizophrenia and autism may share genetic links. Besides common single nucleotide polymorphisms, recent data suggest that some rare copy number variants (CNVs) are risk factors for both disorders. Because we have previously found that schizophrenia and psychosis in Alzheimer’s disease (AD+P) share some genetic risk, we investigated whether CNVs reported in schizophrenia and autism are also linked to AD+P. We searched for CNVs associated with AD+P in 7 recurrent CNV regions that have been previously identified across autism and schizophrenia, using the Illumina HumanOmni1-Quad BeadChip.
    [Show full text]
  • Miz1 Is Required to Maintain Autophagic Flux
    ARTICLE Received 3 Apr 2013 | Accepted 3 Sep 2013 | Published 3 Oct 2013 DOI: 10.1038/ncomms3535 Miz1 is required to maintain autophagic flux Elmar Wolf1,*, Anneli Gebhardt1,*, Daisuke Kawauchi2, Susanne Walz1, Bjo¨rn von Eyss1, Nicole Wagner3, Christoph Renninger3, Georg Krohne1, Esther Asan3, Martine F. Roussel2 & Martin Eilers1,4 Miz1 is a zinc finger protein that regulates the expression of cell cycle inhibitors as part of a complex with Myc. Cell cycle-independent functions of Miz1 are poorly understood. Here we use a Nestin-Cre transgene to delete an essential domain of Miz1 in the central nervous system (Miz1DPOZNes). Miz1DPOZNes mice display cerebellar neurodegeneration characterized by the progressive loss of Purkinje cells. Chromatin immunoprecipitation sequencing and biochemical analyses show that Miz1 activates transcription upon binding to a non-palin- dromic sequence present in core promoters. Target genes of Miz1 encode regulators of autophagy and proteins involved in vesicular transport that are required for autophagy. Miz1DPOZ neuronal progenitors and fibroblasts show reduced autophagic flux. Consistently, polyubiquitinated proteins and p62/Sqtm1 accumulate in the cerebella of Miz1DPOZNes mice, characteristic features of defective autophagy. Our data suggest that Miz1 may link cell growth and ribosome biogenesis to the transcriptional regulation of vesicular transport and autophagy. 1 Theodor Boveri Institute, Biocenter, University of Wu¨rzburg, Am Hubland, 97074 Wu¨rzburg, Germany. 2 Department of Tumor Cell Biology, MS#350, Danny Thomas Research Center, 5006C, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, USA. 3 Institute for Anatomy and Cell Biology, University of Wu¨rzburg, Koellikerstrasse 6, 97070 Wu¨rzburg, Germany. 4 Comprehensive Cancer Center Mainfranken, Josef-Schneider-Strasse 6, 97080 Wu¨rzburg, Germany.
    [Show full text]