Differences in Characteristics of Aviation Accidents During 1993-2012 Based on Aircraft Type
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Turbofan Engine Malfunction Recognition and Response Final Report
07/17/09 Turbofan Engine Malfunction Recognition and Response Final Report Foreword This document summarizes the work done to develop generic text and video training material on the recognition and appropriate response to turbofan engine malfunctions, and to develop a simulator upgrade package improving the realism of engine malfunction simulation. This work was undertaken as a follow-on to the AIA/AECMA report on Propulsion System Malfunction Plus Inappropriate Crew Response (PSM+ICR), published in 1998, and implements some of the recommendations made in the PSM+ICR report. The material developed is closely based upon the PSM+ICR recommendations. The work was sponsored and co-chaired by the ATA and FAA. The organizations involved in preparation and review of the material included regulatory authorities, accident investigation authorities, pilot associations, airline associations, airline operators, training companies and airplane and engine manufacturers. The FAA is publishing the text and video material, and will make the simulator upgrade package available to interested parties. Reproduction and adaptation of the text and video material to meet the needs of individual operators is anticipated and encouraged. Copies may be obtained by contacting: FAA Engine & Propeller Directorate ANE-110 12 New England Executive Park Burlington, MA 01803 1 07/17/09 Contributing Organizations and Individuals Note: in order to expedite progress and maximize the participation of US airlines, it was decided to hold all meetings in North America. European regulators, manufacturers and operators were both invited to attend and informed of the progress of the work. Air Canada Capt. E Jokinen ATA Jim Mckie AirTran Capt. Robert Stienke Boeing Commercial Aircraft Van Winters CAE/ Flight Safety Boeing Capt. -
The Years of Change
The Years of Change In early January of 1993 all the B-2 structural tests were successfully completed. The static load tests were taken to failure to 161% of maximum stress, and the durability test completed more than 2 lifetimes, which represented 20,000 design flight hours. January 1993 confidence was high for the $4-billion PAMPA Program as the company prepared to complete its first flight evaluation aircraft. However, the realities of the “post-cold war” era forced management to gear up for a tough year as the battle of the defense budget continued in Washington. The ailing commercial aviation industry presented additional challenges for the company. Boeing cut production on all their programs, and 1993 looked very gloomy. The company announced plans for down-sizing up to 1,500 people by the end of the year. Vought president Gordon Williams streamlined the management team to help the company ride out the business downturn, and still continue to meet its customer requirements. He stated that “business will be smaller but stronger.” In March 1993 Vought shipped its last engine nacelle for the Canadair business jet while continuing production on the regional jet nacelles. The 500th horizontal stabilizer for the Boeing 767 was shipped during March, and 141 employees elected to retire. In the meantime, Loral Corporation formed a new missiles group by combining Loral Vought Systems and Loral Aeronutronic during the month. At the end of April, 104 employees elected to retire. McDonnell Douglas certified Vought’s business processes in early May, which was another milestone on the way to becoming a preferred supplier for McDonnell Douglas. -
Aviation Activity Forecasts BOWERS FIELD AIRPORT AIRPORT MASTER PLAN
Chapter 3 – Aviation Activity Forecasts BOWERS FIELD AIRPORT AIRPORT MASTER PLAN Chapter 3 – Aviation Activity Forecasts The overall goal of aviation activity forecasting is to prepare forecasts that accurately reflect current conditions, relevant historic trends, and provide reasonable projections of future activity, which can be translated into specific airport facility needs anticipated during the next twenty years and beyond. Introduction This chapter provides updated forecasts of aviation activity for Kittitas County Airport – Bowers Field (ELN) for the twenty-year master plan horizon (2015-2035). The most recent FAA-approved aviation activity forecasts for Bowers Field were prepared in 2011 for the Airfield Needs Assessment project. Those forecasts evaluated changes in local conditions and activity that occurred since the previous master plan forecasts were prepared in 2000, and re-established base line conditions. The Needs Assessment forecasts provide the “accepted” airport-specific projections that are most relevant for comparison with the new master plan forecasts prepared for this chapter. The forecasts presented in this chapter are consistent with Bowers Field’s current and historic role as a community/regional general aviation airport. Bowers Field is the only airport in Kittitas County capable of accommodating a full range of general aviation activity, including business class turboprops and business jets. This level of capability expands the airport’s role to serve the entire county and the local Ellensburg community. The intent is to provide an updated set of aviation demand projections for Bowers Field that will permit airport management to make the decisions necessary to maintain a viable, efficient, and cost-effective facility that meets the area’s air transportation needs. -
