Basal Cells As Stem Cells of the Mouse Trachea and Human Airway Epithelium

Total Page:16

File Type:pdf, Size:1020Kb

Basal Cells As Stem Cells of the Mouse Trachea and Human Airway Epithelium Basal cells as stem cells of the mouse trachea and human airway epithelium Jason R. Rocka, Mark W. Onaitisb, Emma L. Rawlinsa, Yun Lua, Cheryl P. Clarka, Yan Xuea, Scott H. Randellc, and Brigid L. M. Hogana,1 Departments of aCell Biology and bSurgery, Duke University Medical Center, Durham, NC 27710; and cCystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, NC 27559 Contributed by Brigid L. M. Hogan, June 18, 2009 (sent for review May 16, 2009) The pseudostratified epithelium of the mouse trachea and human Results and Discussion airways contains a population of basal cells expressing Trp-63 (p63) In Vivo Lineage Tracing of Mouse Tracheal BCs. Previous lineage T2 and cytokeratins 5 (Krt5) and Krt14. Using a KRT5-CreER trans- tracing of mouse tracheal BCs after injury used a KRT14-CreER genic mouse line for lineage tracing, we show that basal cells transgene (8). However, this allele is inefficient for labeling BCs generate differentiated cells during postnatal growth and in the in steady state. We therefore made a new line in which a 6-kb adult during both steady state and epithelial repair. We have human keratin 5 (KRT5) promoter drives CreERT2 (Fig. 1A). We fractionated mouse basal cells by FACS and identified 627 genes used this allele, in combination with the Rosa26R-lacZ reporter, preferentially expressed in a basal subpopulation vs. non-BCs. to lineage trace BCs in adult mice for up to 14 weeks (Fig. 1B). Analysis reveals potential mechanisms regulating basal cells and Soon after the last tamoxifen (Tmx) injection, most of the allows comparison with other epithelial stem cells. To study basal labeled cells (Ϸ98%) were scored as BCs (Fig. 1C). Over time, cell behaviors, we describe a simple in vitro clonal sphere-forming the percentage of labeled cells scored as BCs declined, whereas assay in which mouse basal cells self-renew and generate luminal that of labeled secretory and ciliated cells increased (Fig. 1 D–F cells, including differentiated ciliated cells, in the absence of stroma. The transcriptional profile identified 2 cell-surface markers, and Table 1). Lineage-labeled BCs give rise to more Clara than ITGA6 and NGFR, which can be used in combination to purify ciliated cells over the chase period. There are 2 possible expla- human lung basal cells by FACS. Like those from the mouse trachea, nations for this result. First, BCs may give rise to Clara cells more CELL BIOLOGY human airway basal cells both self-renew and generate luminal frequently than ciliated cells—possibly because the latter have a daughters in the sphere-forming assay. longer half-life than Clara cells and need to be replaced less often. Alternatively, BCs first give rise to Clara cells, which then epithelial basal cells ͉ lung ͉ NGFR ͉ stem/progenitor ͉ sphere-forming assay slowly transition to ciliated cells. We currently favor the second model because it is supported by tritiated thymidine pulse-chase experiments in the rat (1) and our own pulse-chase lineage asal cells (BCs) make up approximately 30% of the labeling studies with Scgb1a1-CreERϩ (Clara) cells in the mouse Bpseudostratified mucociliary epithelium of the lung. They are relatively undifferentiated and characteristically express the trachea (13). transcription factor Trp-63 (p63) and cytokeratins 5 and 14 During postnatal growth there is an increase in the length and (Krt5/14) (1–3). In the rodent, BCs are confined to the trachea, diameter of the rodent trachea and in the number of epithelial where they are interspersed among the ciliated, secretory, and cells, including BCs (1). In previous studies we showed BrdU neuroendocrine cells. By