Hawkweeds: State Prohibited Weed (DPI Vic)

Total Page:16

File Type:pdf, Size:1020Kb

Hawkweeds: State Prohibited Weed (DPI Vic) June 2003 Hawkweeds: State Prohibited Weed LC0376 Keith Turnbull Research Institute, Frankston ISSN 1329-833X This Landcare Note describes Hieracium spp., hawkweeds, as State Prohibited Weeds in Victoria. Common name Hawkweeds Scientific name Hieracium spp. Family Asteraceae (daisies) Status Hieracium species are proclaimed as a State Prohibited Weed in Victoria. This means that Hieracium spp. are to be eradicated if possible from the State. Hieracium species are also proclaimed weeds in New South Wales, Western Australia and Tasmania and have been classified as prohibited imports by the Australian Quarantine and Inspection Service. There are between 700 and 1000 world species of Hieracium, mostly native to the Northern Hemisphere in temperate and montane areas, but with some species in South America and southern Africa. No species are native to Australia. Orange hawkweed Hieracium aurantiacum, native to Europe, is the only species known to have become naturalised in Victoria. Small infestations are known from Falls Creek and Mt Hotham. Other hawkweed species have been available from nurseries and markets and are likely to be present in gardens. Description Herbs with milky sap, often hairy, with a basal rosette of leaves. The group is divided into two subgenera: Pilosella, which contains perennial, stoloniferous, often mat-forming species that reproduce sexually, and Hieracium, which contains annual, non-stoloniferous species, that reproduce asexually by seed and produce little pollen. Commonly each species is highly variable and contains several subspecies. Hybrids occur frequently. Stems – erect, the creeping stolons root readily at the nodes, like a strawberry plant. Leaves – in a basal rosette or alternate on the stems, entire or toothed, rarely lobed, often hairy. Figures 1 and 2. Orange hawkweed, Hieracium aurantiacum. © State of Victoria, Department of Primary Industries 2003 Page 1 Hawkweeds: State Prohibited Weed LC0376376 Flowers – small, many combined together into cylindrical to Zealand, in upland pastures in North America, and in Japan bell-shaped heads (as in other daisies). Like dandelions, the and Patagonia. flower heads have only petal-bearing ligulate (ray) florets and They tolerate poor soils, thrive in overgrazed areas and are lack non-petal bearing tubular or disc florets (eg. as seen in the difficult to control. In native grasslands they can occupy the centre of the sunflower head). Usually yellow but sometimes entire space between existing tussocks and may subsequently white, orange or red. Bracts surrounding the flower head are of displace the grasses themselves. uneven length, in 1-3 rows; the receptacle (basal part of the Hawkweeds are closely related to dandelions and sow thistles flower on which the florets are attached) flat and naked; heads and release chemicals that inhibit the growth of other plants. arranged in corymbs or panicles or occasionally solitary. Hawkweeds grow from wind-dispersed seeds to form very Seeds – an achene, cylindrical with a truncate apex, 10-15 dense patches, which spread by lateral growth of stolons and ribbed, bearing a pappus (parachute) of 1-2 rows of brownish daughter plants. or whitish, fragile bristles. Spread from garden specimens, dumping of garden waste and Roots – fibrous; stout rhizomes present in some species. mail order seeds are likely sources of new hawkweed H. aurantiacum L. (Pilosella aurantiaca), orange hawkweed. infestations. Stoloniferous, 15-40 cm high, with long, spreading hairs; Predictions based on climatic requirements and land leaves mostly in a basal rosette, stalkless, lance-shaped, up to characteristics indicate that at least H. aurantiacum and H. 15 cm long and 2.5 cm wide, with a wide, pale central vein, ramosissimum and other