Clinical Utility of RNA Sequencing to Resolve Unusual GNE Myopathy with a Novel Promoter Deletion

Total Page:16

File Type:pdf, Size:1020Kb

Clinical Utility of RNA Sequencing to Resolve Unusual GNE Myopathy with a Novel Promoter Deletion 11. de Seze MP, Rezzouk J, de Seze M, Uzel M, Lavignolle B, Midy D, et al. REFERENCES Does the motor branch of the long head of the triceps brachii arise 1. Hems TE, Mahmood F. Injuries of the terminal branches of the infra- from the radial nerve? An anatomic and electromyographic study. Surg clavicular brachial plexus: patterns of injury, management and out- Radiol Anat 2004;26(6):459–461. come. J Bone Joint Surg Br 2012;94:799–804. 12. Cartwright MS, Passmore LV, Yoon JS, Brown ME, Caress JB, Walker FO. 2. Atef A, El-Tantawy A, Gad H, Hefeda M. Prevalence of associated inju- Cross-sectional area reference values for nerve ultrasonography. Muscle ries after anterior shoulder dislocation: a prospective study. Int Orthop Nerve 2008;37(5):566–571. 2016;40:519–524. 13. Cartwright MS, Shin HW, Passmore LV, Walker FO. Ultrasonographic 3. Mitchell JJ, Chen C, Liechti DJ, Heare A, Chahla J, Bravman JT. Axillary reference values for assessing the normal median nerve in adults. nerve palsy and deltoid muscle atony. JBJS Rev 2017;5(7):e1. J Neuroimaging 2009;19(1):47–51. 4. Brown SA, Doolittle DA, Bohanon CJ, Jayaraj A, Naidu SG, Huettl EA, 14. Zaidman CM, Al-Lozi M, Pestronk A. Peripheral nerve size in normals et al. Quadrilateral space syndrome: the Mayo Clinic experience with a and patients with polyneuropathy: an ultrasound study. Muscle Nerve new classification system and case series. Mayo Clin Proc 2015;90(3): 2009;40(6):960–966. 382–394. 15. Cartwright MS, Mayans DR, Gillson NA, Griffin LP, Walker FO. Nerve 5. Maak TG, Osei D, Delos D, Taylor S, Warren RF, Weiland AJ. Periph- cross-sectional area in extremes of age. Muscle Nerve 2013;47(6): eral nerve injuries in sports-related surgery: presentation, evaluation, 890–893. and management: AAOS exhibit selection. J Bone Joint Surg Am 2012; 16. Won SJ, Kim BJ, Park KS, Kim SH, Yoon JS. Measurement of cross- 94(16):e121(1–10). sectional area of cervical roots and brachial plexus trunks. Muscle 6. Lee S, Saetia K, Saha S, Kline DG, Kim DH. Axillary nerve injury associ- Nerve 2012;46(5):711–716. ated with sports. Neurosurg Focus 2011;31(5):E10. 17. Qrimli M, Ebadi H, Breiner A, Siddiqui H, Alabdali M, Abraham A, 7. Boon A. Ultrasonography and electrodiagnosis: are they complemen- et al. Reference values for ultrasonography of peripheral nerves. Muscle tary techniques? PM R 2013;5(5 Suppl):S100–S106. Nerve 2016;53(4):538–544. 8. Gruber H, Peer S, Gruber L, Loescher W, Bauer T, Loizides A. Ultra- 18. Simone JP, Streubel PN, Sanchez-Sotelo J, Steinmann SP, Adams JE. sound imaging of the axillary nerve and its role in the diagnosis of trau- Change in the distance from the axillary nerve to the glenohumeral matic impairment. Ultraschall Med 2014;35(4):332–338. joint with shoulder external rotation or abduction position. Hand 9. Stecco C, Gagliano G, Lancerotto L, Tiengo C, Macchi V, Porzionato A, (N Y) 2017;12(4):395–400. et al. Surgical anatomy of the axillary nerve and its implication in the 19. James J, Sutton LG, Werner FW, Basu N, Allison MA, Palmer AK. Mor- transdeltoid approaches to the shoulder. J Shoulder Elbow Surg 2010; phology of the cubital tunnel: an anatomical and biomechanical study 19(8):1166–1174. with implications for treatment of ulnar nerve compression. J Hand 10. Leechavengvongs S, Teerawutthichaikit T, Witoonchart K, Surg Am 2011;36(12):1988–1995. Uerpairojkit C, Malungpaishrope K, Suppauksorn S, et al. Surgical anat- 20. Thoirs K, Williams MA, Phillips M. Ultrasonographic measurements of omy of the axillary nerve branches to the deltoid muscle. Clin Anat 2015; the ulnar nerve at the elbow: role of confounders. J Ultrasound Med – 28(1):118 122. 