Than Digital Dirt: ​ ​ ​ ​ ​ ​ Preserving Malware in Archives, Museums, and Libraries ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​

Total Page:16

File Type:pdf, Size:1020Kb

Than Digital Dirt: ​ ​ ​ ​ ​ ​ Preserving Malware in Archives, Museums, and Libraries ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ More Than Digital Dirt: ​ ​ ​ ​ ​ ​ Preserving Malware in Archives, Museums, and Libraries ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ by Jonathan Farbowitz ​ ​ A thesis submitted in partial fulfillment ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ of the requirements for the degree of ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Master of Arts ​ ​ ​ ​ Moving Image Archiving and Preservation Program ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Department of Cinema Studies ​ ​ ​ ​ ​ ​ New York University ​ ​ ​ ​ May 2016 ​ ​ 1 Table of Contents ​ ​ ​ ​ Chapter 1: Why Collect Malware? 2 ​ ​ ​ ​ ​ ​ ​ ​ Chapter 2: A Brief History of Malware 29 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Chapter 3: A Series of Inaccurate Analogies 54 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Chapter 4: A Gap in Institutional Practice 60 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Chapter 5: Malware Preservation Strategies and Challenges 73 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Chapter 6: Metadata for Malware 100 ​ ​ ​ ​ ​ ​ ​ ​ Chapter 7: Proof of Concept — Providing Access to Malware 109 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Chapter 8: Risk Assessment Considerations for Storage and Access 119 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Chapter 9: Further Questions and Research 130 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Acknowledgements 135 Sources Consulted 136 ​ ​ 2 Chapter 1: Why Collect Malware?1 ​ ​ ​ ​ ​ ​ ​ ​ Computer viruses are almost as old as personal computers themselves, and their ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ evolution was only hastened by the birth of the internet. Within each code is a story about ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ its author, about the time it was written, and about the state of computing when it ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ wrought havoc upon our hard drives. —Attila Nagy, “14 Infamous Computer Virus ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Snippets That Trace a History of Havoc” ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ I want to talk about the problem of ensuring that this new medium will have a history, ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ one that future scholars can write about critically. —Henry Lowood, “Shall We Play a ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Game” This project discusses a multitude of concerns and challenges in the collection, ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ preservation, and exhibition of malware and malware-infected digital artefacts for historical and ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ cultural study. Malware is much more than a curiosity or an annoyance to be dispensed with and ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ this thesis will reveal many of the narratives that malware presents in the history of computing ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ and the internet. ​ ​ ​ ​ Despite (or perhaps because of) its ubiquity online and on individual computers, malware ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ has been largely ignored as a potential collection item within libraries, archives, and museums. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Critically, this thesis seeks to develop a more nuanced discussion about how cultural heritage ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ institutions should regard malware. These institutions must understand how malware infections ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ affect their workflows for processing born-digital artefacts like hard drives and floppy disks. In ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ addition, some cultural heritage institutions ought to view malware as a potential collection item. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ While Henry Lowood’s statement above refers to the preservation of video games, along similar ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ lines, I want to ensure that the medium of malware “will have a history.” ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 1 Portions of this thesis have been adapted from my previous paper, Preserving Malware: A Case Study of the ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ WANK Worm. ​ ​ ​ 3 This work serves as a preliminary blueprint for future research and analysis, and should ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ not be taken as conclusive on the topics of malware collecting or best practices for malware ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ preservation. My research focuses predominantly on computer worms and viruses; however, I ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ will discuss other kinds of malware, including backdoors, ransomware, and spyware where ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ relevant. A cultural heritage institution intentionally collecting and preserving malware could ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ provide immense benefits to scholars in the humanities and sciences as well as the public at ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ large. However, in my research, I have not yet encountered a cultural heritage institution in the ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ United States that is committed to systematically collecting and preserving a historical sample of ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ viruses, worms, or any other kind of malware. Computer and technology museums range from ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ not collecting any malware at all, to just beginning to address the idea.2 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Through their exhibitions and collections, technology museums and other institutions that ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ host exhibits on the history of computing tend to present a narrative of linear progress in the ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ development of software and other digital technologies. These narratives often lionize ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ individuals, software companies, or hardware manufacturers. However, these institutions could ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ present the full spectrum of how technology is used and exploited by people throughout the ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ world, particularly in ways unintended by hardware or software companies—they could make ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 2 Chris Avram, “Re: Research on Malware,” March 2, 2015. While the Computer History Museum in Mountain ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ View, California has several editions of antivirus software in its collection, the only born-digital malware artefact ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ listed in its public catalog is an original disk that contains the source code for the Morris Worm (1988). However, ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ the museum has books as well as video documentation of lectures related to malware. Among the few cultural ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ heritage institutions that hold items related to malware, The Museum of Modern Art has a copy of the Newton ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ “Virus,” created by the Troika art collective, in its architecture and design collection. However, Newton is somewhat ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ of a “hoax virus.” It takes a screenshot of a user’s desktop in order to mimic the desktop icons falling, but has no ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ other effects and does not replicate like a virus. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ 4 room for exploring uses of computing considered deviant or antisocial, or where anonymous ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ individuals or groups are responsible, such as malware programming. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Computer security and antivirus companies as well as governmental organizations save ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ malware, but these collections have not been widely accessible and likely do not have the kind of ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ curation and attention to the needs of humanities and social science researchers that cultural ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ heritage institutions could provide. Accessing these collections can also be challenging. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Computer security companies and governments also have no mandate for the long-term ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ preservation of these collections or to collect related contextual or ancillary materials (for ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ example, articles about malware, websites that discuss it, screen captures, and video ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ walkthroughs of infections) that would allow researchers to explore the cultural, sociological, ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ and political intricacies of malware development and infection. ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ Defining Malware ​ ​ This section will place the term “malware” in its proper context and define the key ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ characteristics of several kinds of malware: computer viruses, worms, and spyware. The word ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ “malware” is a portmanteau of the words “malicious” and “software” and is generically defined ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ as “any software used to disrupt