species with similar properties and sometimes with slightly toothed margins and with very biology such as H. pratense, H. x floribundum and H. conspicuous simple 1-4 mm long hairs on both surfaces, green; piloselloides could be highly invasive in Victoria. stolons slender, hairy; flowers December to March, heads orange, about 15 mm, bracts black-tipped and with glandular Management hairs, inflorescence commonly of 5 to 10 or more heads in a The Department of Primary Industries is responsible for the tight cluster at the top of the stem; flowering stems erect, hairy, control of State Prohibited Weeds. Please provide details of usually leafless, sometimes with up to four small leaves near any occurrences of Hieracium spp. to a Catchment the base; seeds dark brown or purplish black, up to 2 mm long Management Officer at a local office of the Department. with dingy white, non-feathery pappus hairs up to 6 mm long. Manual and chemical control measures will be used on Weed in New Zealand and North America. infestations. H. caespitosum Dumort., field hawkweed. Leaves 5-20 cm long, elongated at base, with long hairs; stems 30-50 cm high, References with 1-3 leaves, bearing 3-50 flower heads, flowers yellow. Blood, K. (2001) Environmental Weeds – A Field Guide for SE H. lepidulum (Stenstr.) Omang, tussock hawkweed. Australia. Mt Waverley, C.H.Jerram Science Publishers. H. pilosella L. (Pilosella officinarum), mouse-ear hawkweed. Groves, R. (1996) Hawkweeds. Australian Quarantine and Stoloniferous, mat-forming, usually with many long, slender, Inspection Service, Pest Leaflet. leafy stolons; to 30 cm high; leaves mostly in a basal rosette, Morgan, J. (2000) Orange hawkweed Hieracium aurantiacum L.: a oblong or oblanceolate to spoon-shaped, to 12 cm long, entire, new naturalised species in alpine Australia. Victorian Naturalist bristly, with long pale hairs and a dense matt of star-shaped 117(2), 50-51. hairs on the underside when young; flowers heads to 25 mm Roy, B., Popay, I., Champion, P., James, T. and Rahman, A. (1998) diameter, usually solitary, bracts around the flower head hairy, An Illustrated Guide to Common Weeds of New Zealand. Canterbury, flowers pale yellow, often with a red stripe; seeds purplish- NZ, New Zealand Plant Protection Society. black. Weed in North America and Europe. The worst species Sell, P.D. and West, C. (1976) Hieracium L. Pp. 358-410 in T.G. in New Zealand. A potential alpine invader in Australia. Tutin et al. (Eds.) Flora Europaea Volume 4. Plantaginaceae to Compositae (and Rubiaceae). London, Cambridge University Press. H. praealtum Vill. ex Gochnat, king-devil hawkweed. Webb, C.J., Sykes, W.R. & Garnock-Jones, P.J. (1988) Flora of New Generally a mat-forming perennial, 15-45 cm high; with Zealand Volume IV. Naturalised Pteridophytes, Gymnosperms, slender, leafy stolons; leaves mostly basal, lance-shaped, 10-15 Dicotyledons. Christchurch NZ, DSIR. cm long, bluish-green on the upper surface with 3 mm long hairs; flowers yellow, heads to 20 mm diameter, on stems up Acknowledgements to 30 cm high, few to many (up to 25) heads per stem, up to 3 small leaves per stem. Compiled by Ian Faithfull. Figures 1 and 2 by Kate Blood, copyright 2001 CRC for Weed Management Systems. Properties Hawkweeds are potentially extremely serious weeds, This publication may be of assistance to you but the State of Victoria and its officers do not guarantee that the publication is without flaw of any particularly for the tussock grasslands of the tablelands of kind or is wholly appropriate for your particular purposes and therefore south-eastern Australia. They are major environmental and disclaims all liability for any error, loss or other consequence which may pasture weeds in montane and subalpine areas in New arise from you relying on any information in this publication. © State of Victoria, Department of Primary Industries 2003 Page 2.
