THE IDENTIFICATION and CHARACTERIZATION of COPY NUMBER VARIANTS in the BOVINE GENOME a Dissertation by Ryan N Doan Submitted To

Total Page:16

File Type:pdf, Size:1020Kb

THE IDENTIFICATION and CHARACTERIZATION of COPY NUMBER VARIANTS in the BOVINE GENOME a Dissertation by Ryan N Doan Submitted To THE IDENTIFICATION AND CHARACTERIZATION OF COPY NUMBER VARIANTS IN THE BOVINE GENOME A Dissertation by Ryan N Doan Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Chair of Committee, Scott Dindot Committee Members, Noah Cohen William Murphy Loren Skow James Womack Intercollegiate Faculty Chair, Craig J. Coates August 2013 Major Subject: Genetics Copyright 2013 Ryan N Doan ABSTRACT Separate domestication events and strong selective pressures have created diverse phenotypes among existing cattle populations; however, the genetic determinants underlying most phenotypes are currently unknown. Bos taurus taurus (Bos taurus) and Bos taurus indicus (Bos indicus) cattle are subspecies of domesticated cattle that are characterized by unique morphological and metabolic traits. Because of their divergence, they are ideal model systems to understand the genetic basis of phenotypic variation. Here, we developed DNA and structural variant maps of cattle genomes representing the Bos taurus and Bos indicus breeds. Using this data, we identified genes under selection and biological processes enriched with functional coding variants between the two subspecies. Furthermore, we examined genetic variation at functional non-coding regions, which were identified through epigenetic profiling of indicative histone- and DNA-methylation modifications. Copy number variants, which were frequently not imputed by flanking or tagged SNPs, represented the largest source of genetic divergence between the subspecies, with almost half of the variants present at coding regions. We identified a number of divergent genes and biological processes between Bos taurus and Bos indicus cattle; however, the extent of functional coding variation was relatively small compared to that of functional non- coding variation. Collectively, our findings suggest that copy number and functional non- coding variants may play an important role in regulating phenotypic variation among cattle breeds and subspecies. ii DEDICATION I dedicate this to my wife, Ashley, for all of her help and support. By always being there when I need her most, she is the most important reason for my successes in life. I also dedicate this to my parents, Neil and Julie, and brother, Chris, who have always supported me throughout my life. Their strong support allowed me to become the person I am today. iii ACKNOWLEDGEMENTS I would like to thank Dr. Scott Dindot for his support and guidance throughout the past four years. The experiences gained during my research will play a key role in my future endeavors. I would also like to thank all of my committee members, Drs. Noah Cohen, William Murphy, Loren Skow, and James Womack for all of their help and guidance during my dissertation project. I would also like to thank all of the people who have been involved in this project who have provided intellectual guidance, access to samples and assistance with experiments. iv TABLE OF CONTENTS Page ABSTRACT ........................................................................................................... ii DEDICATION ........................................................................................................ iii ACKNOWLEDGEMENTS ...................................................................................... iv TABLE OF CONTENTS ......................................................................................... v LIST OF FIGURES ................................................................................................ ix LIST OF TABLES .................................................................................................. xii CHAPTER I INTRODUCTION ......................................................................... 1 Types of Genetic Variation among Individuals.................................................. 1 Mechanism of Structural Variant Formation ..................................................... 3 Mutation Rates of Structural Variants ............................................................... 7 Methods to Identify Structural Variation ............................................................ 7 Detection of Copy Number Variants Using SNP Arrays .................................... 9 Whole-Genome Sequencing ............................................................................ 11 Epigenetic Gene Regulation............................................................................. 13 CNVs and Trait Association ............................................................................. 15 Bovine Evolution .............................................................................................. 16 Importance of Understanding Traits in Cattle ................................................... 17 Bovine Genomics ............................................................................................. 19 Use of Next-Generation Sequencing to Examine Genetic Variation in Cattle ... 21 The Need for a Centralized Variant Database .................................................. 22 Dissertation Strategy for Characterizing CNVs In The Bovine Genome ........................................................................................ 23 CHAPTER II CGH ANALYSIS OF CNVS.......................................................... 25 Introduction .................................................................................................... 25 Methods .................................................................................................... 