What Is Quality? FOD &
What is Quality? FOD & ESD Presented by Janey Diogo 1 Agenda • Quality – Aerospace and Aviation • Foreign Object Debris (FOD) • Electrostatic Discharge (ESD) 2 What is Quality? • Quality is conformance to requirements. – For the product and the customer's requirements. – The system of quality is prevention. – The performance standard is zero defects (relative to requirements). – The measurement of quality is the price of nonconconformance. • Philip Crosby, a well known guru of Quality Management said “It is less expensive to do it right the first time than to pay for rework & repairs. • 3 Quality Assurance • A systematic process of checking to see whether a product or service being developed is meeting specified requirements. – Quality Assurance is a monitoring process. 4 Quality Control • A measure of excellence or a state of being free from defects, deficiencies and significant variations. – Quality Control is an evaluation process. 5 Quality History 1901 - Sir John Wolfe-Barry (the man who designed London's Tower Bridge) instigated the Council of the Institution of Civil Engineers to form a committee to consider standardizing iron and steel sections 1937 - Joseph Juran Introduced the Pareto principle (80/20 rule) 1937 - Hindenburg explosion 36 lives lost (ESD) 1946 - International Organization for Standardization founded in Geneva, Switzerland and the American Society for Quality Control (ASQC) was formed 1960 - First Quality Control Circles formed in Japan 1967 - Apollo 1 fire (ESD) 3 lives lost 1967 1970 - Apollo 13 Oxygen tank explosion (ESD) – No lives lost 6 Quality History 1977 - International Quality Control Circles formed 1979 - British Standard BS 5750 issued (replaced by ISO 9001 in 1987) 1980 - Aviation System Standards (AVN) focused on safety operations Managed by the FAA Safety and Quality Assurance Office 1986 - Six Sigma formulated by Bill Smith (Motorola) 1986 - Kaizen Institute established 1987 - Malcom Baldrige National Quality Award established 1988 - European Foundation for Quality management established by 14 European countries. -
FROM the GROUNDUP September 2004 CAPABILITIES BROCHURE
Vought Aircraft Industries, Inc. www.voughtaircraft.com INTEGRATED AEROSTRUCTURES FROM THE GROUNDUP September 2004 CAPABILITIES BROCHURE Airbus A330/A340 In 1988, we became the Boeing 747 We’ve built panels for the main first major U.S. structural assemblies supplier to fuselage, doors and the empennage section for more Airbus with the award of wing components for than 1,350 Boeing 747 aircraft since the program the A330/A340 long-range aircraft. Deliveries began in 1968. began in 1990, exceeding the 500 shipset mark in 2002. 2 PROVEN Lockheed Martin C-130J Hercules Northrop Grumman B-2 Spirit Our company has delivered more than 2,200 We were one of three team members on the empennage sections to Lockheed Martin B-2 program, with responsibility for more since becoming a supplier on the C-130 structure than any other team member. program in the 1950s. Through our heritage companies, we have been a premier supplier to the aerospace industry for nearly nine decades. Vought is a proven leader in providing aerostructures of superior quality to our customers. We’ve helped shape many major aircraft programs over the years – from small business jets to jumbo airplanes, and tactical fighters to cargo aircraft. From the ground up, Vought creates quality structures that help our customers take flight. 3 Boeing C-17 Globemaster III Robotic Tack Cell Machine We have consistently driven down the price of the Our new robotic tack cell transforms a six-step C-17 components we build through continuous process into a single operation. The six-axis producibility improvements. -
Aviation Facility Requirements Chapter Four Port of Portland
PORT OF PORTLAND Chapter Four AVIATION FACILITY REQUIREMENTS CHAPTER FOUR PORT OF PORTLAND AVIATIONAVIATION FACILITYFACILITY REQUIREMENTSREQUIREMENTS In this chapter, existing components of the airport are evaluated to identify the capacities of the overall system. Once identified, the existing capacity is compared to the forecast activity levels prepared in Chapter Three to determine where deficiencies currently exist, or may be expected to materialize in the future. Once deficiencies in a component are identified, a more specific determination of the approximate sizing and timing of the new facilities can be made. The objective of this effort is to identify, in general terms, the adequacy of the existing airport facilities and outline what new facilities may be needed and when they may be needed to accommodate forecast demands. Having established these facility requirements, alternatives for providing these facilities will be evaluated in Chapter Five to determine the most cost- effective and efficient means for implementation. As stated previously, the Hillsboro Airport Master Plan covers a 20-year period through 2025. The base year used for starting the forecasting effort and in turn the capacity analysis is the year 2003. The first year for implementation of Master Plan recommendations is expected to be 2006, which will be the beginning of the Short Term Planning Horizon. The Short Term Planning Horizon covers the first five years of the 20-year planning period (2006-2010). The Intermediate Term Planning Horizon encompasses the next five years (2011 4-1 through 2015). The Long Term Plan- schedule of planned improvements ning Horizon would correlate to the provides flexibility in development final 10 years of the planning period since development schedules can be (2016 through 2025). -