Recommended publications
  • List of Vascular Plants Endemic to Britain, Ireland and the Channel Islands 2020
    British & Irish Botany 2(3): 169-189, 2020 List of vascular plants endemic to Britain, Ireland and the Channel Islands 2020 Timothy C.G. Rich Cardiff, U.K. Corresponding author: Tim Rich: tim_rich@sky.com This pdf constitutes the Version of Record published on 31st August 2020 Abstract A list of 804 plants endemic to Britain, Ireland and the Channel Islands is broken down by country. There are 659 taxa endemic to Britain, 20 to Ireland and three to the Channel Islands. There are 25 endemic sexual species and 26 sexual subspecies, the remainder are mostly critical apomictic taxa. Fifteen endemics (2%) are certainly or probably extinct in the wild. Keywords: England; Northern Ireland; Republic of Ireland; Scotland; Wales. Introduction This note provides a list of vascular plants endemic to Britain, Ireland and the Channel Islands, updating the lists in Rich et al. (1999), Dines (2008), Stroh et al. (2014) and Wyse Jackson et al. (2016). The list includes endemics of subspecific rank or above, but excludes infraspecific taxa of lower rank and hybrids (for the latter, see Stace et al., 2015). There are, of course, different taxonomic views on some of the taxa included. Nomenclature, taxonomic rank and endemic status follows Stace (2019), except for Hieracium (Sell & Murrell, 2006; McCosh & Rich, 2018), Ranunculus auricomus group (A. C. Leslie in Sell & Murrell, 2018), Rubus (Edees & Newton, 1988; Newton & Randall, 2004; Kurtto & Weber, 2009; Kurtto et al. 2010, and recent papers), Taraxacum (Dudman & Richards, 1997; Kirschner & Štepànek, 1998 and recent papers) and Ulmus (Sell & Murrell, 2018). Ulmus is included with some reservations, as many taxa are largely vegetative clones which may occasionally reproduce sexually and hence may not merit species status (cf.
    [Show full text]
  • Managing for Species: Integrating the Needs of England’S Priority Species Into Habitat Management
    Natural England Research Report NERR024 Managing for species: Integrating the needs of England’s priority species into habitat management. Part 2 Annexes www.naturalengland.org.uk Natural England Research Report NERR024 Managing for species: Integrating the needs of England’s priority species into habitat management. Part 2 Annexes Webb, J.R., Drewitt, A.L. and Measures, G.H. Natural England Published on 15 January 2010 The views in this report are those of the authors and do not necessarily represent those of Natural England. You may reproduce as many individual copies of this report as you like, provided such copies stipulate that copyright remains with Natural England, 1 East Parade, Sheffield, S1 2ET ISSN 1754-1956 © Copyright Natural England 2010 Project details This report results from work undertaken by the Evidence Team, Natural England. A summary of the findings covered by this report, as well as Natural England's views on this research, can be found within Natural England Research Information Note RIN024 – Managing for species: Integrating the needs of England’s priority species into habitat management. This report should be cited as: WEBB, J.R., DREWITT, A.L., & MEASURES, G.H., 2009. Managing for species: Integrating the needs of England’s priority species into habitat management. Part 2 Annexes. Natural England Research Reports, Number 024. Project manager Jon Webb Natural England Northminster House Peterborough PE1 1UA Tel: 0300 0605264 Fax: 0300 0603888 jon.webb@naturalengland.org.uk Contractor Natural England 1 East Parade Sheffield S1 2ET Managing for species: Integrating the needs of England’s priority species into habitat i management.