28 DNA Sample .............................................................................................. 28 Comparative Genomic Hybridization Array Designs ................................... 28 Array Comparative Genomic Hybridization (aCGH) Methods ..................... 29 CNV Confirmation ...................................................................................... 31 Genomic Characterization of CNV Content ................................................ 32 v Analysis of CNV Content in the Bovine Umd3.1 Assembly ......................... 33 Functional Analysis of CNVs ...................................................................... 34 Population Analysis of CNVs ...................................................................... 35 Results .................................................................................................... 36 CGH Array Design...................................................................................... 36 Exome CGH Accuracy and Resolution ....................................................... 40 Genome Distribution of CNVs .................................................................... 45 Umd3.1 Analysis ........................................................................................ 50 Functional Analysis .................................................................................... 52 Population Analysis .................................................................................... 57 Comparative Analysis ................................................................................. 59 Discussion .................................................................................................... 61 CHAPTER III WHOLE GENOME ANALYSIS OF Bos taurus AND Bos indicus COWS ........................................................................................ 63 Introduction .................................................................................................... 63 Methods .................................................................................................... 65 Whole-Genome Sequencing ...................................................................... 65 Sequence Mapping .................................................................................... 66 Variant Detection ........................................................................................ 66 Variant Confirmation................................................................................... 68 Genetic Variant Annotation and Analysis .................................................... 71 Genotyping for Known Mutations................................................................ 72 Evolutionary Analysis ................................................................................. 72 Results .................................................................................................... 72 Genome Sequencing.................................................................................. 72 Variant Identification and Annotation .......................................................... 74 Functional Analysis of Variants .................................................................. 83 Genotyping for Known Mutations................................................................ 85 Evolutionary Analysis ................................................................................. 88 Discussion .................................................................................................... 90 CHAPTER IV VARIATION AT REGULATORY ELEMENTS............................... 95 Introduction .................................................................................................... 95 Methods .................................................................................................... 97 Epigenetic Profiling....................................................................................
Recommended publications
  • A Network-Informed Analysis of SARS-Cov-2 and Hemophagocytic Lymphohistiocytosis Genes' Interactions Points to Neutrophil Extr
    medRxiv preprint doi: https://doi.org/10.1101/2020.07.01.20144121; this version posted July 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . 1 A network-informed analysis of SARS-CoV-2 and hemophagocytic 2 lymphohistiocytosis genes’ interactions points to Neutrophil Extracellular Traps as 3 mediators of thromBosis in COVID-19 4 5 Jun Ding1, David Earl Hostallero2, Mohamed Reda El Khili2, Gregory Fonseca3, Simon 6 Millette4, Nuzha Noorah3, Myriam Guay-Belzile3, Jonathan Spicer5, Noriko Daneshtalab6, 7 Martin Sirois7, Karine Tremblay8, Amin Emad2,* and Simon Rousseau3,* 8 9 10 1Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, USA, 15204 11 12 2Department of Electrical and Computer Engineering, McGill University, Montreal, QC, Canada. 13 14 3The Meakins-Christie Laboratories at the Research Institute of the McGill University Heath 15 Centre Research Institute, 1001 Boul. Décarie, Montréal, H4A 3J1, Canada. 16 17 4Goodman Cancer Research Centre, McGill University 18 19 5Division of Thoracic and Upper Gastrointestinal Surgery, McGill University Health Centre 20 Research Institute, 1001 Boul. Décarie, Montréal, H4A 3J1, Canada. 21 22 6School of Pharmacy, Memorial University of Newfoundland, 300 Prince Philip Drive, Health 23 Sciences Center, St. John’s, Newfoundland, Canada, A1B 3V6 24 25 7Montreal Heart Institute and Department of pharmacology and physiology, Faculty of medicine, 26 Université de Montréal. 27 28 8Pharmacology-physiology Department, Faculty of Medicine and Health Sciences, Université de 29 Sherbrooke, Centre intégré universitaire de santé et de services sociaux du Saguenay–Lac-Saint- 30 Jean (Chicoutimi University Hospital) Research Center, Saguenay, QC, Canada.