contrast, in the human lung, BCs are labeling of tracheal epithelial cells at postnatal (P)6 days, P3 weeks, and P6 months (13). Further analysis of the material present throughout the airways, including small bronchioles (1, ϩ 4, 5). demonstrated that 55% of p63 BCs and 10% of non-BCs are Cell turnover in the adult trachea is normally very low (6). BrdU labeled at P6 days, whereas the corresponding values for However, epithelial injury elicits rapid proliferation of surviving P3 weeks were 9% of BCs and 2% of non-BCs (Fig. S1). To cells, except ciliated cells (7), and the tissue is soon repaired. follow the behavior of tracheal BCs during postnatal growth a Several lines of evidence suggest that tracheal BCs function as cohort of KRT5-CreERT2;Rosa26R-eYFP mice was given a pulse stem cells for this repair. First, lineage tracing of KRT14-CreER– of Tmx at P10 days or P12 days (Fig. 1G). At P3 weeks, the expressing cells after naphthalene injury, which depletes secre- majority (96%) of lineage labeled cells were BCs (Fig. 1H and tory cells, suggested that some BCs can both self-renew and give Table S1). These represented 7% Ϯ 3% of all BCs in the trachea rise to ciliated and secretory cells (8). Second, a subset of BCs (Table S2). This percentage remained approximately the same retains BrdU label over the long term after epithelial damage by when members of the cohort were examined at P6 weeks and at SO2 inhalation (9). Third, BCs isolated on the basis of high P15 weeks, suggesting that labeled BCs self-renew and are not expression of a KRT5-GFP transgene have a greater capacity to diluted by descendants of unlabeled cells. As before, there was proliferate and give rise to large colonies in vitro than KRT5- an increase over time in the percentage of labeled cells scored GFPϪ cells (3). Finally, fractionated rat tracheal BCs can restore as Clara or ciliated cells (Fig. 1I and Table S1). Thus, during the entire epithelium of a denuded trachea in a xenograft model (10). Similar xenograft assays have been performed with BCs from human nasal polyps and fetal trachea (11, 12). Author contributions: J.R.R., M.W.O., E.L.R., S.H.R., and B.L.H. designed research; J.R.R., M.W.O., E.L.R., Y.L., C.P.C., and Y.X. performed research; J.R.R., M.W.O., E.L.R., S.H.R., and Despite the evidence that BCs are stem cells, relatively little B.L.H. analyzed data; and J.R.R., M.W.O., E.L.R., S.H.R., and B.L.H. wrote the paper. is known about their biology and the mechanisms regulating The authors declare no conflict of interest. their behavior. To address these problems, we have generated a Freely available online through the PNAS open access option. transgenic mouse line to more efficiently lineage trace and Data deposition: The data reported in this paper have been deposited in the Gene genetically manipulate BCs. We have also isolated mouse BCs Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession number and obtained a transcriptional profile. Finally, we have devel- GSE15724). oped a clonal sphere-forming culture system that will greatly 1To whom correspondence should be addressed. E-mail: [email protected]. facilitate studies on the self-renewal and differentiation of This article contains supporting information online at www.pnas.org/cgi/content/full/ mouse and human BCs. 0906850106/DCSupplemental. www.pnas.org͞cgi͞doi͞10.1073͞pnas.0906850106 PNAS Early Edition ͉ 1of5 Downloaded by guest on September 23, 2021 A B C D E G H I F Fig. 1. Lineage tracing of tracheal BCs. (A) KRT5-CreERT2 transgene con- struct. (B) Timeline for steady-state experiments with KRT5-CreERT2;Rosa26R- Fig. 2. Characterization of mouse tracheal epithelial populations. Tracheal LacZ adult mice. (C–E) Paraffin sections of X-gal–stained (blue) trachea. Anti- epithelial cells were sorted on the basis of labeling with GSI-A3B isolectin and acetylated tubulin (brown, cilia) (C) 6 days, (D) 3 weeks, and (E) 12 weeks after expression of KRT5-GFP.