Possible Interbreeding in Late Italian Neanderthals?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hausein, an Aniatomiiist at the U'niversity of Bonni
I 0 5 Early Research on Pleistocene Races in Europe: Putting Neandertal Man's Head Together Stephen R. Holtzman' The validity of putative associations of disarticu- A most remarkable peculiarity is at once obvious in the lated hominid fossil remains has been a recurrent extra-ordinary development of the frontal sinuses, owing to which the superciliary ridges, which coalesce theme in the history of interpretations of human completely in the middle, are rendered so prominent, evolution. The debate over the supposed affinity, and that the frontal bone exhibits a considerable hollow or the ultimate demonstration of the lack of association, depression above, or rather behind them, whilst a of the mandible and calvarial fragments from deep depression is also formed in the situation of the Piltdown is the most notorious example. Simons' root of the nose. The forehead is narrow and low ... (1961) more recent taxonomic association of (trans. in Busk 1861:156). "Bramapithecus" and "Kenyapithecus" with All the remains were "characterized by their unusual Ramapithecus in another controversial example. thickness, and the great development of all the eleva- Perhaps the earliest case of an error of association is tions and depressions for the attachment of muscles" that of the Neandertal calvaria and the La Naulette (Ibid: 158). mandible, now recognized as belonging to the same One of the difficulties with the man from Neander- taxon, Homo sapiens neanderthalensis. Studies dealing tal was the question of his antiquity. It was not possible with the affinities of these two specimens took place to date with assurance the remains, as they were not durinig the debate betwseen scholars favoring dar- clearly associated with animal remains. -
Endocranial Volume and Brain Growth in Immature Neandertals
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/40853229 Endocranial volume and brain growth in immature Neandertals Article in Periodicum Biologorum · January 2007 Source: OAI CITATIONS READS 23 211 2 authors: Hélène Coqueugniot Jean-Jacques Hublin French National Centre for Scientific Research Max Planck Institute for Evolutionary Anthropology 198 PUBLICATIONS 1,237 CITATIONS 515 PUBLICATIONS 20,418 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Etude anthropologique de La Granède (Millau) View project Micro-CT Analysis of Interglobular Dentine View project All content following this page was uploaded by Hélène Coqueugniot on 04 July 2014. The user has requested enhancement of the downloaded file. PERIODICUM BIOLOGORUM UDC 57:61 VOL. 109, No 4, 379–385, 2007 CODEN PDBIAD ISSN 0031-5362 Original scientific paper Endocranial Volume and Brain Growth in Immature Neandertals Abstract HÉLÈNE COQUEUGNIOT1,2 JEAN-JACQUES HUBLIN1 Microstructural studies have suggested that an extended period of growth 1 was absent in representatives of Homo erectus, and that Neandertals Department of Human Evolution reached adulthood significantly more rapidly than modern humans. In Max Planck Institute for Evolutionary Anthropology addition to general rate of growth, a prolonged postnatal period of brain Deutscher Platz 6 development allows humans to develop complex cognitive and social skills. 04103 Leipzig, Germany Conditions in brain growth similar to those observed in extant humans were E-mail: [email protected] not established in the first representatives of Homo erectus. To assess the 2UMR 5199 – PACEA, Laboratoire degree of secondary altriciality reached by Neandertals, we examined the d’Anthropologie most complete skulls available for immature Neandertal specimens. -