    [Show full text]
  • New Approaches to Functional Process Discovery in HPV 16-Associated Cervical Cancer Cells by Gene Ontology
    Cancer Research and Treatment 2003;35(4):304-313 New Approaches to Functional Process Discovery in HPV 16-Associated Cervical Cancer Cells by Gene Ontology Yong-Wan Kim, Ph.D.1, Min-Je Suh, M.S.1, Jin-Sik Bae, M.S.1, Su Mi Bae, M.S.1, Joo Hee Yoon, M.D.2, Soo Young Hur, M.D.2, Jae Hoon Kim, M.D.2, Duck Young Ro, M.D.2, Joon Mo Lee, M.D.2, Sung Eun Namkoong, M.D.2, Chong Kook Kim, Ph.D.3 and Woong Shick Ahn, M.D.2 1Catholic Research Institutes of Medical Science, 2Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul; 3College of Pharmacy, Seoul National University, Seoul, Korea Purpose: This study utilized both mRNA differential significant genes of unknown function affected by the display and the Gene Ontology (GO) analysis to char- HPV-16-derived pathway. The GO analysis suggested that acterize the multiple interactions of a number of genes the cervical cancer cells underwent repression of the with gene expression profiles involved in the HPV-16- cancer-specific cell adhesive properties. Also, genes induced cervical carcinogenesis. belonging to DNA metabolism, such as DNA repair and Materials and Methods: mRNA differential displays, replication, were strongly down-regulated, whereas sig- with HPV-16 positive cervical cancer cell line (SiHa), and nificant increases were shown in the protein degradation normal human keratinocyte cell line (HaCaT) as a con- and synthesis. trol, were used. Each human gene has several biological Conclusion: The GO analysis can overcome the com- functions in the Gene Ontology; therefore, several func- plexity of the gene expression profile of the HPV-16- tions of each gene were chosen to establish a powerful associated pathway, identify several cancer-specific cel- cervical carcinogenesis pathway.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Chromosomal Rearrangements Are Commonly Post-Transcriptionally Attenuated in Cancer
    bioRxiv preprint doi: https://doi.org/10.1101/093369; this version posted February 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Chromosomal rearrangements are commonly post-transcriptionally attenuated in cancer 1 3 1 3, 4, 5 Emanuel Gonçalves ,​ Athanassios Fragoulis ,​ Luz Garcia-Alonso ,​ Thorsten Cramer ,​ ​ ​ ​ ​ 1,2# 1# Julio Saez-Rodriguez ,​ Pedro Beltrao ​ ​ 1 ​ European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK 2 ​ RWTH Aachen University, Faculty of Medicine, Joint Research Centre for Computational Biomedicine, Aachen 52057, Germany 3 ​ Molecular Tumor Biology, Department of General, Visceral and Transplantation Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany 4 ​ NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands 5 ​ ESCAM – European Surgery Center Aachen Maastricht, Germany and The Netherlands # ​ co-last authors: [email protected]; [email protected] ​ ​ ​ Running title: Chromosomal rearrangement attenuation in cancer Keywords: Cancer; Gene dosage; Proteomics; Copy-number variation; Protein complexes 1 bioRxiv preprint doi: https://doi.org/10.1101/093369; this version posted February 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Chromosomal rearrangements, despite being detrimental, are ubiquitous in cancer and often act as driver events.
    [Show full text]
  • Anti-AP3B1 / HPS2 Antibody (ARG59798)
    Product datasheet [email protected] ARG59798 Package: 100 μl anti-AP3B1 / HPS2 antibody Store at: -20°C Summary Product Description Rabbit Polyclonal antibody recognizes AP3B1 / HPS2 Tested Reactivity Hu, Ms Tested Application WB Host Rabbit Clonality Polyclonal Isotype IgG Target Name AP3B1 / HPS2 Antigen Species Human Immunogen Recombinant fusion protein corresponding to aa. 895-1094 of Human AP3B1 (NP_003655.3). Conjugation Un-conjugated Alternate Names Adaptor-related protein complex 3 subunit beta-1; AP-3 complex subunit beta-1; HPS; ADTB3A; Clathrin assembly protein complex 3 beta-1 large chain; Adaptor protein complex AP-3 subunit beta-1; ADTB3; HPS2; PE; Beta-3A-adaptin Application Instructions Application table Application Dilution WB 1:500 - 1:2000 Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Positive Control Mouse liver and SW620 Calculated Mw 121 kDa Observed Size 132 kDa Properties Form Liquid Purification Affinity purified. Buffer PBS (pH 7.3), 0.02% Sodium azide and 50% Glycerol. Preservative 0.02% Sodium azide Stabilizer 50% Glycerol Storage instruction For continuous use, store undiluted antibody at 2-8°C for up to a week. For long-term storage, aliquot and store at -20°C. Storage in frost free freezers is not recommended. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. www.arigobio.com 1/2 Note For laboratory research only, not for drug, diagnostic or other use. Bioinformation Gene Symbol AP3B1 Gene Full Name adaptor-related protein complex 3, beta 1 subunit Background This gene encodes a protein that may play a role in organelle biogenesis associated with melanosomes, platelet dense granules, and lysosomes.