    [Show full text]
  • Richard Chinn Environmental Training, Inc. Info
    Scientific Name Common Name Region 6 Habit Scientific Name Common Name Region 6 Habit Abies balsamea FIR,BALSAM FACW NT Amaranthus californicus AMARANTH,CALIFORNIA NI ANF Abutilon theophrasti VELVET-LEAF NI AIF Amaranthus crassipes AMARANTH,TROPICAL FAC+ AIF Acacia greggii ACACIA,CATCLAW UPL NST Amaranthus greggii AMARANTH,GREGGIS FAC ANF Acacia smallii HUISACHE FACU NTS Amaranthus obcordatus AMARANTH,TRANS PECOS NI ANF Acalypha rhomboidea COPPER-LEAF,COMMON UPL* ANF Amaranthus palmeri AMARANTH,PALMER'S FACU- ANF Acalypha virginica MERCURY,THREE-SEEDED UPL* ANF Amaranthus retroflexus AMARANTH,RED-ROOT FACU- ANF Acer negundo BOX-ELDER FACW- NT Amaranthus rudis AMARANTH,TALL FAC ANF Acer rubrum MAPLE,DRUMMOND RED FACW NT Amaranthus spinosus AMARANTH,SPINY FACU- ANF Acer rubrum MAPLE,TRIDENT RED NI NT Amaranthus tuberculatus AMARANTH,ROUGH-FRUIT NI ANF Acer rubrum MAPLE,RED FAC NT Ambrosia artemisiifolia RAGWEED,ANNUAL FACU- ANF Acer saccharinum MAPLE,SILVER FAC NT Ambrosia grayi BURSAGE,WOOLLY-LEAF FACW PNF Acer saccharum MAPLE,SUGAR UPL NT Ambrosia psilostachya RAGWEED,NAKED-SPIKE FAC- PNF Achillea millefolium YARROW,COMMON FACU PNF Ambrosia trifida RAGWEED,GREAT FAC ANF Acorus calamus SWEETFLAG OBL PIEF Amelanchier alnifolia SERVICE-BERRY,SASKATOON FAC- NS Adiantum capillus-veneris FERN,SOUTHERN MAIDEN-HAIR FACW+ PNF3 Amelanchier arborea SERVICE-BERRY,DOWNY FACU NT Adiantum pedatum FERN,NORTHERN MAIDEN-HAIR FAC PNF3 Amianthium muscaetoxicum FLYPOISON FAC PNF Adiantum tricholepis FERN,HAIRY MAIDEN-HAIR FAC PNF3 Ammannia auriculata AMMANNIA,RED-STEM
    [Show full text]
  • 2017, Jones Road, Near Blackhawk, RAIN (Photo: Michael Dawber)
    Edited and Compiled by Rick Cavasin and Jessica E. Linton Toronto Entomologists’ Association Occasional Publication # 48-2018 European Skippers mudpuddling, July 6, 2017, Jones Road, near Blackhawk, RAIN (Photo: Michael Dawber) Dusted Skipper, April 20, 2017, Ipperwash Beach, LAMB American Snout, August 6, 2017, (Photo: Bob Yukich) Dunes Beach, PRIN (Photo: David Kaposi) ISBN: 978-0-921631-53-7 Ontario Lepidoptera 2017 Edited and Compiled by Rick Cavasin and Jessica E. Linton April 2018 Published by the Toronto Entomologists’ Association Toronto, Ontario Production by Jessica Linton TORONTO ENTOMOLOGISTS’ ASSOCIATION Board of Directors: (TEA) Antonia Guidotti: R.O.M. Representative Programs Coordinator The TEA is a non-profit educational and scientific Carolyn King: O.N. Representative organization formed to promote interest in insects, to Publicity Coordinator encourage cooperation among amateur and professional Steve LaForest: Field Trips Coordinator entomologists, to educate and inform non-entomologists about insects, entomology and related fields, to aid in the ONTARIO LEPIDOPTERA preservation of insects and their habitats and to issue Published annually by the Toronto Entomologists’ publications in support of these objectives. Association. The TEA is a registered charity (#1069095-21); all Ontario Lepidoptera 2017 donations are tax creditable. Publication date: April 2018 ISBN: 978-0-921631-53-7 Membership Information: Copyright © TEA for Authors All rights reserved. No part of this publication may be Annual dues: reproduced or used without written permission. Individual-$30 Student-free (Association finances permitting – Information on submitting records, notes and articles to beyond that, a charge of $20 will apply) Ontario Lepidoptera can be obtained by contacting: Family-$35 Jessica E.
