Volume 88 BULLETIN of The 02 02 2020 INSTITUTE of COMBINATORICS and its APPLICATIONS Editors-in-Chief: Marco Buratti, Donald Kreher, Tran van Trung ISSN: 2689-0674 (Online) Boca Raton, FL, U.S.A. ISSN: 1183-1278 (Print) BULLETIN OF THE ICA Volume 88 (2020), Pages 50{64 Distance-hereditary and strongly distance-hereditary graphs Terry A. McKee Wright State University, Dayton, Ohio USA
[email protected] Abstract: A graph G is distance-hereditary if the distance between vertices in connected induced subgraphs always equals the distance between them in G; equivalently, G contains no induced cycle of length 5 or more and no induced house, domino, or gem subgraph. Define G to be strongly distance-hereditary if G is distance-hereditary and G2 is strongly chordal. Although this definition seems completely unmo- tivated, it parallels a couple of ways in which strongly chordal graphs are the natural strengthening of chordal graphs; for instance, being distance- hereditary is characterized by the k = 1 case of a k 1 characterization of being strongly distance-hereditary. Moreover, there∀ ≥ is an induced forbid- den subgraph characterization of a distance-hereditary graph being strongly distance-hereditary. 1 Introduction and definitions A graph G is distance-hereditary if, in every connected induced subgraph G0 of G, the distance between vertices in G0 equals their distance in G; see [2,4,8]. Proposition 1.1 will give three basic characterizations, where (1) is from [8], and (2) and (3) are from [2] (also see [1]). In characterization (1), chords ab and cd are crossing chords of a cycle C if the four vertices come AMS (MOS) Subject Classifications: Primary 05C75; secondary 05C12 Key words and phrases: distance-hereditary graph; strongly chordal graph Received: 8 June 2019 50 Accepted: 23 October 2019 in the order a, c, b, d around C.