    [Show full text]
  • Molecular Diagnostic Requisition
    BAYLOR MIRACA GENETICS LABORATORIES SHIP TO: Baylor Miraca Genetics Laboratories 2450 Holcombe, Grand Blvd. -Receiving Dock PHONE: 800-411-GENE | FAX: 713-798-2787 | www.bmgl.com Houston, TX 77021-2024 Phone: 713-798-6555 MOLECULAR DIAGNOSTIC REQUISITION PATIENT INFORMATION SAMPLE INFORMATION NAME: DATE OF COLLECTION: / / LAST NAME FIRST NAME MI MM DD YY HOSPITAL#: ACCESSION#: DATE OF BIRTH: / / GENDER (Please select one): FEMALE MALE MM DD YY SAMPLE TYPE (Please select one): ETHNIC BACKGROUND (Select all that apply): UNKNOWN BLOOD AFRICAN AMERICAN CORD BLOOD ASIAN SKELETAL MUSCLE ASHKENAZIC JEWISH MUSCLE EUROPEAN CAUCASIAN -OR- DNA (Specify Source): HISPANIC NATIVE AMERICAN INDIAN PLACE PATIENT STICKER HERE OTHER JEWISH OTHER (Specify): OTHER (Please specify): REPORTING INFORMATION ADDITIONAL PROFESSIONAL REPORT RECIPIENTS PHYSICIAN: NAME: INSTITUTION: PHONE: FAX: PHONE: FAX: NAME: EMAIL (INTERNATIONAL CLIENT REQUIREMENT): PHONE: FAX: INDICATION FOR STUDY SYMPTOMATIC (Summarize below.): *FAMILIAL MUTATION/VARIANT ANALYSIS: COMPLETE ALL FIELDS BELOW AND ATTACH THE PROBAND'S REPORT. GENE NAME: ASYMPTOMATIC/POSITIVE FAMILY HISTORY: (ATTACH FAMILY HISTORY) MUTATION/UNCLASSIFIED VARIANT: RELATIONSHIP TO PROBAND: THIS INDIVIDUAL IS CURRENTLY: SYMPTOMATIC ASYMPTOMATIC *If family mutation is known, complete the FAMILIAL MUTATION/ VARIANT ANALYSIS section. NAME OF PROBAND: ASYMPTOMATIC/POPULATION SCREENING RELATIONSHIP TO PROBAND: OTHER (Specify clinical findings below): BMGL LAB#: A COPY OF ORIGINAL RESULTS ATTACHED IF PROBAND TESTING WAS PERFORMED AT ANOTHER LAB, CALL TO DISCUSS PRIOR TO SENDING SAMPLE. A POSITIVE CONTROL MAY BE REQUIRED IN SOME CASES. REQUIRED: NEW YORK STATE PHYSICIAN SIGNATURE OF CONSENT I certify that the patient specified above and/or their legal guardian has been informed of the benefits, risks, and limitations of the laboratory test(s) requested.
    [Show full text]
  • Analysis of the Dystrophin Interactome
    Analysis of the dystrophin interactome Dissertation In fulfillment of the requirements for the degree “Doctor rerum naturalium (Dr. rer. nat.)” integrated in the International Graduate School for Myology MyoGrad in the Department for Biology, Chemistry and Pharmacy at the Freie Universität Berlin in Cotutelle Agreement with the Ecole Doctorale 515 “Complexité du Vivant” at the Université Pierre et Marie Curie Paris Submitted by Matthew Thorley born in Scunthorpe, United Kingdom Berlin, 2016 Supervisor: Simone Spuler Second examiner: Sigmar Stricker Date of defense: 7th December 2016 Dedicated to My mother, Joy Thorley My father, David Thorley My sister, Alexandra Thorley My fiancée, Vera Sakhno-Cortesi Acknowledgements First and foremost, I would like to thank my supervisors William Duddy and Stephanie Duguez who gave me this research opportunity. Through their combined knowledge of computational and practical expertise within the field and constant availability for any and all assistance I required, have made the research possible. Their overarching support, approachability and upbeat nature throughout, while granting me freedom have made this year project very enjoyable. The additional guidance and supported offered by Matthias Selbach and his team whenever required along with a constant welcoming invitation within their lab has been greatly appreciated. I thank MyoGrad for the collaboration established between UPMC and Freie University, creating the collaboration within this research project possible, and offering research experience in both the Institute of Myology in Paris and the Max Delbruck Centre in Berlin. Vital to this process have been Gisele Bonne, Heike Pascal, Lidia Dolle and Susanne Wissler who have aided in the often complex processes that I am still not sure I fully understand.