2008;27(5):737–743. CLINICAL UTILITY OF RNA SEQUENCING TO RESOLVE UNUSUAL GNE MYOPATHY WITH A NOVEL PROMOTER DELETION SAMYA CHAKRAVORTY, PHD ,1 KIERA BERGER, BS,2 DALIA ARAFAT, MS,2 BABI RAMESH REDDY NALLAMILLI, PHD,1 HARI PRASANNA SUBRAMANIAN, MS,2 SOUMYA JOSEPH, PHD,3 MARY E. ANDERSON, MS,3 KEVIN P. CAMPBELL, PHD,3 JONATHAN GLASS, MD,4 GREG GIBSON, PHD,2 and MADHURI HEGDE, PHD1,5 1 Department of Human Genetics, Emory University School of Medicine, Whitehead Building Suite 301, 615 Michael Street NE, Georgia, USA 2 Center for Integrative Genomics, School of Biology, Georgia Institute of Technology, Atlanta, Georgia, USA 3 Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Department of Neurology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, Iowa, 52242, USA 4 Department of Neurology and Pathology, Emory University School of Medicine, Atlanta, Georgia, USA 5 Global Laboratory Services/Diagnostics, Perkin Elmer, Waltham, Massachusetts, USA Accepted 12 April 2019 ABSTRACT: Introduction: UDP N-acetylglucosamine2-epimerase/ both the diagnosis and a better understanding of the genotype- Results: fi N-acetylmannosamine-kinase (GNE) gene mutations can cause phenotype relationship. We identi ed a novel 7.08 kb path- GNE mostly autosomal-recessive myopathy with juvenile-onset known as ogenic deletion upstream of using array comparative genomic hereditary inclusion-body myopathy (HIBM). Methods: We describe hybridization (aCGH) and a common Val727Met variant. Using RNA- a family of a patient showing an unusual HIBM with both vacuolar seq, we found only monoallelic (Val727Met-allele) expression, lead- GNE α myopathy and myositis without quadriceps-sparing, hindering diag- ing to ~50% reduction in muscle. Importantly, -dystroglycan is nosis. We show how genetic testing with functional assays, clinical hypoglycosylated in the patient muscle, suggesting HIBM could be a “ ” Conclusions: transcriptome sequencing (RNA-seq) in particular, helped facilitate dystroglycanopathy. Our study shows the impor- tance of considering aCGH for GNE-myopathies, and the poten- tial of RNA-seq for faster, definitive molecular diagnosis of Additional supporting information may be found in the online version of unusual myopathies. this article. Muscle Nerve 60:98–103, 2019 Key words: aCGH, GNE myopathy (HIBM), molecular diagnostics, myosi- tis, next generation sequencing, transcriptome sequencing (RNA-seq) This work was also supported by Paul D. Wellstone Muscular Dystrophy Cooperative Research Center Grant (1U54NS053672) Funding: This work was supported by the Muscular Dystrophy Associa- tion grant MDA578400 to S.C. and grant MDA418496 to M.H. To enhance molecular diagnostic yield in neuro- Conflicts of Interest: None of the authors has any conflict of interest to muscular disorders (NMDs), functional assays down- – disclose. stream of genomic DNA1 4 is recommended by the Correspondence to: S. Chakravorty; e-mail: [email protected]. American College of Medical Genetics and Geno- and M. Hegde; e-mail: [email protected] mics (ACMG).5 GNE-myopathy (OMIM #605820) or © 2019 Wiley Periodicals, Inc. Published online 16 April 2019 in Wiley Online Library hereditary inclusion-body myopathy (HIBM) is a vac- (wileyonlinelibrary.com). DOI 10.1002/mus.26486 uolar myopathy generally sparing the quadriceps. It 98 Clinical Research Short Reports MUSCLE & NERVE July 2019 is a rare, recessive, inherited degenerative skeletal kinase-domain crystal-structure was performed. For methods muscle disorder caused by GNE gene (MIM# 603824; details, see Supplementary Methods, which are available online. NCBI Gene ID: 10020; NC_000009.12) variants with - – early-adult onset.6 8 The GNE enzyme catalyzes RESULTS the first 2 rate-limiting steps in the biosynthesis of Clinical Phenotype. The patient was a 21-year-old man, 5-N-acetylneuraminic acid (Neu5Ac)9,10 found as the ethnically Indian-Guyanese, with progressive muscle- terminal glycans on various glycoproteins/glycolipids, weakness without any cardiac or respiratory comorbidity. such as the sarcoglycans and dystroglycan (DG), func- Symptoms began at age 20 years with asymmetric leg pain tioning in variety of cellular pathways.11 and weakness, initially with bilateral-foot-drop and mild Our understanding of the molecular basis of GNE (Medical Research Council 4/5) weakness in the quadri- myopathy is unclear.12,13 Here,wedescribethelessons ceps, followed by rapidly progressive and severe bilateral learned by using functional genomic approaches to lower extremity distal weakness, additional quadriceps characterize an unusual GNE myopathy in a family weakness, and upper extremity weakness in the deltoids fi fl with a novel deletion variant in which relative quadri- and the long- nger- exors. There was no facial or bulbar fl cepssparinginassociationwithbothvacuolarmyopa- weakness and tendon re exes were reduced throughout. thy and myositis made diagnosis challenging. Needle electromyography of the quadriceps, tibialis anterior, iliopsoas, and medial gastrocnemius muscles demonstrated abnormal spontaneous activity (fibrillation MATERIALS AND METHODS potentials and positive sharp waves) and early motor unit All protocols were approved by institutional IRB with written potential recruitment, compatiblewithmultipletypesof consents and are presented here in chronological order. First, myopathies. There was no family history of neuromuscu- trio (patient and parents) exome sequencing and simultaneous lar disease. patient muscle biopsy immunohistochemistry, and then RNA sequencing of the biopsy, were performed, which prompted us to Quadriceps Showed Unusual HIBM: Both Vacuolar and do array comparative genomic hybridization (aCGH) to identify Inflammatory Myopathy. Quadriceps biopsy (Fig. 1) any deletions/duplications. Immunoblotting was then done using showed increased fiber-size variability with both muscle- biopsy to identify any glycosylation defect related to the HIBM fi fl pathophysiology. Gene ontology-pathway analysis14 led to further ber necrosis and perivascular in ammation. Promi- understanding of patient muscle glycosylation defects. Molecular- nent rimmed vacuoles were seen on modified Gomori dynamics (MD) simulation of the V727M variant on the GNE trichromethatwerepositivebyimmunohistochemistry FIGURE 1. Muscle biopsy showing central and sub-sarcolemmal vacuoles in hemotoxylin and eosin (H&E) (top panel left), which demon- strates red “rimming” with modified Gomori trichrome (top center panel). An example of inflammation is seen in the top right panel (cir- cled).