Upper Pleistocene Human Remains from Vindija Cave, Croatia, Yugoslavia
AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 54~499-545(1981) Upper Pleistocene Human Remains From Vindija Cave, Croatia, Yugoslavia MILFORD H. WOLPOFF, FRED H. SMITH, MIRKO MALEZ, JAKOV RADOVCIC, AND DARKO RUKAVINA Department of Anthropology, University of Michigan, Ann Arbor, Michigan 48109 (MH.W.1,Department of Anthropology, University of Tennessee, Kmxuille, Tennessee 37916 (FHS.),and Institute for Paleontology and Quaternary Geology, Yugoslav Academy of Sciences and Arts, 41000 Zagreb, Yugoslavia (M.M., J.R., D.R.) KEY WORDS Vindija, Neandertal, South Central Europe, Modern Homo sapiens origin, Evolution ABSTRACT Human remains excavated from Vindija cave include a large although fragmentary sample of late Mousterian-associated specimens and a few additional individuals from the overlying early Upper Paleolithic levels. The Mousterian-associated sample is similar to European Neandertals from other regions. Compared with earlier Neandertals from south central Europe, this sam- ple evinces evolutionary trends in the direction of Upper Paleolithic Europeans. Compared with the western European Neandertals, the same trends can be demon- strated, although the magnitude of difference is less, and there is a potential for confusing temporal with regional sources of variation. The early Upper Paleo- lithic-associated sample cannot be distinguished from the Mousterian-associated hominids. We believe that this site provides support for Hrdlicka’s “Neandertal phase” of human evolution, as it was originally applied in Europe. The Pannonian Basin and surrounding val- the earliest chronometrically dated Upper leys of south central Europe have yielded a Paleolithic-associated hominid in Europe large and significant series of Upper Pleisto- (Smith, 1976a). cene fossil hominids (e.g. Jelinek, 1969) as well This report presents a detailed comparative as extensive evidence of their cultural behavior description of a sample of fossil hominids re- (e.g. -
Nasal Floor Variation Among Eastern Eurasian Pleistocene Homo Xiu-Jie WU1, Scott D
ANTHROPOLOGICAL SCIENCE Vol. 120(3), 217–226, 2012 Nasal floor variation among eastern Eurasian Pleistocene Homo Xiu-Jie WU1, Scott D. MADDUX2, Lei PAN1,3, Erik TRINKAUS4* 1Key Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, People’s Republic of China 2Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212, USA 3Graduate University of the Chinese Academy of Sciences, Beijing 100049, People’s Republic of China 4Department of Anthropology, Washington University, St Louis, MO 63130, USA Received 28 March 2012; accepted 9 July 2012 Abstract A bi-level nasal floor, although present in most Pleistocene and recent human samples, reaches its highest frequency among the western Eurasian Neandertals and has been considered a fea- ture distinctive of them. Early modern humans, in contrast, tend to feature a level (or sloping) nasal floor. Sufficiently intact maxillae are rare among eastern Eurasian Pleistocene humans, but several fos- sils provide nasal floor configurations. The available eastern Eurasian Late Pleistocene early modern humans have predominantly level nasal floors, similar to western early modern humans. Of the four observable eastern Eurasian archaic Homo maxillae (Sangiran 4, Chaoxian 1, Xujiayao 1, and Chang- yang 1), three have the bi-level pattern and the fourth is scored as bi-level/sloping. It therefore appears that bi-level nasal floors were common among Pleistocene archaic humans, and a high frequency of them is not distinctive of the Neandertals. Key words: noses, maxilla, Asia, palate, Neandertal Introduction dominate with the bi-level configuration being present in ≤10% in all but a sub-Saharan African “Bantu” sample In his descriptions of the Shanidar Neandertal crania, (Table 1). -