(A) KRT5-GFP tracheal epithelium not labeled with final Tmx injection. (F) Bar graph showing percentage of labeled cells scored GSI-A3B. (B) Transgenic cells labeled with GSI-A3B. p63ϩ cells make up 90.5% as basal, Clara, or ciliated after Tmx exposure and chase. Data shown are of cells in P4, 40.4% of cells in P6, and 1.1% of cells in P5. Averaged over 7 mean Ϯ SEM. (G) Timeline for postnatal growth experiments with Rosa26R- experiments, P4 contained 6% of total sorted cells, P5 67%, and P6 12%. (C) eYFP reporter. (H and I) Cryosections stained for GFP (green, lineage label), Heatmap showing the 100 most differentially expressed genes by Affymetrix Scgb1a1 (red, Clara cells), and T1␣ (blue, BCs). (H) P3 weeks. (I) P15 weeks. microarray of P4, P5, and P6. (D) RT-PCR confirmed the upregulation of 11 Ϫ [Scale bar in C (for C–E), 20 ␮m; in H (for H and I), 25 ␮m.] genes in KRT5-GFPhi BCs vs. KRT5-GFP cells. postnatal growth BCs both self-renew and give rise to Clara and transgenic mouse line in which GFP is expressed at high levels ciliated cells. in approximately 60% of p63ϩ tracheal BCs (3). The Finally, we followed the fates of labeled BCs in a repair model. lectinϩ;KRT5-GFPϩ cells (P4) were an essentially pure BC Ͼ Inhalation of SO2 leads to extensive damage of the tracheal subpopulation because 90% express p63. By contrast, the epithelium, followed by proliferation of surviving cells and lectinϪ;KRT5-GFPϪ (hereafter, non-BC) population (P5) con- restoration of normal histology by 2 weeks (14). During the tained very few p63ϩ cells. The lectinϩ;KRT5-GFPϪ cells (P6) repair process, labeled BCs proliferate and give rise to relatively contained both basal and dendritic cells (Fig. 2 A and B).
Recommended publications
  • The Spectraplakin Dystonin Antagonizes YAP Activity and Suppresses Tumourigenesis Praachi B
    www.nature.com/scientificreports OPEN The spectraplakin Dystonin antagonizes YAP activity and suppresses tumourigenesis Praachi B. Jain1,2,3, Patrícia S. Guerreiro1,2,3, Sara Canato1,2,3 & Florence Janody 1,2,3* Aberrant expression of the Spectraplakin Dystonin (DST) has been observed in various cancers, including those of the breast. However, little is known about its role in carcinogenesis. In this report, we demonstrate that Dystonin is a candidate tumour suppressor in breast cancer and provide an underlying molecular mechanism. We show that in MCF10A cells, Dystonin is necessary to restrain cell growth, anchorage-independent growth, self-renewal properties and resistance to doxorubicin. Strikingly, while Dystonin maintains focal adhesion integrity, promotes cell spreading and cell-substratum adhesion, it prevents Zyxin accumulation, stabilizes LATS and restricts YAP activation. Moreover, treating DST- depleted MCF10A cells with the YAP inhibitor Verteporfn prevents their growth. In vivo, the Drosophila Dystonin Short stop also restricts tissue growth by limiting Yorkie activity. As the two Dystonin isoforms BPAG1eA and BPAG1e are necessary to inhibit the acquisition of transformed features and are both downregulated in breast tumour samples and in MCF10A cells with conditional induction of the Src proto-oncogene, they could function as the predominant Dystonin tumour suppressor variants in breast epithelial cells. Thus, their loss could deem as promising prognostic biomarkers for breast cancer. Breast cancer progression depends on cell autonomous regulatory mechanisms, driven by mutations and epi- genetic changes, and on non-cell autonomous interactions with the surrounding tumour microenvironment1,2. During this multistep process, normal breast epithelial cells acquire various cellular properties arising from dereg- ulated cellular signalling3,4.