Recommended publications
  • Defining Functional Interactions During Biogenesis of Epithelial Junctions
    ARTICLE Received 11 Dec 2015 | Accepted 13 Oct 2016 | Published 6 Dec 2016 | Updated 5 Jan 2017 DOI: 10.1038/ncomms13542 OPEN Defining functional interactions during biogenesis of epithelial junctions J.C. Erasmus1,*, S. Bruche1,*,w, L. Pizarro1,2,*, N. Maimari1,3,*, T. Poggioli1,w, C. Tomlinson4,J.Lees5, I. Zalivina1,w, A. Wheeler1,w, A. Alberts6, A. Russo2 & V.M.M. Braga1 In spite of extensive recent progress, a comprehensive understanding of how actin cytoskeleton remodelling supports stable junctions remains to be established. Here we design a platform that integrates actin functions with optimized phenotypic clustering and identify new cytoskeletal proteins, their functional hierarchy and pathways that modulate E-cadherin adhesion. Depletion of EEF1A, an actin bundling protein, increases E-cadherin levels at junctions without a corresponding reinforcement of cell–cell contacts. This unexpected result reflects a more dynamic and mobile junctional actin in EEF1A-depleted cells. A partner for EEF1A in cadherin contact maintenance is the formin DIAPH2, which interacts with EEF1A. In contrast, depletion of either the endocytic regulator TRIP10 or the Rho GTPase activator VAV2 reduces E-cadherin levels at junctions. TRIP10 binds to and requires VAV2 function for its junctional localization. Overall, we present new conceptual insights on junction stabilization, which integrate known and novel pathways with impact for epithelial morphogenesis, homeostasis and diseases. 1 National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK. 2 Computing Department, Imperial College London, London SW7 2AZ, UK. 3 Bioengineering Department, Faculty of Engineering, Imperial College London, London SW7 2AZ, UK. 4 Department of Surgery & Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Communication Pathways in Human Nonmuscle Myosin-2C 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Authors: 25 Krishna Chinthalapudia,B,C,1, Sarah M
    1 Mechanistic Insights into the Active Site and Allosteric 2 Communication Pathways in Human Nonmuscle Myosin-2C 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Authors: 25 Krishna Chinthalapudia,b,c,1, Sarah M. Heisslera,d,1, Matthias Prellera,e, James R. Sellersd,2, and 26 Dietmar J. Mansteina,b,2 27 28 Author Affiliations 29 aInstitute for Biophysical Chemistry, OE4350 Hannover Medical School, 30625 Hannover, 30 Germany. 31 bDivision for Structural Biochemistry, OE8830, Hannover Medical School, 30625 Hannover, 32 Germany. 33 cCell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The 34 Scripps Research Institute, Jupiter, Florida 33458, USA. 35 dLaboratory of Molecular Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 36 20892, USA. 37 eCentre for Structural Systems Biology (CSSB), German Electron Synchrotron (DESY), 22607 38 Hamburg, Germany. 39 1K.C. and S.M.H. contributed equally to this work 40 2To whom correspondence may be addressed: E-mail: [email protected] or 41 [email protected] 42 43 1 44 Abstract 45 Despite a generic, highly conserved motor domain, ATP turnover kinetics and their activation by 46 F-actin vary greatly between myosin-2 isoforms. Here, we present a 2.25 Å crystal pre- 47 powerstroke state (ADPVO4) structure of the human nonmuscle myosin-2C motor domain, one 48 of the slowest myosins characterized. In combination with integrated mutagenesis, ensemble- 49 solution kinetics, and molecular dynamics simulation approaches, the structure reveals an 50 allosteric communication pathway that connects the distal end of the motor domain with the 51 active site.