    [Show full text]
  • Asteraceae) and Its Implications to the Taxonomic Position of the Genus Pietrosia
    Phytotaxa 197 (4): 282–290 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.197.4.5 First mature fruit description of Pietrosia laevitomentosa (Asteraceae) and its implications to the taxonomic position of the genus Pietrosia ANCA MANOLE Plant and Animal Cytobiology Department, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania; email: anca.manole@ibiol.ro Abstract For the first time we describe the morphology and anatomy of mature achenes bearing fertile seeds of Pietrosia laevito- mentosa, an endemic plant species in the Eastern Carpathians. The new diagnostic features of the genus Pietrosia justify its taxonomic recognition as separate from Andryala; those are the achene size (between 2.5 and 4.3 mm long), the deciduous pappus, the single-rimmed achene apex, the elongate exocarpic cells, the complete ring of mesocarpic sclerenchyma (up to 11-layered), and the number and localization of the vascular bundles (5 bundles, in the small ribs). Furthermore, our data may also serve to reconsider the species ecology and conservation strategies. Key words: carpology, Compositae, conservation, Eastern Carpathians, endangered species, endemism, Romania, sexual propagation Introduction Pietrosia laevitomentosa Nyár. in Sennikov (1999: 78) is still an enigmatic species despite being the subject of active scientific interest after its discovery fifty years ago. It was the only species assigned to the genus Andryala found so far north, as all the other species occur in the Mediterranean Region and Macaronesia (Lucas & Synge 1978). According to published reports, the plant has a very restricted distribution in an area of about 150 square meters on rocky slopes of the Pietrosul Bistriţei Mountain (Eastern Carpathians, Romania).
    [Show full text]
  • Asteraceae) from Central and Southeastern Europe
    ACTA BIOLOGICA CRACOVIENSIA Series Botanica 53/1: 102–110, 2011 DOI: 10.2478/v10182-011-0014-3 CHROMOSOME NUMBERS IN HIERACIUM AND PILOSELLA (ASTERACEAE) FROM CENTRAL AND SOUTHEASTERN EUROPE TOMASZ ILNICKI1* AND ZBIGNIEW SZELĄG2** 1Department of Plant Cytology and Embryology, Jagiellonian University, Grodzka 52, 31-044 Cracow, Poland, 2Institute of Botany, Jagiellonian University, Kopernika 31, 31-501 Cracow, Poland Received March 20, 2011; revision accepted April 29, 2011 Chromosome numbers of 46 Hieracium L. and Pilosella Vaill. taxa from Austria, Bulgaria, Czech Republic, Macedonia, Montenegro, Poland, Romania, Serbia and Slovakia are presented. Chromosomes numbers are given for the first time for Hieracium amphigenum Briq. 2n = 3x = 27, H. bohatschianum Zahn 2n = 4x = 36, H. borbasii R. Uechtr. 2n = 4x = 36, H. cernuum Friv. 2n = 2x = 18, H. hazslinszkyi Pax 2n = 3x = 27, H. mirekii Szeląg 2n = 4x = 36, H. polyphyllobasis (Nyár. & Zahn) Szeląg 2n = 3x = 27, H. porphyriticum A. Kern. 2n = 4x = 36, H. racemosum Waldst. & Kit. ex Willd. subsp. racemosum 2n = 3x = 27, H. scardicum Borm. & Zahn 2n = 4x = 36, H. sparsum subsp. ipekanum Rech. fil. & Zahn 2n = 4x = 36, H. sparsum subsp. peristeriense Behr & Zahn, H. sparsum subsp. squarrosobracchiatum Behr & al. 2n = 3x = 27, H. tomosense Simk. 2n = 4x = 36, H. tubulare Nyár. 2n = 4x = 36, H. werneri Szeląg 2n = 3x = 27 and Pilosella fusca subsp. subpe- dunculata (Zahn) Szeląg, as well as five species of Hieracium sect. Cernua R. Uechtr. not described to date and a hybrid between H. bifidum s. lat. and H. pojoritense Woł. Key words: Asteraceae, chromosome numbers, Europe, Hieracium, karyotypes, Pilosella. INTRODUCTION In the genus Pilosella, determining the mode of reproduction on the basis of ploidy level is more com- Hieracium L.