    [Show full text]
  • Drp1 Overexpression Induces Desmin Disassembling and Drives Kinesin-1 Activation Promoting Mitochondrial Trafficking in Skeletal Muscle
    Cell Death & Differentiation (2020) 27:2383–2401 https://doi.org/10.1038/s41418-020-0510-7 ARTICLE Drp1 overexpression induces desmin disassembling and drives kinesin-1 activation promoting mitochondrial trafficking in skeletal muscle 1 1 2 2 2 3 Matteo Giovarelli ● Silvia Zecchini ● Emanuele Martini ● Massimiliano Garrè ● Sara Barozzi ● Michela Ripolone ● 3 1 4 1 5 Laura Napoli ● Marco Coazzoli ● Chiara Vantaggiato ● Paulina Roux-Biejat ● Davide Cervia ● 1 1 2 1,4 6 Claudia Moscheni ● Cristiana Perrotta ● Dario Parazzoli ● Emilio Clementi ● Clara De Palma Received: 1 August 2019 / Revised: 13 December 2019 / Accepted: 23 January 2020 / Published online: 10 February 2020 © The Author(s) 2020. This article is published with open access Abstract Mitochondria change distribution across cells following a variety of pathophysiological stimuli. The mechanisms presiding over this redistribution are yet undefined. In a murine model overexpressing Drp1 specifically in skeletal muscle, we find marked mitochondria repositioning in muscle fibres and we demonstrate that Drp1 is involved in this process. Drp1 binds KLC1 and enhances microtubule-dependent transport of mitochondria. Drp1-KLC1 coupling triggers the displacement of KIF5B from 1234567890();,: 1234567890();,: kinesin-1 complex increasing its binding to microtubule tracks and mitochondrial transport. High levels of Drp1 exacerbate this mechanism leading to the repositioning of mitochondria closer to nuclei. The reduction of Drp1 levels decreases kinesin-1 activation and induces the partial recovery of mitochondrial distribution. Drp1 overexpression is also associated with higher cyclin-dependent kinase-1 (Cdk-1) activation that promotes the persistent phosphorylation of desmin at Ser-31 and its disassembling. Fission inhibition has a positive effect on desmin Ser-31 phosphorylation, regardless of Cdk-1 activation, suggesting that induction of both fission and Cdk-1 are required for desmin collapse.
    [Show full text]
  • Gene Expression Signatures and Biomarkers of Noninvasive And
    Oncogene (2006) 25, 2328–2338 & 2006 Nature Publishing Group All rights reserved 0950-9232/06 $30.00 www.nature.com/onc ORIGINAL ARTICLE Gene expression signatures and biomarkers of noninvasive and invasive breast cancer cells: comprehensive profiles by representational difference analysis, microarrays and proteomics GM Nagaraja1, M Othman2, BP Fox1, R Alsaber1, CM Pellegrino3, Y Zeng2, R Khanna2, P Tamburini3, A Swaroop2 and RP Kandpal1 1Department of Biological Sciences, Fordham University, Bronx, NY, USA; 2Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI, USA and 3Bayer Corporation, West Haven, CT, USA We have characterized comprehensive transcript and Keywords: representational difference analysis; micro- proteomic profiles of cell lines corresponding to normal arrays; proteomics; breast carcinoma; biomarkers; breast (MCF10A), noninvasive breast cancer (MCF7) and copper homeostasis invasive breast cancer (MDA-MB-231). The transcript profiles were first analysed by a modified protocol for representational difference analysis (RDA) of cDNAs between MCF7 and MDA-MB-231 cells. The majority of genes identified by RDA showed nearly complete con- Introduction cordance withmicroarray results, and also led to the identification of some differentially expressed genes such The transformation of a normal cell into a cancer cell as lysyl oxidase, copper transporter ATP7A, EphB6, has been correlated to altered expression of a variety of RUNX2 and a variant of RUNX2. The altered transcripts genes (Perou et al., 2000; Becker et al., 2005). The identified by microarray analysis were involved in cell–cell expression of some of these genes is a direct result of or cell–matrix interaction, Rho signaling, calcium home- sequence mutation, whereas other changes occur due to ostasis and copper-binding/sensitive activities.