    [Show full text]
  • S41467-020-18249-3.Pdf
    ARTICLE https://doi.org/10.1038/s41467-020-18249-3 OPEN Pharmacologically reversible zonation-dependent endothelial cell transcriptomic changes with neurodegenerative disease associations in the aged brain Lei Zhao1,2,17, Zhongqi Li 1,2,17, Joaquim S. L. Vong2,3,17, Xinyi Chen1,2, Hei-Ming Lai1,2,4,5,6, Leo Y. C. Yan1,2, Junzhe Huang1,2, Samuel K. H. Sy1,2,7, Xiaoyu Tian 8, Yu Huang 8, Ho Yin Edwin Chan5,9, Hon-Cheong So6,8, ✉ ✉ Wai-Lung Ng 10, Yamei Tang11, Wei-Jye Lin12,13, Vincent C. T. Mok1,5,6,14,15 &HoKo 1,2,4,5,6,8,14,16 1234567890():,; The molecular signatures of cells in the brain have been revealed in unprecedented detail, yet the ageing-associated genome-wide expression changes that may contribute to neurovas- cular dysfunction in neurodegenerative diseases remain elusive. Here, we report zonation- dependent transcriptomic changes in aged mouse brain endothelial cells (ECs), which pro- minently implicate altered immune/cytokine signaling in ECs of all vascular segments, and functional changes impacting the blood–brain barrier (BBB) and glucose/energy metabolism especially in capillary ECs (capECs). An overrepresentation of Alzheimer disease (AD) GWAS genes is evident among the human orthologs of the differentially expressed genes of aged capECs, while comparative analysis revealed a subset of concordantly downregulated, functionally important genes in human AD brains. Treatment with exenatide, a glucagon-like peptide-1 receptor agonist, strongly reverses aged mouse brain EC transcriptomic changes and BBB leakage, with associated attenuation of microglial priming. We thus revealed tran- scriptomic alterations underlying brain EC ageing that are complex yet pharmacologically reversible.
    [Show full text]
  • Ten Commandments for a Good Scientist
    Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Wageningen 2010 Thesis committee Thesis supervisors Prof. dr. ir. Ivonne M.C.M. Rietjens Professor of Toxicology Wageningen University Prof. dr. Albertinka J. Murk Personal chair at the sub-department of Toxicology Wageningen University Thesis co-supervisor Dr. ir. Jacques J.M. Vervoort Associate professor at the Laboratory of Biochemistry Wageningen University Other members Prof. dr. Michael R. Muller, Wageningen University Prof. dr. ir. Huub F.J. Savelkoul, Wageningen University Prof. dr. Everardus J. van Zoelen, Radboud University Nijmegen Dr. ir. Toine F.H. Bovee, RIKILT, Wageningen This research was conducted under the auspices of the Graduate School VLAG Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 14 September 2010 at 4 p.m. in the Aula Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds. Ana María Sotoca Covaleda Thesis Wageningen University, Wageningen, The Netherlands, 2010, With references, and with summary in Dutch. ISBN: 978-90-8585-707-5 “Caminante no hay camino, se hace camino al andar. Al andar se hace camino, y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar” - Antonio Machado – A mi madre.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Myopathy Genes (HGNC) Neuropathy (HGNC) Neuromuscular Disease