    [Show full text]
  • Genomic Structure of the Mouse Ap3b1 Gene in Normal and Pearl Mice
    UCLA UCLA Previously Published Works Title Genomic structure of the mouse Ap3b1 gene in normal and pearl mice. Permalink https://escholarship.org/uc/item/0cb5p1sf Journal Genomics, 69(3) ISSN 0888-7543 Authors Feng, L Rigatti, BW Novak, EK et al. Publication Date 2000-11-01 DOI 10.1006/geno.2000.6350 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Genomics 69, 370–379 (2000) doi:10.1006/geno.2000.6350, available online at http://www.idealibrary.com on Genomic Structure of the Mouse Ap3b1 Gene in Normal and Pearl Mice Lijun Feng,* Brian W. Rigatti,† Edward K. Novak,* Michael B. Gorin,†,‡ and Richard T. Swank*,1 *Department of Molecular and Cell Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263; and †Department of Ophthalmology, and ‡Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania 15213 Received May 23, 2000; accepted August 1, 2000 duced sensitivity in the dark-adapted state (Balkema The mouse hypopigmentation mutant pearl is an es- et al., 1983; Pinto et al., 1985). tablished model for Hermansky–Pudlak syndrome HPS patients are deficient in the biosynthesis/func- (HPS), a genetically heterogenous disease with mis- tion of melanosomes, platelet dense granules, and ly- regulation of the biogenesis/function of melanosomes, sosomes (Witkop et al., 1990a; King et al., 1995; Sho- lysosomes, and platelet dense granules. The pearl telersuk and Gahl, 1998; Spritz, 1999). HPS causes ␤ (Ap3b1) gene encodes the 3A subunit of the AP-3 high morbidity and increased mortality in the fourth to adaptor complex, which regulates vesicular traffick- fifth decades of life, due to associated fibrotic lung ing.
    [Show full text]
  • A Trafficome-Wide Rnai Screen Reveals Deployment of Early and Late Secretory Host Proteins and the Entire Late Endo-/Lysosomal V
    bioRxiv preprint doi: https://doi.org/10.1101/848549; this version posted November 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 A trafficome-wide RNAi screen reveals deployment of early and late 2 secretory host proteins and the entire late endo-/lysosomal vesicle fusion 3 machinery by intracellular Salmonella 4 5 Alexander Kehl1,4, Vera Göser1, Tatjana Reuter1, Viktoria Liss1, Maximilian Franke1, 6 Christopher John1, Christian P. Richter2, Jörg Deiwick1 and Michael Hensel1, 7 8 1Division of Microbiology, University of Osnabrück, Osnabrück, Germany; 2Division of Biophysics, University 9 of Osnabrück, Osnabrück, Germany, 3CellNanOs – Center for Cellular Nanoanalytics, Fachbereich 10 Biologie/Chemie, Universität Osnabrück, Osnabrück, Germany; 4current address: Institute for Hygiene, 11 University of Münster, Münster, Germany 12 13 Running title: Host factors for SIF formation 14 Keywords: siRNA knockdown, live cell imaging, Salmonella-containing vacuole, Salmonella- 15 induced filaments 16 17 Address for correspondence: 18 Alexander Kehl 19 Institute for Hygiene 20 University of Münster 21 Robert-Koch-Str. 4148149 Münster, Germany 22 Tel.: +49(0)251/83-55233 23 E-mail: [email protected] 24 25 or bioRxiv preprint doi: https://doi.org/10.1101/848549; this version posted November 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.