    [Show full text]
  • Supplementary Table 1 Genes Tested in Qrt-PCR in Nfpas
    Supplementary Table 1 Genes tested in qRT-PCR in NFPAs Gene Bank accession Gene Description number ABI assay ID a disintegrin-like and metalloprotease with thrombospondin type 1 motif 7 ADAMTS7 NM_014272.3 Hs00276223_m1 Rho guanine nucleotide exchange factor (GEF) 3 ARHGEF3 NM_019555.1 Hs00219609_m1 BCL2-associated X protein BAX NM_004324 House design Bcl-2 binding component 3 BBC3 NM_014417.2 Hs00248075_m1 B-cell CLL/lymphoma 2 BCL2 NM_000633 House design Bone morphogenetic protein 7 BMP7 NM_001719.1 Hs00233476_m1 CCAAT/enhancer binding protein (C/EBP), alpha CEBPA NM_004364.2 Hs00269972_s1 coxsackie virus and adenovirus receptor CXADR NM_001338.3 Hs00154661_m1 Homo sapiens Dicer1, Dcr-1 homolog (Drosophila) (DICER1) DICER1 NM_177438.1 Hs00229023_m1 Homo sapiens dystonin DST NM_015548.2 Hs00156137_m1 fms-related tyrosine kinase 3 FLT3 NM_004119.1 Hs00174690_m1 glutamate receptor, ionotropic, N-methyl D-aspartate 1 GRIN1 NM_000832.4 Hs00609557_m1 high-mobility group box 1 HMGB1 NM_002128.3 Hs01923466_g1 heterogeneous nuclear ribonucleoprotein U HNRPU NM_004501.3 Hs00244919_m1 insulin-like growth factor binding protein 5 IGFBP5 NM_000599.2 Hs00181213_m1 latent transforming growth factor beta binding protein 4 LTBP4 NM_001042544.1 Hs00186025_m1 microtubule-associated protein 1 light chain 3 beta MAP1LC3B NM_022818.3 Hs00797944_s1 matrix metallopeptidase 17 MMP17 NM_016155.4 Hs01108847_m1 myosin VA MYO5A NM_000259.1 Hs00165309_m1 Homo sapiens nuclear factor (erythroid-derived 2)-like 1 NFE2L1 NM_003204.1 Hs00231457_m1 oxoglutarate (alpha-ketoglutarate)
    [Show full text]
  • Human Induced Pluripotent Stem Cell–Derived Podocytes Mature Into Vascularized Glomeruli Upon Experimental Transplantation
    BASIC RESEARCH www.jasn.org Human Induced Pluripotent Stem Cell–Derived Podocytes Mature into Vascularized Glomeruli upon Experimental Transplantation † Sazia Sharmin,* Atsuhiro Taguchi,* Yusuke Kaku,* Yasuhiro Yoshimura,* Tomoko Ohmori,* ‡ † ‡ Tetsushi Sakuma, Masashi Mukoyama, Takashi Yamamoto, Hidetake Kurihara,§ and | Ryuichi Nishinakamura* *Department of Kidney Development, Institute of Molecular Embryology and Genetics, and †Department of Nephrology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; ‡Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima, Japan; §Division of Anatomy, Juntendo University School of Medicine, Tokyo, Japan; and |Japan Science and Technology Agency, CREST, Kumamoto, Japan ABSTRACT Glomerular podocytes express proteins, such as nephrin, that constitute the slit diaphragm, thereby contributing to the filtration process in the kidney. Glomerular development has been analyzed mainly in mice, whereas analysis of human kidney development has been minimal because of limited access to embryonic kidneys. We previously reported the induction of three-dimensional primordial glomeruli from human induced pluripotent stem (iPS) cells. Here, using transcription activator–like effector nuclease-mediated homologous recombination, we generated human iPS cell lines that express green fluorescent protein (GFP) in the NPHS1 locus, which encodes nephrin, and we show that GFP expression facilitated accurate visualization of nephrin-positive podocyte formation in
    [Show full text]
  • Hearts of Dystonia Musculorum Mice Display Normal Morphological and Histological Features but Show Signs of Cardiac Stress