    Myopathy Genes Neuropathy Neuromuscular Disease (HGNC) (HGNC) (HGNC) ABHD5 ABCA1 ADCK3 ACTG2 ACO2 AGRN AGK AGXT ALS2 ALDOA AIFM1 ANG AMER1 ALAD AP4B1 ANO5 AMACR AP4E1 AR AP1S1 AP4M1 AUH APTX AP4S1 B4GALT1 AR AP5Z1 CACNA1S ATL3 ATM CASQ1 B4GALNT1 ATXN10 CCDC78 BAG3 ATXN7 CHCHD10 BRP44L BEAN1 CHRNA1 C12orf65 C9orf72 CHRNB1 C19orf12 CACNB4 CHRND C1NH CAPN3 CHRNE CECR1 CHAT CLPB CISD2 CHKB COL6A1 CLCF1 CHMP2B COL6A2 CLCN2 CHRNG COL6A3 CLP1 CLCN1 COLQ CMT2G COL9A3 CTNS CMT2H COQ2 DGUOK CMTDIA COQ6 DNA2 CMTX2 COQ9 DNAJB6 CMTX3 COX15 DNAJC19 COASY CPT1A DNM2 COX6A1 CYP7B1 DPM2 CPOX DAG1 DYSF CYP27A1 DDHD2 EMD CYP2U1 DOK7 EPG5 DARS2 DPAGT1 FAM111B DCAF8 DPM3 FBXL4 DDHD1 DUX4 FKBP14 DFNX5 ECEL1 FKRP DHTKD1 ERBB3 FLH1 DIAPH3 ERLIN2 FLNC DNAJB2 FA2H HNRNPA1 DNAJC3 FKTN HNRNPDL ELOVL5 FUS HNRPA2B1 ERCC8 G6PC KLHL40 FAH GFPT1 KLHL41 FAM126A GLE1 LAMA2 FBN1 GYS2 LDB3 FMR1 HSPD1 LMOD3 FXN IFRD1 MEGF10 GALC INF2 MGME1 GBE1 ISPD MTAP GJC2 ITGA7 MTMR14 GP1BA ITPR1 MYF6 HADHA KCNA1 MYH14 HADHB KCNC3 MYLK2 HFE KCNE3 NARS2 HINT1 KCNJ18 NEB HK1 KCNJ2 ORAI1 HMBS KIAA0196 PRKAG2 HSD17B4 KIF21A PTEN HSN1B L1CAM RBCK1 IARS2 LAMB2 RET IGHMBP2 LARGE RMND1 KCNJ10 MCCC2 SCN4A KIF5A MRE11A SERAC1 LRSAM1 MRPL3 SGCA LYST MTO1 SIL1 MANBA MTPAP SPEG MARS MTTP STAC3 MTATP6 MUSK STIM1 MYH14 MYBPC3 SYNE1 MYOT MYH3 SYNE2 NAMSD MYH8 TAZ NF2 NF1 TIA1 NGLY1 NIPA1 TMEM43 NMSR NOP56 TNPO3 NOTCH3 OPTN TNXB OPA1 PDSS2 TPM2 OPA3 PDYN TRPV4 OTOF PFN1 UBA1 PDK3 PHKA2 VCP PDSS1 PHKG2 XDH PEX10 PHOX2A ACADS PEX2 PIP5K1C ACADVL PMM2 PLEC ACTA1 PNPLA6 PLP1 AGL PPOX POMGNT1 AMPD1 PRICKLE1
    [Show full text]
  • Cldn19 Clic2 Clmp Cln3
    NewbornDx™ Advanced Sequencing Evaluation When time to diagnosis matters, the NewbornDx™ Advanced Sequencing Evaluation from Athena Diagnostics delivers rapid, 5- to 7-day results on a targeted 1,722-genes. A2ML1 ALAD ATM CAV1 CLDN19 CTNS DOCK7 ETFB FOXC2 GLUL HOXC13 JAK3 AAAS ALAS2 ATP1A2 CBL CLIC2 CTRC DOCK8 ETFDH FOXE1 GLYCTK HOXD13 JUP AARS2 ALDH18A1 ATP1A3 CBS CLMP CTSA DOK7 ETHE1 FOXE3 GM2A HPD KANK1 AASS ALDH1A2 ATP2B3 CC2D2A CLN3 CTSD DOLK EVC FOXF1 GMPPA HPGD K ANSL1 ABAT ALDH3A2 ATP5A1 CCDC103 CLN5 CTSK DPAGT1 EVC2 FOXG1 GMPPB HPRT1 KAT6B ABCA12 ALDH4A1 ATP5E CCDC114 CLN6 CUBN DPM1 EXOC4 FOXH1 GNA11 HPSE2 KCNA2 ABCA3 ALDH5A1 ATP6AP2 CCDC151 CLN8 CUL4B DPM2 EXOSC3 FOXI1 GNAI3 HRAS KCNB1 ABCA4 ALDH7A1 ATP6V0A2 CCDC22 CLP1 CUL7 DPM3 