Recommended publications
  • UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations
    UC Santa Barbara UC Santa Barbara Electronic Theses and Dissertations Title A Web of Extended Metaphors in the Guerilla Open Access Manifesto of Aaron Swartz Permalink https://escholarship.org/uc/item/6w76f8x7 Author Swift, Kathy Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA Santa Barbara A Web of Extended Metaphors in the Guerilla Open Access Manifesto of Aaron Swartz A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Education by Kathleen Anne Swift Committee in charge: Professor Richard Duran, Chair Professor Diana Arya Professor William Robinson September 2017 The dissertation of Kathleen Anne Swift is approved. ................................................................................................................................ Diana Arya ................................................................................................................................ William Robinson ................................................................................................................................ Richard Duran, Committee Chair June 2017 A Web of Extended Metaphors in the Guerilla Open Access Manifesto of Aaron Swartz Copyright © 2017 by Kathleen Anne Swift iii ACKNOWLEDGEMENTS I would like to thank the members of my committee for their advice and patience as I worked on gathering and analyzing the copious amounts of research necessary to
    [Show full text]
  • Bibliography
    Bibliography [1] M Aamir Ali, B Arief, M Emms, A van Moorsel, “Does the Online Card Payment Landscape Unwittingly Facilitate Fraud?” IEEE Security & Pri- vacy Magazine (2017) [2] M Abadi, RM Needham, “Prudent Engineering Practice for Cryptographic Protocols”, IEEE Transactions on Software Engineering v 22 no 1 (Jan 96) pp 6–15; also as DEC SRC Research Report no 125 (June 1 1994) [3] A Abbasi, HC Chen, “Visualizing Authorship for Identification”, in ISI 2006, LNCS 3975 pp 60–71 [4] H Abelson, RJ Anderson, SM Bellovin, J Benaloh, M Blaze, W Diffie, J Gilmore, PG Neumann, RL Rivest, JI Schiller, B Schneier, “The Risks of Key Recovery, Key Escrow, and Trusted Third-Party Encryption”, in World Wide Web Journal v 2 no 3 (Summer 1997) pp 241–257 [5] H Abelson, RJ Anderson, SM Bellovin, J Benaloh, M Blaze, W Diffie, J Gilmore, M Green, PG Neumann, RL Rivest, JI Schiller, B Schneier, M Specter, D Weizmann, “Keys Under Doormats: Mandating insecurity by requiring government access to all data and communications”, MIT CSAIL Tech Report 2015-026 (July 6, 2015); abridged version in Communications of the ACM v 58 no 10 (Oct 2015) [6] M Abrahms, “What Terrorists Really Want”,International Security v 32 no 4 (2008) pp 78–105 [7] M Abrahms, J Weiss, “Malicious Control System Cyber Security Attack Case Study – Maroochy Water Services, Australia”, ACSAC 2008 [8] A Abulafia, S Brown, S Abramovich-Bar, “A Fraudulent Case Involving Novel Ink Eradication Methods”, in Journal of Forensic Sciences v41(1996) pp 300-302 [9] DG Abraham, GM Dolan, GP Double, JV Stevens,
    [Show full text]
  • Bots and Botnets: Risks, Issues and Prevention
    EMEA MSSD The Journey, So Far: Trends, Graphs and Statistics Martin Overton, IBM UK 20th September 2007 | Author: Martin Overton © 2007 IBM Corporation EMEA MSSD Agenda . The ‘First’ IBM PC Virus . Statistics, 80’s . Statistics, 90’s . Statistics, 00’s . Malware Myth-busting . Putting it all Together . Conclusions . Questions The Journey, So Far: Trends, Graphs and Statistics | Martin Overton © 2007 IBM Corporation EMEA MSSD Disclaimer . Products or services mentioned in this presentation are included for information only. Products and/or services listed, mentioned or referenced in any way do not constitute any form of recommendation or endorsement by IBM or the presenter. All trademarks and copyrights are acknowledged. The Journey, So Far: Trends, Graphs and Statistics | Martin Overton © 2007 IBM Corporation EMEA MSSD Brain . The very first malware written for the IBM PC [and clones] used ‘stealth’ to hide its presence[1]: . Here is a short extract from the description of Brain from F-Secure explaining how the stealth function it used works: . “The Brain virus tries to hide from detection by hooking into INT 13. When an attempt is made to read an infected boot sector, Brain will just show you the original boot sector instead. This means that if you look at the boot sector using DEBUG or any similar program, everything will look normal, if the virus is active in memory. This means the virus is the first "stealth" virus as well.” [1] Source : http://www.research.ibm.com/antivirus/timeline.htm [2] More data can be found here : http://www.f-secure.com/v-descs/brain.shtml
    [Show full text]
  • Bibliography