    Hearts of Dystonia musculorum Mice Display Normal Morphological and Histological Features but Show Signs of Cardiac Stress Justin G. Boyer2,4,5., Kunal Bhanot4,5., Rashmi Kothary4,5,Ce´line Boudreau-Larivie`re1,2,3* 1 School of Human Kinetics, Laurentian University, Sudbury, Ontario, Canada, 2 Department of Biology, Laurentian University, Sudbury, Ontario, Canada, 3 Biomolecular Sciences Program, Laurentian University, Sudbury, Ontario, Canada, 4 Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada, 5 Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada Abstract Dystonin is a giant cytoskeletal protein belonging to the plakin protein family and is believed to crosslink the major filament systems in contractile cells. Previous work has demonstrated skeletal muscle defects in dystonin-deficient dystonia musculorum (dt) mice. In this study, we show that the dystonin muscle isoform is localized at the Z-disc, the H zone, the sarcolemma and intercalated discs in cardiac tissue. Based on this localization pattern, we tested whether dystonin- deficiency leads to structural defects in cardiac muscle. Desmin intermediate filament, microfilament, and microtubule subcellular organization appeared normal in dt hearts. Nevertheless, increased transcript levels of atrial natriuretic factor (ANF, 66%) b-myosin heavy chain (beta-MHC, 95%) and decreased levels of sarcoplasmic reticulum calcium pump isoform 2A (SERCA2a, 26%), all signs of cardiac muscle stress, were noted in dt hearts. Hearts from two-week old dt mice were assessed for the presence of morphological and histological alterations. Heart to body weight ratios as well as left ventricular wall thickness and left chamber volume measurements were similar between dt and wild-type control mice.
    [Show full text]
  • Analysis of Gene Expression in Human Dermal Fibroblasts Treated with Senescence-Modulating COX Inhibitors
    eISSN 2234-0742 Genomics Inform 2017;15(2):56-64 G&I Genomics & Informatics https://doi.org/10.5808/GI.2017.15.2.56 ORIGINAL ARTICLE Analysis of Gene Expression in Human Dermal Fibroblasts Treated with Senescence-Modulating COX Inhibitors Jeong A. Han1*, Jong-Il Kim2,3,4** 1Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Chuncheon 24341, Korea, 2Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea, 3Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea, 4Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea We have previously reported that NS-398, a cyclooxygenase-2 (COX-2)–selective inhibitor, inhibited replicative cellular senescence in human dermal fibroblasts and skin aging in hairless mice. In contrast, celecoxib, another COX-2–selective inhibitor, and aspirin, a non-selective COX inhibitor, accelerated the senescence and aging. To figure out causal factors for the senescence-modulating effect of the inhibitors, we here performed cDNA microarray experiment and subsequent Gene Set Enrichment Analysis. The data showed that several senescence-related gene sets were regulated by the inhibitor treatment. NS-398 up-regulated gene sets involved in the tumor necrosis factor β receptor pathway and the fructose and mannose metabolism, whereas it down-regulated a gene set involved in protein secretion. Celecoxib up-regulated gene sets involved in G2M checkpoint and E2F targets. Aspirin up-regulated the gene set involved in protein secretion, and down-regulated gene sets involved in RNA transcription. These results suggest that COX inhibitors modulate cellular senescence by different mechanisms and will provide useful information to understand senescence-modulating mechanisms of COX inhibitors.