Bibliography
Bibliography Many books were read and researched in the compilation of Binford, L. R, 1983, Working at Archaeology. Academic Press, The Encyclopedic Dictionary of Archaeology: New York. Binford, L. R, and Binford, S. R (eds.), 1968, New Perspectives in American Museum of Natural History, 1993, The First Humans. Archaeology. Aldine, Chicago. HarperSanFrancisco, San Francisco. Braidwood, R 1.,1960, Archaeologists and What They Do. Franklin American Museum of Natural History, 1993, People of the Stone Watts, New York. Age. HarperSanFrancisco, San Francisco. Branigan, Keith (ed.), 1982, The Atlas ofArchaeology. St. Martin's, American Museum of Natural History, 1994, New World and Pacific New York. Civilizations. HarperSanFrancisco, San Francisco. Bray, w., and Tump, D., 1972, Penguin Dictionary ofArchaeology. American Museum of Natural History, 1994, Old World Civiliza Penguin, New York. tions. HarperSanFrancisco, San Francisco. Brennan, L., 1973, Beginner's Guide to Archaeology. Stackpole Ashmore, w., and Sharer, R. J., 1988, Discovering Our Past: A Brief Books, Harrisburg, PA. Introduction to Archaeology. Mayfield, Mountain View, CA. Broderick, M., and Morton, A. A., 1924, A Concise Dictionary of Atkinson, R J. C., 1985, Field Archaeology, 2d ed. Hyperion, New Egyptian Archaeology. Ares Publishers, Chicago. York. Brothwell, D., 1963, Digging Up Bones: The Excavation, Treatment Bacon, E. (ed.), 1976, The Great Archaeologists. Bobbs-Merrill, and Study ofHuman Skeletal Remains. British Museum, London. New York. Brothwell, D., and Higgs, E. (eds.), 1969, Science in Archaeology, Bahn, P., 1993, Collins Dictionary of Archaeology. ABC-CLIO, 2d ed. Thames and Hudson, London. Santa Barbara, CA. Budge, E. A. Wallis, 1929, The Rosetta Stone. Dover, New York. Bahn, P. -
Science Journals
RESEARCH ◥ that paper, and the average of the listed cranial TECHNICAL COMMENT capacities should have been 1468.7 cc, not 1494 cc. Additionally, using values from Holloway et al.(7) for those Neandertals would result in an average PALEOANTHROPOLOGY cranial capacity of 1438.3 cc. A third value of 1498 cc, based on Holloway et al., is used to generate the consensus average (1). In Holloway et al., an aver- Comment on “The growth pattern age for Homo sapiens neanderthalensis is reported as 1487.5 ml in appendix I and 1427.2 ml in appendix II. The 1427.2-ml value is almost identical of Neandertals, reconstructed (1428 ml) to the average of reported adult values in the text of Holloway et al. However, Holloway et al. from a juvenile skeleton from also attribute fossils typically assigned to Homo sapiens [Jebel Ihroud (n =2)andSkhul(n =4)]to El Sidrón (Spain)” Neandertals. When these are removed, the average Neandertal adult cranial capacity in Holloway et al. Jeremy M. DeSilva is 1414.8 ml. Given these problems with the values used to generate the consensus average of cranial Rosas et al. (Reports, 22 September 2017, p. 1282) calculate El Sidrón J1 to have capacity in adult Neandertals, it is necessary to reached only 87.5% of its adult brain size. This finding is based on an overestimation recalculate the likely percentage of adult brain size achieved by the El Sidrón juvenile. of Neandertal brain size. Pairwise comparisons with a larger sample of Neandertal Downloaded from fossils reveal that it is unlikely that the brain of El Sidrón would have grown When all adult crania assigned to Neandertals n appreciably larger. -