    Bibliography [1] M Aamir Ali, B Arief, M Emms, A van Moorsel, “Does the Online Card Payment Landscape Unwittingly Facilitate Fraud?” IEEE Security & Pri- vacy Magazine (2017) [2] M Abadi, RM Needham, “Prudent Engineering Practice for Cryptographic Protocols”, IEEE Transactions on Software Engineering v 22 no 1 (Jan 96) pp 6–15; also as DEC SRC Research Report no 125 (June 1 1994) [3] A Abbasi, HC Chen, “Visualizing Authorship for Identification”, in ISI 2006, LNCS 3975 pp 60–71 [4] H Abelson, RJ Anderson, SM Bellovin, J Benaloh, M Blaze, W Diffie, J Gilmore, PG Neumann, RL Rivest, JI Schiller, B Schneier, “The Risks of Key Recovery, Key Escrow, and Trusted Third-Party Encryption”, in World Wide Web Journal v 2 no 3 (Summer 1997) pp 241–257 [5] H Abelson, RJ Anderson, SM Bellovin, J Benaloh, M Blaze, W Diffie, J Gilmore, M Green, PG Neumann, RL Rivest, JI Schiller, B Schneier, M Specter, D Weizmann, “Keys Under Doormats: Mandating insecurity by requiring government access to all data and communications”, MIT CSAIL Tech Report 2015-026 (July 6, 2015); abridged version in Communications of the ACM v 58 no 10 (Oct 2015) [6] M Abrahms, “What Terrorists Really Want”,International Security v 32 no 4 (2008) pp 78–105 [7] M Abrahms, J Weiss, “Malicious Control System Cyber Security Attack Case Study – Maroochy Water Services, Australia”, ACSAC 2008 [8] A Abulafia, S Brown, S Abramovich-Bar, “A Fraudulent Case Involving Novel Ink Eradication Methods”, in Journal of Forensic Sciences v41(1996) pp 300-302 [9] DG Abraham, GM Dolan, GP Double, JV Stevens,
    [Show full text]
  • Ethical Hacking
    Ethical Hacking Alana Maurushat University of Ottawa Press ETHICAL HACKING ETHICAL HACKING Alana Maurushat University of Ottawa Press 2019 The University of Ottawa Press (UOP) is proud to be the oldest of the francophone university presses in Canada and the only bilingual university publisher in North America. Since 1936, UOP has been “enriching intellectual and cultural discourse” by producing peer-reviewed and award-winning books in the humanities and social sciences, in French or in English. Library and Archives Canada Cataloguing in Publication Title: Ethical hacking / Alana Maurushat. Names: Maurushat, Alana, author. Description: Includes bibliographical references. Identifiers: Canadiana (print) 20190087447 | Canadiana (ebook) 2019008748X | ISBN 9780776627915 (softcover) | ISBN 9780776627922 (PDF) | ISBN 9780776627939 (EPUB) | ISBN 9780776627946 (Kindle) Subjects: LCSH: Hacking—Moral and ethical aspects—Case studies. | LCGFT: Case studies. Classification: LCC HV6773 .M38 2019 | DDC 364.16/8—dc23 Legal Deposit: First Quarter 2019 Library and Archives Canada © Alana Maurushat, 2019, under Creative Commons License Attribution— NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/ Printed and bound in Canada by Gauvin Press Copy editing Robbie McCaw Proofreading Robert Ferguson Typesetting CS Cover design Édiscript enr. and Elizabeth Schwaiger Cover image Fragmented Memory by Phillip David Stearns, n.d., Personal Data, Software, Jacquard Woven Cotton. Image © Phillip David Stearns, reproduced with kind permission from the artist. The University of Ottawa Press gratefully acknowledges the support extended to its publishing list by Canadian Heritage through the Canada Book Fund, by the Canada Council for the Arts, by the Ontario Arts Council, by the Federation for the Humanities and Social Sciences through the Awards to Scholarly Publications Program, and by the University of Ottawa.
    [Show full text]
  • Characteristics of a Computer Virus
    We Are The Devils Of Your Computer System A Computer Virus is a program that may disturb the normal working of a computer. CHARACTERISTICS OF A COMPUTER VIRUS: ● the ability to replicate itself. ● the ability to attach itself to another computer file. For fun Release anger Take revenge For fame Antivirus market Disrupt enemy’s information and network The term "computer virus" is often used incorrectly as a catch-all phrase to include all types of Malware such as Computer Worms, Spyware, Adware, and Root kits - all of which are slightly different than Computer Viruses. What is Malware? ● Malware is a general name for all programs that are harmful: ● Virus ● Trojan Horse ● Spyware ● Adware ● Rootkits VIRUS: A computer virus is a small program written to alter the way a computer operates, without the permission or knowledge of the user. With an ability to replicate itself, thus continuing to spread. Also, known as Malicious Software, a program that can cause damage to a computer. •Boot sector virus •Master Boot Record (MBR) virus •File infector virus •Multipartite virus •Macro virus BOOT SECTOR VIRUS: Boot sector viruses generally hide in the boot sector, either in the bootable disk or the hard drive. It attaches itself to the primary active partition of the hard disk that is read by the computer upon boot up. MASTER BOOT RECORD VIRUS: MBR viruses are memory-resident viruses that infect disks in the same manner as boot sector viruses. However it, infects the MBR of the system, gets activated when the BIOS activates the Master boot code. MBR infectors normally save a legitimate copy of the master boot record in an different location.