    [Show full text]
  • Restoration of Desmosomal Junction Protein Expression and Inhibition Of
    MOLECULAR AND CLINICAL ONCOLOGY 3: 171-178, 2015 Restoration of desmosomal junction protein expression and inhibition of H3K9‑specifichistone demethylase activity by cytostatic proline‑rich polypeptide‑1 leads to suppression of tumorigenic potential in human chondrosarcoma cells KARINA GALOIAN1, AMIR QURESHI1, GINA WIDEROFF1 and H.T. TEMPLE2 1Department of Orthopaedic Surgery; 2University of Miami Tissue Bank Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA Received September 18, 2014; Accepted October 8, 2014 DOI: 10.3892/mco.2014.445 Abstract. Disruption of cell-cell junctions and the concomi- and inhibits H3K9 demethylase activity, contributing to the tant loss of polarity, downregulation of tumor-suppressive suppression of tumorigenic potential in chondrosarcoma cells. adherens junctions and desmosomes represent hallmark phenotypes for several different cancer cells. Moreover, a Introduction variety of evidence supports the argument that these two common phenotypes of cancer cells directly contribute to Chondrosarcoma is a highly aggressive bone cancer of tumorigenesis. In this study, we aimed to determine the status mesenchymal origin, which is resistant to chemo- and radia- of intercellular junction proteins expression in JJ012 human tion therapies, leaving surgical resection as the only option. malignant chondrosarcoma cells and investigate the effect Metastatic spread of malignant cells eventually develops of the antitumorigenic cytokine, proline-rich polypeptide-1 following surgical resection. The malignant progression to (PRP-1) on their expression. The cell junction pathway array chondrosarcoma has been suggested to involve a degree of data indicated downregulation of desmosomal proteins, mesenchymal-to-epithelial transition (MET) and it has been such as desmoglein (1,428-fold), desmoplakin (620-fold) and demonstrated in an in vitro model that chondrosarcoma cells plakoglobin (442-fold).
    [Show full text]
  • Cytoskeletal Proteins in Neurological Disorders
    cells Review Much More Than a Scaffold: Cytoskeletal Proteins in Neurological Disorders Diana C. Muñoz-Lasso 1 , Carlos Romá-Mateo 2,3,4, Federico V. Pallardó 2,3,4 and Pilar Gonzalez-Cabo 2,3,4,* 1 Department of Oncogenomics, Academic Medical Center, 1105 AZ Amsterdam, The Netherlands; [email protected] 2 Department of Physiology, Faculty of Medicine and Dentistry. University of Valencia-INCLIVA, 46010 Valencia, Spain; [email protected] (C.R.-M.); [email protected] (F.V.P.) 3 CIBER de Enfermedades Raras (CIBERER), 46010 Valencia, Spain 4 Associated Unit for Rare Diseases INCLIVA-CIPF, 46010 Valencia, Spain * Correspondence: [email protected]; Tel.: +34-963-395-036 Received: 10 December 2019; Accepted: 29 January 2020; Published: 4 February 2020 Abstract: Recent observations related to the structure of the cytoskeleton in neurons and novel cytoskeletal abnormalities involved in the pathophysiology of some neurological diseases are changing our view on the function of the cytoskeletal proteins in the nervous system. These efforts allow a better understanding of the molecular mechanisms underlying neurological diseases and allow us to see beyond our current knowledge for the development of new treatments. The neuronal cytoskeleton can be described as an organelle formed by the three-dimensional lattice of the three main families of filaments: actin filaments, microtubules, and neurofilaments. This organelle organizes well-defined structures within neurons (cell bodies and axons), which allow their proper development and function through life. Here, we will provide an overview of both the basic and novel concepts related to those cytoskeletal proteins, which are emerging as potential targets in the study of the pathophysiological mechanisms underlying neurological disorders.