EXPH5 FOXL2 GNAO1 HSD17B10 KCND2 ABCB11 ALDOA ATP6V1B1 CCDC39 CLPB CXCR4 DPP6 EYA1 FOXP1 GNAS HSD17B4 KCNE1 ABCB4 ALDOB ATP7A CCDC40 CLPP CYB5R3 DPYD EZH2 FOXP2 GNE HSD3B2 KCNE2 ABCB6 ALG1 ATP8A2 CCDC65 CNNM2 CYC1 DPYS F10 FOXP3 GNMT HSD3B7 KCNH2 ABCB7 ALG11 ATP8B1 CCDC78 CNTN1 CYP11B1 DRC1 F11 FOXRED1 GNPAT HSPD1 KCNH5 ABCC2 ALG12 ATPAF2 CCDC8 CNTNAP1 CYP11B2 DSC2 F13A1 FRAS1 GNPTAB HSPG2 KCNJ10 ABCC8 ALG13 ATR CCDC88C CNTNAP2 CYP17A1 DSG1 F13B FREM1 GNPTG HUWE1 KCNJ11 ABCC9 ALG14 ATRX CCND2 COA5 CYP1B1 DSP F2 FREM2 GNS HYDIN KCNJ13 ABCD3 ALG2 AUH CCNO COG1 CYP24A1 DST F5 FRMD7 GORAB HYLS1 KCNJ2 ABCD4 ALG3 B3GALNT2 CCS COG4 CYP26C1 DSTYK F7 FTCD GP1BA IBA57 KCNJ5 ABHD5 ALG6 B3GAT3 CCT5 COG5 CYP27A1 DTNA F8 FTO GP1BB ICK KCNJ8 ACAD8 ALG8 B3GLCT CD151 COG6 CYP27B1 DUOX2 F9 FUCA1 GP6 ICOS KCNK3 ACAD9 ALG9
    [Show full text]
  • Gene-Based and Pathway-Based Genome-Wide Association Study of Alcohol Dependence
    • 111 • Shanghai Archives of Psychiatry, 2015, Vol. 27, No. 2 •Original research article• Gene-based and pathway-based genome-wide association study of alcohol dependence Lingjun ZUO1, Clarence K. ZHANG2,3*, Frederick G. SAYWARD4,5, Kei-Hoi CHEUNG4, Kesheng WANG6, John H. KRYSTAL1, Hongyu ZHAO2, Xingguang LUO1* Background: The organization of risk genes within signaling pathways may provide clues about the converging neurobiological effects of risk genes for alcohol dependence. Aims: Identify risk genes and risk gene pathways for alcohol dependence. Methods: We conducted a pathway-based genome-wide association study (GWAS) of alcohol dependence using a gene-set-rich analytic approach. Approximately one million genetic markers were tested in the discovery sample which included 1409 European-American (EA) alcohol dependent individuals and 1518 EA healthy comparison subjects. An additional 681 African-American (AA) cases and 508 AA healthy subjects served as the replication sample. Results: We identified several genome-wide replicable risk genes and risk pathways that were significantly associated with alcohol dependence. After applying the Bonferroni correction for multiple testing, the ‘cell- extracellular matrix interactions’ pathway (p<2.0E-4 in EAs) and the PXN gene (which encodes paxillin) (p=3.9E-7 in EAs) within this pathway were the most promising risk factors for alcohol dependence. There were also two nominally replicable pathways enriched in alcohol dependence-related genes in both EAs (0.015≤p≤0.035) and AAs (0.025≤p≤0.050): the ‘Na+/Cl- dependent neurotransmitter transporters’ pathway and the ‘other glycan degradation’ pathway. Conclusions: These findings provide new evidence highlighting several genes and biological signaling processes that may be related to the risk for alcohol dependence.