    [Show full text]
  • T-AIMD-99-146 Information Security: the Melissa Computer Virus
    United States General Accounting Office Testimony GAO Before the Subcommittee on Technology, Committee on Science, House of Representatives For Release on Delivery Expected at 10 a.m. INFORMATION SECURITY Thursday, April 15, 1999 The Melissa Computer Virus Demonstrates Urgent Need for Stronger Protection Over Systems and Sensitive Data Statement of Keith A. Rhodes Technical Director for Computers and Telecommunications Accounting and Information Management Division GAO/T-AIMD-99-146 Madam Chairwoman and Members of the Subcommittee: Thank you for inviting me to participate in todays hearing on the Melissa computer virus. Although it did disrupt the operations of thousands of companies and some government agencies, this virus did not reportedly permanently damage systems and did not compromise sensitive government data. Nevertheless, it has shown us just how quickly computer viruses can spread and just how vulnerable federal information systems are to computer attacks. Moreover, Melissa has clearly highlighted the urgent and serious need for stronger agency and governmentwide protection over sensitive data. Today, I will discuss the immediate effects of the Melissa virus and variations of it as well as its broader implications. I will also discuss some critical measures that should be taken to help ensure that federal departments and agencies are better prepared for future viruses and other forms of attack. Melissa is a macro virus that can affect users of Microsofts Word 1 97 or The Melissa Virus and Word 2000. Macro viruses are computer viruses that use an applications Its Immediate Impact own macro programming language2 to reproduce themselves. Macro viruses can inflict damage to the document or to other computer software.
    [Show full text]
  • TCP SYN-ACK) to Spoofed IP Addresses
    Joint Japan-India Workshop on Cyber Security and Services/Applications for M2M and Fourteenth GISFI Standardization Series Meeting How to secure the network - Darknet based cyber-security technologies for global monitoring and analysis Koji NAKAO Research Executive Director, Distinguished Researcher, NICT Information Security Fellow, KDDI Outline of NICT Mission As the sole national research institute in the information and communications field, we as NICT will strive to advance national technologies and contribute to national policies in the field, by promoting our own research and development and by cooperating with and supporting outside parties. Collaboration between Industry, Academic Institutions and Government R&D carried out by NICT’s researchers Budget (FY 2012): approx. 31.45 Billion Yen (420 Million US$) Personnel: 849 Researchers: 517 PhDs: 410 R&D assistance (as of April 2012) to industry and life convenient Japan Standard Time and academia Space Weather Forecast services Forecast Weather Space of the global community community global the of Growth of Economy of Japanese Growth Promotion of ICT a more for Security and Safety businesses Interaction with National ICT Policy problems major solve to Contribution 2 Internet Security Days 2012 Network Security Research Institute Collabor • Cyber attack monitoring, tracking, • Dynamic and optimal deployment of ation security functions analysis, response and prevention New GenerationNetwork Security • Prompt promotion of outcomes • Secure new generation network design Security Cybersecurity Architecture Laboratory Security Organizations Laboratory Daisuke Inoue Shin’ichiro Matsuo Kazumasa Taira Koji Nakao (Director General) (Distinguished Researcher) Security • Security evaluation of cryptography Fundamentals • Practical security • Post quantum cryptography Laboratory • Quantum security Shiho Moriai Recommendations for Cryptographic Algorithms and Key Lengths to Japan e-Government and SDOs 3 Internet Security Days 2012 Content for Today • Current Security Threats (e.g.
    [Show full text]
  • Cyber Risk – Common Threats Part 1 of 2
    Cyber Risk – Common Threats Part 1 of 2 Table of Contents Threats to Information Systems ..................................................................................................... 2 Malware .......................................................................................................................................... 4 Viruses ............................................................................................................................................. 5 Virus Examples ................................................................................................................................ 6 Worms ............................................................................................................................................. 8 Brief Virus and Worm History ......................................................................................................... 9 Downloaders ................................................................................................................................. 11 Attack Scripts ................................................................................................................................ 13 Botnet -1 ....................................................................................................................................... 15 Botnet -2 ....................................................................................................................................... 17 IRCBotnet Example ......................................................................................................................