    [Show full text]
  • Small Cell Lung Cancer Young Kwang Chae1,2, Wooyoung M
    www.nature.com/scientificreports OPEN Overexpression of adhesion molecules and barrier molecules is associated with diferential Received: 21 September 2017 Accepted: 12 December 2017 infltration of immune cells in non- Published: xx xx xxxx small cell lung cancer Young Kwang Chae1,2, Wooyoung M. Choi2, William H. Bae2, Jonathan Anker2, Andrew A. Davis2, Sarita Agte1, Wade T. Iams2, Marcelo Cruz2, Maria Matsangou1,2 & Francis J. Giles1,2 Immunotherapy is emerging as a promising option for lung cancer treatment. Various endothelial adhesion molecules, such as integrin and selectin, as well as various cellular barrier molecules such as desmosome and tight junctions, regulate T-cell infltration in the tumor microenvironment. However, little is known regarding how these molecules afect immune cells in patients with lung cancer. We demonstrated for the frst time that overexpression of endothelial adhesion molecules and cellular barrier molecule genes was linked to diferential infltration of particular immune cells in non-small cell lung cancer. Overexpression of endothelial adhesion molecule genes is associated with signifcantly lower infltration of activated CD4 and CD8 T-cells, but higher infltration of activated B-cells and regulatory T-cells. In contrast, overexpression of desmosome genes was correlated with signifcantly higher infltration of activated CD4 and CD8 T-cells, but lower infltration of activated B-cells and regulatory T-cells in lung adenocarcinoma. This inverse relation of immune cells aligns with previous studies of tumor-infltrating B-cells inhibiting T-cell activation. Although overexpression of endothelial adhesion molecule or cellular barrier molecule genes alone was not predictive of overall survival in our sample, these genetic signatures may serve as biomarkers of immune exclusion, or resistance to T-cell mediated immunotherapy.
    [Show full text]
  • Intermediate Filaments and Their Associated Proteins
    93 Intermediate ®laments and their associated proteins: multiple dynamic personalities Megan K Houseweart∗ and Don W Cleveland² A fusion of mouse and human genetics has now proven that regulated by phosphorylation, the recent identi®cation of intermediate ®laments form a ¯exible scaffold essential for several kinases involved strengthens the argument that structuring cytoplasm in a variety of cell contexts. In some these dynamics are true in vivo events. The growing cases, the formation of this scaffold is achieved through a list of intermediate-®lament-associated proteins (IFAPs) newly identi®ed family of intermediate-®lament-associated surely expands the repertoire of possible interactions proteins that form cross-bridges between intermediate permitted to IFs and may also add another layer of ®laments and other cytoskeletal elements, including actin and regulatory complexity. Indeed, the discovery of several microtubules. human and mouse diseases caused by mutations in the IFAP proteins plectin and neuronal bullous pemphigoid antigen (BPAG1n) illustrates the importance of these Addresses molecules in providing links between components of the ∗Ludwig Institute for Cancer Research and Division of Cellular and Molecular Medicine, University of California at San Diego, 9500 cellular cytoskeleton. Most would agree that intermediate Gilman Drive, La Jolla, CA 92093, USA ®laments can no longer be thought of as the least dynamic ²Ludwig Institute for Cancer Research, Division of Cellular and components of the cell cytoskeleton. This review
    [Show full text]
  • The Spectrin Superfamily
    Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Cytoskeletal Integrators: The Spectrin Superfamily Ronald K.H. Liem Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York 10032 Correspondence: [email protected] SUMMARY This review discusses the spectrin superfamily of proteins that function to connect cytoskeletal elements to each other, the cell membrane, and the nucleus. The signature domain is the spectrin repeat, a 106–122-amino-acid segment comprising three a-helices. a-actinin is considered to be the ancestral protein and functions to cross-link actin filaments. It then evolved to generate spectrin and dystrophin that function to link the actin cytoskeleton to the cell membrane, as well as the spectraplakins and plakins that link cytoskeletal elements to each other and to junctional complexes. A final class comprises the nesprins, which are able to bind to the nuclear membrane. This review discusses the domain organization of the various spectrin family members, their roles in protein–protein interactions, and their roles in disease, as determined from mutations, and it also describes the functional roles of the family members as determined from null phenotypes. Outline 1 Introduction 5 Spectraplakins and plakins 2 a-actinin 6 Nesprins 3 Spectrins 7 Concluding remarks 4 Dystrophin and utrophin References Editors: Thomas D. Pollard and Robert D. Goldman Additional Perspectives on The Cytoskeleton available at www.cshperspectives.org Copyright # 2016 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a018259 Cite this article as Cold Spring Harb Perspect Biol 2016;8:a018259 1 Downloaded from http://cshperspectives.cshlp.org/ on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press R.K.H.
    [Show full text]