Anthropology
CALIFOR!:HA STATE UNIVERSI'fY, NO:R'l'HRIDGE 'l'HE EVOLUTIONARY SCHENES 0!.'' NEANDER.THAL A thesis su~nitted in partial satisfaction of tl:e requirements for the degree of Naste.r of A.rts Anthropology by Sharon Stacey Klein The Thesis of Sharon Stacey Klein is approved: Dr·,~ Nike West. - Dr. Bruce Gelvin, Chair California s·tate University, Northridge ii ACKNOWLEDGEMENTS ·There are many people I would like to thank. Firs·t, the members of my corr.mi ttee who gave me their guidance and suggestions. Second, rny family and friends who supported me through this endea7cr and listened to my constant complaining. Third, the people in my office who allowed me to use my time to complete ·this project. Specifically, I appreciate the proof-reading done by my mother and the French translations done by Mary Riedel. ii.i TABLE OF' CONTENTS PAGE PRELIMINA:H.Y MATEIUALS : Al")stra-:-:t vi CHAP'I'ERS: I. Introduction 1 II. Methodology and Materials 4 III. Classification of Neanderthals 11 Species versus Subspecies Definitions of Neanderthals 16 V. The Pre-sapiens Hypothesis .i9 VI. The Unilinear Hypothesis 26 Horphological Evidence Transi tiona.l Sp.. ::;:cimens T'ool Complexes VII. The Pre-Neanderthal Hypothesis 58 Morphological Evidence Spectrum Hypothesis "Classic'1 Neanderthal's Adaptations Transitional Evidence Tool Complexes VIII. Sumnary and Conclusion 90 Heferences Cited 100 1. G~<ological and A.rchaeoloqical 5 Subdivisions of the P1eistoce!1e 2. The Polyphyletic Hypothesis 17 3. The Pre-sapiens Hypothesis 20 4. The UnilinPar Hypothesis 27 iv FIGUHES: P.Z\GE 5. Size Comparisons of Neanderthal 34 and Australian Aborigine Teeth 6. -
The First Neanderthal Remains from an Open-Air Middle Palaeolithic Site In
www.nature.com/scientificreports OPEN The first Neanderthal remains from an open-air Middle Palaeolithic site in the Levant Received: 30 January 2017 Ella Been1,2, Erella Hovers3,4, Ravid Ekshtain3, Ariel Malinski-Buller5, Nuha Agha6, Alon Accepted: 8 May 2017 Barash7, Daniella E. Bar-Yosef Mayer8,9, Stefano Benazzi10,11, Jean-Jacques Hublin11, Lihi Published: xx xx xxxx Levin2, Noam Greenbaum12, Netta Mitki3, Gregorio Oxilia13,10, Naomi Porat 14, Joel Roskin15,16, Michalle Soudack17,18, Reuven Yeshurun19, Ruth Shahack-Gross15, Nadav Nir3, Mareike C. Stahlschmidt20, Yoel Rak2 & Omry Barzilai6 The late Middle Palaeolithic (MP) settlement patterns in the Levant included the repeated use of caves and open landscape sites. The fossil record shows that two types of hominins occupied the region during this period—Neandertals and Homo sapiens. Until recently, diagnostic fossil remains were found only at cave sites. Because the two populations in this region left similar material cultural remains, it was impossible to attribute any open-air site to either species. In this study, we present newly discovered fossil remains from intact archaeological layers of the open-air site ‘Ein Qashish, in northern Israel. The hominin remains represent three individuals: EQH1, a nondiagnostic skull fragment; EQH2, an upper right third molar (RM3); and EQH3, lower limb bones of a young Neandertal male. EQH2 and EQH3 constitute the first diagnostic anatomical remains of Neandertals at an open-air site in the Levant. The optically stimulated luminescence ages suggest that Neandertals repeatedly visited ‘Ein Qashish between 70 and 60 ka. The discovery of Neandertals at open-air sites during the late MP reinforces the view that Neandertals were a resilient population in the Levant shortly before Upper Palaeolithic Homo sapiens populated the region. -