    [Show full text]
  • DANDELION Taraxacum Officinale ERADICATE
    OAK OPENINGS REGION BEST MANAGEMENT PRACTICES DANDELION Taraxacum officinale ERADICATE This Best Management Practice (BMP) document provides guidance for managing Dandelion in the Oak Openings Region of Northwest Ohio and Southeast Michigan. This BMP was developed by the Green Ribbon Initiative and its partners and uses available research and local experience to recommend environmentally safe control practices. INTRODUCTION AND IMPACTS— Dandelion (Taraxacum officinale) HABITAT—Dandelion prefers full sun and moist, loamy soil but can is native to Eurasia and was likely introduced to North America many grow anywhere with 3.5-110” inches of annual precipitation, an an- times. The earliest record of Dandelion in North America comes from nual mean temperature of 40-80°F, and light. It is tolerant of salt, 1672, but it may have arrived earlier. It has been used in medicine, pollutants, thin soils, and high elevations. In the OOR Dandelion has food and beverages, and stock feed. Dandelion is now widespread been found on sand dunes, in and at the top of floodplains, near across the planet, including OH and MI. vernal pools and ponds, and along roads, ditches, and streams. While the Midwest Invasive Species Information Net- IDENTIFICATION—Habit: Perennial herb. work (MISIN) has no specific reports of Dandelion in or within 5 miles of the Oak Openings Region (OOR, green line), the USDA Plants Database reports Dan- D A delion in all 7 counties of the OOR and most neighboring counties (black stripes). Dan- delion is ubiquitous in the OOR. It has demonstrated the ability to establish and MI spread in healthy and disturbed habitats of OH T © Lynn Sosnoskie © Steven Baskauf © Chris Evans the OOR and both the wet nutrient rich soils of wet prairies and floodplains as well Leaves: Highly variable in shape, color and hairiness in response to as sandy dunes and oak savannas.
    [Show full text]
  • A New Species and a New Range Extension in Hieracium Sect
    Phytotaxa 309 (2): 173–178 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.309.2.9 A new species and a new range extension in Hieracium sect. Cernua (Asteraceae) from Romania ZBIGNIEW SZELĄG Zbigniew Szeląg, Pedagogical University of Cracow, Department of Botany, Podchorążych 2, 30-084 Kraków, Poland, azszelag@wp.pl Abstract Hieracium joannei, a new, apomictic species in H. sect. Cernua is described from the Şureanu Mountains, Southern Car- pathians, Romania, and illustrated with photos of the holotype and living plants in the locus classicus. Hieracium zanogae (= H. tubulare), previously considered to be endemic to the Retezat Mountains, has been found in the Parâng Mountains. This is the easternmost occurrence of the species, disjoined ca 50 km from the nearest localities in the Retezat Mountains. A key for the species of H. sect. Cernua in Romania is provided. Key words: Carpathians, Compositae, Hieracium, taxonomy Introduction Hieracium sect. Cernua Uechtritz (1875: 215) comprises two diploid, sexual species, H. sparsum Frivaldszky (1836: 436) and H. cernuum Frivaldszky (1840: 204) (Ilnicki & Szeląg 2011, Szeląg & Ilnicki 2011, Szeląg et al. 2007), and ca 40 agamospermous species of hybrid origin between both diploids and taxa belonging to other sections (Zahn 1938). In Romania H. sect. Cernua is represented by 15 endemic species (Szeląg 2006). The present occurrence of H. sect. Cernua in Romania is what has been left of the original range of H. sparsum and H. cernuum (both currently limited to the Balkan Peninsula), and is a relict.