    [Show full text]
  • WHAT IS WILD? Sarah Gordon IBM TJ Watson Research Center P.O. Box
    WHAT IS WILD? Sarah Gordon IBM TJ Watson Research Center P.O. Box 704 Yorktown Heights, NY 10598 [email protected] Abstract “In the Wild” virus detection is part of the criteria of National Computer Security Association (NCSA) Anti-virus Product Certification, SECURE COMPUTING Checkmark Certification, the proposed UK IT Security Evaluation and Certification (ITSEC) anti-virus product certification and other product review and evaluation schemes. However, companies which use “certified” products, based on “In the Wild” (ITW) detection continue to suffer the effects of viruses. This paper considers the various definitions of “In the Wild”, as well as how well the “In the Wild” criteria as defined by the individual testing organizations measure the ability of products to deliver adequate protection. Inherent problems with such approaches are discussed from both a development and user perspective. Some alternative testing, development and protection strategies are offered. Introduction There are currently over 10,000 computer viruses in existence. Most of these have little likelihood of spreading and exist only in collections; they are known as “Zoo” viruses. Even an anti-virus virus researcher would be hard pressed to list a significant percentage of these viruses, let alone provide detailed information on how they operate. Most users have only even heard of a handful of them. Yet when a virus is encountered within a company, it is usually the case that a call to an anti-virus vendor, or a search through a virus encyclopedia will provide further information on that particular virus. This is because vendors, researchers and testers have begun to focus their attention on those viruses “In the Wild”.
    [Show full text]
  • "We Steal Secrets: the Story of Wikileaks"
    Annotated Transcript of "We Steal Secrets" by Alex Gibney 11/2/14, 11:43 PM "We Steal Secrets: The Story of Wikileaks" The annotated transcript 19:00 GMT, May 23, 2013 Click here for the introductory note Note: The title ("We Steal Secrets: The Story TITLES of WikiLeaks") is false. It directly implies that WikiLeaks steals secrets. In fact, the statement is made by former CIA/NSA The film begins with opening credits in faux-digital director Michael Hayden in relation to the typeface against a black screen. activities of US government spies, not in relation to WikiLeaks. This an irresponsible TEXT FOCUS WORLD PRESENTS libel. Not even critics in the film say that WikiLeaks steals secrets. A JIGSAW/GLOBAL PRODUCE PRODUCTION AN ALEX GIBNEY FILM The film cuts to orbital footage of the Earth from a satellite, with occasional visual static interference, overlayed with stock news footage and news chatter about the Galileo launch. STOCK Newsreader: ...Thursday's scheduled launch of the shuttle Atlantis with this payload of radioactive plutonium... http://wikileaks.org/IMG/html/gibney-transcript.html Page 1 of 238 Annotated Transcript of "We Steal Secrets" by Alex Gibney 11/2/14, 11:43 PM Newsreader: ...a legal challenge with NASA worried what's going on in court tomorrow to help the shuttle Atlantis and its Gallileo spacecraft escape by unique... The stock footage gradually takes over, depicting protests at the launch. Placards read "BAN PLUTONIUM IN SPACE" and "NO PLUTONIUM IN MY TOWN." Screen shows footage of Gallileo and Atlantis at the launchpad. Text overlay reads "October 1989".
    [Show full text]
  • A) Answer the Following:- 1) Computer Viruses, Worms Trojan Horse Spyware
    WELLAND GOULDSMITH SCHOOL Class- VII Subject- Computer Science Topic- Malicious Software Answer Sheet:- A) Answer the following:- 1) Computer viruses, worms Trojan horse spyware. 2) Fred Cohen was an American computer scientist who walked on the defensive techniques for computer viruses. 3) Spam is unsolicited unwanted email same to many people. It may contain advertisements or may spread Malware such as virus. 4) Boot sector virus, file infector virus, and macro virus. 5) It is a set of programs that are used to detect and remove viruses and other Malware from a computer. 6) McAfee, Kaspersky ,Avast, Norton, Quick Heal malware bytes and so on. 7) A Firewall is a software program used to protect a computer from hackers, viruses and worms that try to inspect it over the internet. 8) The very first computer virus first stuff Creeper virus that was detected on ARPANET in the early 1970. B) Answer the following in details:- 1) Refer to page 22 2) Refer to page 26 3) Refer to page 22 (Did you know) C) Give two examples of each:- Worms - Code Red, Slammer Trojan horse - Crack, Acid Rain Macro Virus- Nuclear and DMV Polymorphic Virus- Marburg, Satan Bug Boot sector virus- Brain, Elk Cloner Exercise from the textbook A.1)c, 2)a, 3)c, 4)b, 5)a, 6)c B.1)F ,2)T ,3)F ,4)F ,5)T ,6)T C.1) worm 2) antivirus 3) metro 4) adware 5) Trojan 6) spam 7) sweeper 8) quarantine 9) virus D.1. boot sector virus 2. spyware 3.
    [Show full text]