Paleoanthropology of the Balkans and Anatolia, Vertebrate Paleobiology and Paleoanthropology, DOI 10.1007/978-94-024-0874-4 326 Index
Index A Bajloni’s calotte BAJ, 17, 19–20 Accretion model of Neanderthal evolution, 29 Balanica Acculturation, 164–165, 253 BH-1, 15, 24–29, 309 Acheulean, 80, 148, 172, 177, 201, 205, 306, 308, 310 hominin, 15–17, 29 large flake, 129, 132, 218 Mala, vi, 16, 24, 30, 139–140, 144–145, lithic artifacts, 80 148, 309–311 Lower, 308 Velika, 24, 36, 139–140, 144–145, 148 Middle, 308 Balıtepe, 214, 223–224 Admixture, vi, 29, 258 Balkan, v, 3, 139, 159, 171, 187, 218, 229, 274, 282, 303 Neanderthal, 51–64 and Anatolia, 308–310 Adriatic, 46, 154, 157, 162, 164–166 Central, vi, 3, 15–30, 139–150 Aegean, 29–30, 74–76, 116, 119, 121–122, 134–135, 148, 213, implications for earliest settlement of Europe, 220–221, 261, 283, 305, 316 187–210 Aizanoi, 221 Mountains, 69, 187 Akçeşme, 214, 223–224 and neighbouring regions, 229–261 Aktaş, 214, 217 Peninsula, 51, 70, 74, 119, 134, 150, 187, 201, 208 Alluvial plain, 125, 314 Southern, 3, 12, 47, 275 Alykes, 270, 272 Bañolas mandible, 28 Amărăști, 176–177, 181 Basalt, 201, 217–218, 220, 284 Anatolia (Asia Minor), 3, 79–80, 308–310 Basins, 51, 74, 99, 119, 139, 213, 281, 303 Central (Region), 128, 132, 134, 213, 217–218, 220, 223, 313 Anagni, 306 Eastern (Region), 217 Apennine, 310, 314 and hominin dispersals, 213–225 Beni Fouda, 307 North, 120 Čačak-Kraljevo, 140 Southeastern (Region), 215, 217, 220, 223 Carpathian, 51, 148 west, 119, 121 Denizli, 83 Anatomically modern human, 23, 36, 41, 44, 46, 55–56, 62, 70, 72, evolution on archaeological distributions, 313–317 76, 95, 111, 153, 165–166, 229 Grevena, 269, 272 Apidima, 4, 7–8, 11–12, 96, 310–311 Kalloni, 121–122 Apolakkia, 270–271 Megalopolis, 9, 12, 134–135, 298 Apollonia, 74, 270, 273, 276–277, 286–287 Mygdonia, 12, 273 Arago, 10, 25, 29, 56, 59, 87–90, 149, 312 Niš, 139, 146 Archaeological pattern, 303, 305 Pannonian, 15, 23, 319 Areopolis, 97 Thessalian, 310 Asprochaliko, 95, 148, 238–239, 253, 260 Venosa, 306 Assimilation model, 162 Belen Tepe, 221–222, 225 Atapuerca, 28, 276, 285, 287, 312, 318 Benkovski, 187, 205–209, 309 Sima de los Huesos, 27–29, 304, 306–307 BH-1. -
Du Trou Al'wesse, Modave
L e site préhistorique du Trou Al’Wesse, Modave REBECCA MILLER, MARCEL OTTE & JOHN STEWART Publié dans le cadre de l’Année de l’Archéologie en Wallonie « Archéo 2014 » Édité par Professeur Marcel OTTE Université de Liège, Belgique – Service de Préhistoire Tél.: +32/4/366.54.76 – Fax.: +32/4/366.55.51 Email: [email protected] – Web: web.philo.ulg.ac.be/prehist/ Illustrations de couverture : ©Service de Préhistoire, Université de Liège, Site de fouilles du Trou Al’Wesse, Modave Place du XX Août 7, bât. A1 – B-4000 Liège – Belgique Photographie aérienne du Site de fouilles Crédits photographiques : Conception graphique / Mise en page : ©Service de Préhistoire de l’Université de Liège ©Mary ÉTIENNE, Collaboratrice scientifique, ULg ©John Stewart Tél.: +32/4/366.58.07 – Fax.: +32/4/366.55.51 ©Wikimedia Common Email: [email protected] – Web: web.philo.ulg.ac.be/prehist/ D/2014/.../... – ISBN ... Tous droits réservés – Reproduction interdite sans autorisation L e site préhistorique du Trou Al’Wesse, Modave REBECCA MILLER, MARCEL OTTE & JOHN STEWART À l’aube de son Histoire, notre Royaume chercha à définir et à comprendre ses origines. Ce furent aussi les débuts de la Pré- histoire elle-même, science pionnière en Belgique. En 1863, Cau- martin, dans le récit d’une promenade le long du Hoyoux, donna une description sommaire de la grotte qui venait d’être découverte (« il y a quelques années ») en recoupant des taillis. À ce moment, la grotte, qui n’avait « jamais été explorée à fond », était encore presque entièrement comblée par les sédiments. -