    [Show full text]
  • Orange Hawkweed Pilosella Aurantiacum (Hieracium)
    Orange hawkweed Other common names: USDA symbol: HIAU Pilosella aurantiacum (Hieracium) Devil’s paintbrush ODA rating: A and T Introduction: Orange hawkweed is native to Europe. One of the more attractive hawkweeds, people have been very instrumental in distributing this plant throughout the country. Orange hawkweed is found from western Washington to Wyoming and is known to occur in eastern states. It is very aggressive, rapidly invading any habitat where it is introduced. Oregon’s populations are still limited but increasing in urban areas. Distribution in Oregon: Distribution is limited but expanding. The well-established population in Clackamas County is our oldest site with newer populations reported throughout central and south central Oregon. Description: Orange hawkweed is an aggressive perennial hawkweed sporting attractive, showy orange flowers. The bright orange flowers attract gardeners who are unaware of its aggressive nature. It rapidly spreads through lawns, flowerbeds and meadows through abundant seed production and aboveground runners (stolons) that root at the tips creating dense populations. The flower stalks grow up to 12+ inches tall and contain a milky sap. The vibrant orange-red flowers are clustered at the top of leafless stems. The stems are entirely covered by stiff, black, glandular hairs. Leaves are hairy, lance shaped, up to five inches long, and exclusively basal. Impacts: Once established, hawkweed quickly develops into a monoculture that continues to expand until it covers the site. A dense mat of hawkweed plants has the potential to eliminate or restrict other vegetation, even lawns. Its unpalatable vegetation displaces native vegetation posing a serious threat to native plant communities while also invading pastures and roadsides.
    [Show full text]
  • Tribu Cardueae Hurrell, Julio Alberto Plantas Cultivadas De La Argent
    FamiliaFamilia Asteraceae Asteraceae - - Tribu Tribu Cichorieae Cardueae Hurrell, Julio Alberto Plantas cultivadas de la Argentina : asteráceas-compuestas / Julio Alberto Hurrell ; Néstor D. Bayón ; Gustavo Delucchi. - 1a ed. - Ciudad Autónoma de Buenos Aires : Hemisferio Sur, 2017. 576 p. ; 24 x 17 cm. ISBN 978-950-504-634-8 1. Cultivo. 2. Plantas. I. Bayón, Néstor D. II. Delucchi, Gustavo III. Título CDD 580 © Editorial Hemisferio Sur S.A. 1a. edición, 2017 Pasteur 743, C1028AAO - Ciudad Autónoma de Buenos Aires, Argentina. Telefax: (54-11) 4952-8454 e-mail: informe@hemisferiosur.com.ar http//www.hemisferiosur.com.ar Reservados todos los derechos de la presente edición para todos los países. Este libro no se podrá reproducir total o parcialmente por ningún método gráfico, electrónico, mecánico o cualquier otro, incluyendo los sistemas de fotocopia y fotoduplicación, registro magnetofónico o de alimentación de datos, sin expreso consentimiento de la Editorial. Hecho el depósito que prevé la ley 11.723 IMPRESO EN LA ARGENTINA PRINTED IN ARGENTINA ISBN 978-950-504-634-8 Fotografías de tapa (Pericallis hybrida) y contratapa (Cosmos bipinnatus) por Daniel H. Bazzano. Esta edición se terminó de imprimir en Gráfica Laf S.R.L., Monteagudo 741, Villa Lynch, San Martín, Provincia de Buenos Aires. Se utilizó para su interior papel ilustración de 115 gramos; para sus tapas, papel ilustración de 300 gramos. Ciudad Autónoma de Buenos Aires, Argentina Septiembre de 2017. 192 Plantas cultivadas de la Argentina Plantas cultivadas de la Argentina Asteráceas (= Compuestas) Julio A. Hurrell Néstor D. Bayón Gustavo Delucchi Editores Editorial Hemisferio Sur Ciudad Autónoma de Buenos Aires 2017 193 FamiliaFamilia Asteraceae Asteraceae - - Tribu Tribu Cichorieae Cardueae Autores María B.