    [Show full text]
  • New Tests 2 Test Updates 4 CPT Code Updates 11 Deleted Tests 11 Diagnostics Update Volume XXI, No
    Volume XXI, No. 6 JUNE 2021 MONTHLY TEST UPDATES Diagnostics Update New Tests 2 Test Updates 4 CPT Code Updates 11 Deleted Tests 11 Diagnostics Update Volume XXI, No. 6 | JUNE 2021 New Tests Use Anti-DFS70 antibodies may help identify individuals who do not have an Anti-Carbamylated Protein (CarP) Antibody 520311 ANA-associated Autoimmune Rheumatic Disease (AARD) especially in the absence of significant clinical findings.1 Anti-DFS70 Ab, especially when positive CPT 83516 in isolation (i.e. in the absence of AARD-associated autoantibodies), may Synonyms Anti-CarP antigen antibody; RA marker prevent unnecessary referrals and examinations of ANA-positive individuals.2 Special Instructions This test has not been approved for NY state clients. Limitations This test should be used with clinical findings and other Specimen Serum autoimmune testing; it cannot be used alone to rule out autoimmune disease. Volume 1 mL This test was developed and its performance characteristics determined Minimum Volume 0.5 mL by Labcorp. It has not been cleared or approved by the Food and Drug Container Red-top tube; serum from red-top tube; serum from a gel tube; or Administration. serum gel tube Methodology Enzyme-linked immunosorbent assay (ELISA) Collection Separate serum from cells within one hour of collection. Transfer to a Additional Information Anti-DFS70 antibodies target the dense fine speckled plastic transport tube before shipping. protein of 70 kDa which is identical to Lens Epithelium-Derived Growth Factor Storage Instructions Refrigerate or freeze. or transcription co-activator p75 (LEDGFp75). They are detectable in 2% to 22% Stability of healthy individuals and in less than 1% of patients with AARD are of unknown Temperature Period clinical significance.
    [Show full text]
  • The Limb-Girdle Muscular Dystrophies and the Dystrophinopathies Review Article
    Review Article 04/25/2018 on mAXWo3ZnzwrcFjDdvMDuzVysskaX4mZb8eYMgWVSPGPJOZ9l+mqFwgfuplwVY+jMyQlPQmIFeWtrhxj7jpeO+505hdQh14PDzV4LwkY42MCrzQCKIlw0d1O4YvrWMUvvHuYO4RRbviuuWR5DqyTbTk/icsrdbT0HfRYk7+ZAGvALtKGnuDXDohHaxFFu/7KNo26hIfzU/+BCy16w7w1bDw== by https://journals.lww.com/continuum from Downloaded Downloaded from Address correspondence to https://journals.lww.com/continuum Dr Stanley Jones P. Iyadurai, Ohio State University, Wexner The Limb-Girdle Medical Center, Department of Neurology, 395 W 12th Ave, Columbus, OH 43210, Muscular Dystrophies and [email protected]. Relationship Disclosure: by mAXWo3ZnzwrcFjDdvMDuzVysskaX4mZb8eYMgWVSPGPJOZ9l+mqFwgfuplwVY+jMyQlPQmIFeWtrhxj7jpeO+505hdQh14PDzV4LwkY42MCrzQCKIlw0d1O4YvrWMUvvHuYO4RRbviuuWR5DqyTbTk/icsrdbT0HfRYk7+ZAGvALtKGnuDXDohHaxFFu/7KNo26hIfzU/+BCy16w7w1bDw== Dr Iyadurai has received the Dystrophinopathies personal compensation for serving on the advisory boards of Allergan; Alnylam Stanley Jones P. Iyadurai, MSc, PhD, MD; John T. Kissel, MD, FAAN Pharmaceuticals, Inc; CSL Behring; and Pfizer, Inc. Dr Kissel has received personal ABSTRACT compensation for serving on a consulting board of AveXis, Purpose of Review: The classic approach to identifying and accurately diagnosing limb- Inc; as journal editor of Muscle girdle muscular dystrophies (LGMDs) relied heavily on phenotypic characterization and & Nerve; and as a consultant ancillary studies including muscle biopsy. Because of rapid advances in genetic sequencing for Novartis AG. Dr Kissel has received research/grant methodologies,
    [Show full text]