The Neandertal Lower Right Deciduous Second Molar from Trou De L•Abime
Journal of Human Evolution 58 (2010) 56–67 Contents lists available at ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol The Neandertal lower right deciduous second molar from Trou de l’Abıˆme at Couvin, Belgium Michel Toussaint a,*, Anthony J. Olejniczak b, Sireen El Zaatari b, Pierre Cattelain c, Damien Flas d, Claire Letourneux b,Ste´phane Pirson e a Direction de l’Arche´ologie, Service Public de Wallonie, 1 rue des Brigades d’Irlande, B-5100 Namur, Belgium b Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, D-04103 Leipzig, Germany c Muse´e du Malgre´-Tout and CEDARC, rue de la Gare, 28, B-5670 Treignes, Belgium d Muse´es royaux d’Art et d’Histoire, parc du Cinquantenaire, B-1000 Brussels, Belgium e Direction de l’Arche´ologie, Service Public de Wallonie, 1 rue des Brigades d’Irlande, B-5100 Namur and Royal Belgian Institute of Natural Sciences, 29 rue Vautier, B-1000 Brussels, Belgium article info abstract Article history: A human lower right deciduous second molar was discovered in 1984 at the entrance of Trou de Received 13 June 2008 l’Abıˆme at Couvin (Belgium). In subsequent years the interpretation of this fossil remained difficult for Accepted 11 August 2009 various reasons: (1) the lack of taxonomically diagnostic elements which would support its attribution to either Homo (sapiens) neanderthalensis or H. s. sapiens; (2) the absence of any reliable chronostratigraphic Keywords: interpretation of the sedimentary sequence of the site; (3) the contradiction between archaeological Middle Palaeolithic interpretations, which attributed the lithic industry to a transitional facies between the Middle and Early Enamel thickness Upper Palaeolithic, and the radiocarbon date of 46,820 Æ 3,290 BP obtained from animal bone remains Neandertals Couvin associated with the tooth and the flint tools. -
Assessing Relationships Between Human Adaptive Responses and Ecology Via Eco-Cultural Niche Modeling William E
Assessing relationships between human adaptive responses and ecology via eco-cultural niche modeling William E. Banks To cite this version: William E. Banks. Assessing relationships between human adaptive responses and ecology via eco- cultural niche modeling. Archaeology and Prehistory. Universite Bordeaux 1, 2013. hal-01840898 HAL Id: hal-01840898 https://hal.archives-ouvertes.fr/hal-01840898 Submitted on 11 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thèse d'Habilitation à Diriger des Recherches Université de Bordeaux 1 William E. BANKS UMR 5199 PACEA – De la Préhistoire à l'Actuel : Culture, Environnement et Anthropologie Assessing Relationships between Human Adaptive Responses and Ecology via Eco-Cultural Niche Modeling Soutenue le 14 novembre 2013 devant un jury composé de: Michel CRUCIFIX, Chargé de Cours à l'Université catholique de Louvain, Belgique Francesco D'ERRICO, Directeur de Recherche au CRNS, Talence Jacques JAUBERT, Professeur à l'Université de Bordeaux 1, Talence Rémy PETIT, Directeur de Recherche à l'INRA, Cestas Pierre SEPULCHRE, Chargé de Recherche au CNRS, Gif-sur-Yvette Jean-Denis VIGNE, Directeur de Recherche au CNRS, Paris Table of Contents Summary of Past Research Introduction ..................................................................................................................