    [Show full text]
  • Genetic Dissection of Apomixis in Dandelions Identifies a Dominant
    G C A T T A C G G C A T genes Article Genetic Dissection of Apomixis in Dandelions Identifies a Dominant Parthenogenesis Locus and Highlights the Complexity of Autonomous Endosperm Formation Peter J. Van Dijk 1,*, Rik Op den Camp 1 and Stephen E. Schauer 2 1 Keygene N.V., Agro Business Park 90, 6708 PW Wageningen, The Netherlands; rik.op-den-camp@keygene.com 2 Keygene Inc., Rockville, MD 20850, USA; stephen.schauer@keygene.com * Correspondence: peter.van-dijk@keygene.com; Tel.: +31-317-466-866 Received: 20 July 2020; Accepted: 18 August 2020; Published: 20 August 2020 Abstract: Apomixis in the common dandelion (Taraxacum officinale) consists of three developmental components: diplospory (apomeiosis), parthenogenesis, and autonomous endosperm development. The genetic basis of diplospory, which is inherited as a single dominant factor, has been previously elucidated. To uncover the genetic basis of the remaining components, a cross between a diploid sexual seed parent and a triploid apomictic pollen donor was made. The resulting 95 triploid progeny plants were genotyped with co-dominant simple-sequence repeat (SSR) markers and phenotyped for apomixis as a whole and for the individual apomixis components using Nomarski Differential Interference Contrast (DIC) microscopy of cleared ovules and seed flow cytometry. From this, a new SSR marker allele was discovered that was closely linked to parthenogenesis and unlinked to diplospory. The segregation of apomixis as a whole does not differ significantly from a three-locus model, with diplospory and parthenogenesis segregating as unlinked dominant loci. Autonomous endosperm is regularly present without parthenogenesis, suggesting that the parthenogenesis locus does not also control endosperm formation.
    [Show full text]
  • What Is the State Noxious Weed Law? What Is the Role
    NOT CURRENTLY KNOWN TO CLASS B EITHER NOT CURRENTLY CLASS A BE PRESENT IN PIERCE CO. WHAT IS THE STATE NOXIOUS PRESENT OR NOT ENFORCED IN NOXIOUS WEEDS PIERCE COUNTY NOXIOUS WEEDS WEED LAW? broom, French Genista monspessulana hawkweed, mouse ear Hieracium pilosella broom, Spanish Spartium junceum The goal of Washington’s noxious weed law (RCW hawkweed, queen-devil Hieracium glomeratum common crupina Crupina vulgaris 17.10) is to protect Washington from invasive, non- hawkweed, smooth Hieracium laevigatum native plants designated as noxious weeds. It re- hawkweed, tall Heiracium piloselloides cordgrass, dense flower Spartina densiflora quires public and private landowners—including city, cordgrass, salt meadow Spartina patens county and state land agencies—to control and pre- hawkweed, yellow Hieracium caespitosum vent the spread of noxious weeds on their property. Geranium robertianum eggleaf spurge Euphorbia oblongata herb-Robert hoary alyssum Berteroa incana false brome Brachypodium sylvaticum houndstongue Cynoglossum officinale floating primrose-willow Ludwigia peploides WHAT IS THE ROLE OF THE PIERCE indigobush Amorpha fruticosa flowering rush Butomus umbellatus COUNTY WEED PROGRAM? knapweed, black Centaurea nigra goatsrue Galega officinalis Since many people are unfamiliar with noxious knapweed, brown Centaurea jacea hawkweed, European Hieracium sabaudum weeds, the county weed program exists to provide knapweed, Russian Acroptilon repens hydrilla Hydrilla verticillata information on identification and control methods. We use a variety of methods to help accomplish this knotweed, Bohemian Polygonum x bohemicum Johnsongrass Sorghum halepense task including; educational presentations, informa- knotweed, giant Polygonum sachalinense knapweed, bighead Centaurea macrocephala tional brochures, on-site consultations, and our Edu- Polygonum polystachyum cation Booth at local fairs & events.
    [Show full text]