    [Show full text]
  • CENTOGENE's Severe and Early Onset Disorder Gene List
    CENTOGENE’s severe and early onset disorder gene list USED IN PRENATAL WES ANALYSIS AND IDENTIFICATION OF “PATHOGENIC” AND “LIKELY PATHOGENIC” CENTOMD® VARIANTS IN NGS PRODUCTS The following gene list shows all genes assessed in prenatal WES tests or analysed for P/LP CentoMD® variants in NGS products after April 1st, 2020. For searching a single gene coverage, just use the search on www.centoportal.com AAAS, AARS1, AARS2, ABAT, ABCA12, ABCA3, ABCB11, ABCB4, ABCB7, ABCC6, ABCC8, ABCC9, ABCD1, ABCD4, ABHD12, ABHD5, ACACA, ACAD9, ACADM, ACADS, ACADVL, ACAN, ACAT1, ACE, ACO2, ACOX1, ACP5, ACSL4, ACTA1, ACTA2, ACTB, ACTG1, ACTL6B, ACTN2, ACVR2B, ACVRL1, ACY1, ADA, ADAM17, ADAMTS2, ADAMTSL2, ADAR, ADARB1, ADAT3, ADCY5, ADGRG1, ADGRG6, ADGRV1, ADK, ADNP, ADPRHL2, ADSL, AFF2, AFG3L2, AGA, AGK, AGL, AGPAT2, AGPS, AGRN, AGT, AGTPBP1, AGTR1, AGXT, AHCY, AHDC1, AHI1, AIFM1, AIMP1, AIPL1, AIRE, AK2, AKR1D1, AKT1, AKT2, AKT3, ALAD, ALDH18A1, ALDH1A3, ALDH3A2, ALDH4A1, ALDH5A1, ALDH6A1, ALDH7A1, ALDOA, ALDOB, ALG1, ALG11, ALG12, ALG13, ALG14, ALG2, ALG3, ALG6, ALG8, ALG9, ALMS1, ALOX12B, ALPL, ALS2, ALX3, ALX4, AMACR, AMER1, AMN, AMPD1, AMPD2, AMT, ANK2, ANK3, ANKH, ANKRD11, ANKS6, ANO10, ANO5, ANOS1, ANTXR1, ANTXR2, AP1B1, AP1S1, AP1S2, AP3B1, AP3B2, AP4B1, AP4E1, AP4M1, AP4S1, APC2, APTX, AR, ARCN1, ARFGEF2, ARG1, ARHGAP31, ARHGDIA, ARHGEF9, ARID1A, ARID1B, ARID2, ARL13B, ARL3, ARL6, ARL6IP1, ARMC4, ARMC9, ARSA, ARSB, ARSL, ARV1, ARX, ASAH1, ASCC1, ASH1L, ASL, ASNS, ASPA, ASPH, ASPM, ASS1, ASXL1, ASXL2, ASXL3, ATAD3A, ATCAY, ATIC, ATL1, ATM, ATOH7,
    [Show full text]
  • 3,5-T3 in Brain and Liver Uncovers Novel Roles for Thyroid
    www.nature.com/scientificreports OPEN Diferential transcriptome regulation by 3,5-T2 and 3′,3,5-T3 in brain and liver uncovers novel Received: 25 May 2017 Accepted: 16 October 2017 roles for thyroid hormones in tilapia Published: xx xx xxxx A. Olvera1, C. J. Martyniuk2, N. Buisine3, V. Jiménez-Jacinto4, A. Sanchez-Flores4, L. M. Sachs3 & A. Orozco 1 Although 3,5,3′-triiodothyronine (T3) is considered to be the primary bioactive thyroid hormone (TH) due to its high afnity for TH nuclear receptors (TRs), new data suggest that 3,5-diiodothyronine (T2) can also regulate transcriptional networks. To determine the functional relevance of these bioactive THs, RNA-seq analysis was conducted in the cerebellum, thalamus-pituitary and liver of tilapia treated with equimolar doses of T2 or T3. We identifed a total of 169, 154 and 2863 genes that were TH- responsive (FDR < 0.05) in the tilapia cerebellum, thalamus-pituitary and liver, respectively. Among these, 130, 96 and 349 genes were uniquely regulated by T3, whereas 22, 40 and 929 were exclusively regulated by T2 under our experimental paradigm. The expression profles in response to TH treatment were tissue-specifc, and the diversity of regulated genes also resulted in a variety of diferent pathways being afected by T2 and T3. T2 regulated gene networks associated with cell signalling and transcriptional pathways, while T3 regulated pathways related to cell signalling, the immune system, and lipid metabolism. Overall, the present work highlights the relevance of T2 as a key bioactive hormone, and reveals some of the diferent functional strategies that underpin TH pleiotropy.
    [Show full text]
  • WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/040794 Al 17 March 2016 (17.03.2016) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, C12N 1/19 (2006.01) C12Q 1/02 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, C12N 15/81 (2006.01) C07K 14/47 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/US20 15/049674 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 11 September 2015 ( 11.09.201 5) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 62/050,045 12 September 2014 (12.09.2014) US TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, (71) Applicant: WHITEHEAD INSTITUTE FOR BIOMED¬ DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, ICAL RESEARCH [US/US]; Nine Cambridge Center, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Cambridge, Massachusetts 02142-1479 (US).
    [Show full text]