Composites Fact Sheet
COMPOSITES FACT SHEET Composites Fact sheet Introduction to Composites Composites are lighter, stronger and have more design shape freedom than aluminium.1 These advantages are reasons why aircraft manufacturers use more composite materials in their aircraft nowadays. Composites increase the design shape freedom. For example, the Boeing 787 Dreamliner weight consists of 50% composite materials2 and is more aerodynamic than previous models due to more design flexibility of composites in comparison with metals. Low weight and better aerodynamics contribute to 20 – 30% less fuel consumption than today’s similarly sized aircraft.2 However composite material has a few disadvantages as well. Composites are susceptible to different kinds of damage than metal structures such as micro-cracking and delamination.3 Conventional damage detection methods are not optimized to detect these kind of damages. That is why additional structural weight is necessary to provide safety at all times.4 Furthermore, damage Figure 1: A Boeing 787 Dreamliner from Arkefly assessments of composites (Figure 1) take more time nowadays than traditional metal structures (Example 1) due to the lack of routine with the repair of these large structures. Example 1: WILLEMSTAD, September 25th, 2014 A Boeing 787 Dreamliner from Arkefly was involved in an incident with a ground vehicle. The aircraft was hit by a high-loader, which was supplying the aircraft at the time. Due to a thorough assessment by Arkefly in cooperation with Boeing the passengers were delayed for almost a day. After inspection it turned out the aircraft was not damaged by the ground vehicle and Arkefly received approval to fly to Amsterdam. -
Raspberry Pi Based Vision System for Foreign Object Debris (FOD) Detection
Bachelor Thesis Electrical Engineering June 2020 Raspberry Pi Based Vision System for Foreign Object Debris (FOD) Detection Sarfaraz Ahmad Mahammad Sushma Vendrapu Department of Mathematics and Nature Sciences Blekinge Institute of Technology SE–371 79 Karlskrona, Sweden This thesis is submitted to the Department of Mathematics and Nature Science at Blekinge Institute of Technology in partial fulfillment of the requirements for the degree of Bach- elor in Electrical Engineering with Emphasis on Telecommunication. Contact Information: Authors: Sarfaraz Ahmad Mahammad E-mail: [email protected] Sushma Vendrapu E-mail: [email protected] Supervisor: Prof. Wlodek J. Kulesza Industrial Supervisors: Dawid Gradolewski Damian M. Dziak Address: Bioseco Sp. z o. o. Budowlanych 68 Street 80-298 Gdansk´ Poland University Examiner: Irina Gertsovich Department of Mathematics and Nature Sci- Internet : www.bth.se ence Blekinge Institute of Technology Phone : +46 455 38 50 00 SE–371 79 Karlskrona, Sweden Fax : +46 455 38 50 57 Abstract Background: The main purpose of this research is to design and develop a cost-effective system for detection of Foreign Object Debris (FOD), dedicated to airports. FOD detection has been a significant problem at airports as it can cause damage to aircraft. Developing such a device to detect FOD may require complicated hardware and software structures. The proposed solution is based on a computer vision system, which comprises of flexible off the shelf components such as a Raspberry Pi and Camera Module, allowing the simplistic and efficient way to detect FOD. Methods: The solution to this research is achieved through User-centered design, which implies to design a system solution suitably and efficiently. -
Mcdonnell Douglas DC 10-30, PP-VMD
McDonnell Douglas DC 10-30, PP-VMD AAIB Bulletin No: 7/97 Ref: EW/C97/2/1Category: 1.1 Aircraft Type and Registration: McDonnell Douglas DC 10-30, PP-VMD No & Type of Engines: 3 CF6 turbofan engines Year of Manufacture: 1975 Date & Time (UTC): 8 February 1997 at 2227 hrs Location: London Heathrow Airport Type of Flight: Scheduled Passenger Persons on Board: Crew - 18 - Passengers - 127 Injuries: Crew - None - Passengers - None Nature of Damage: No 7 and 8 wheels and tyres badly damaged Commander's Licence: Airline Transport Pilot's Licence Commander's Age: 50 years (approximately) Commander's Flying Experience: 14,000 hours (of which 4,500 were on type) Last 90 days - 60 hours Last 28 days - 20 hours Information Source: AAIB Field Investigation History of Flight The aircraft involved in this accident arrived at London HeathrowAirport from Rio de Janeiro earlier the same day at 1233 hrs. On arrival it was parked at Gate H30 and later towed to its departureGate H5 at 1945 hrs. At 2207 hrs the flight was cleared for enginestart and push-back and it commenced taxiing to Runway 27R nineminutes later. The taxi route to the runway took the aircraftdirectly onto the outer taxiway and then onto Runway 23 whichit backtracked. The total time spent taxiing was approximatelynine minutes. The flight destination was São Paulo, Brazil and, due tothe length of the flight, two flight deck crews were on board. The crew had arrived two days previously and, for the departure,consisted of a Captain in the left hand seat, who was undertakinga conversion from a different aircraft type, and a training Captainin the right hand seat who was the designated aircraft commander. -
FOD Awareness
FOD Awareness What is FOD? Foreign Object Debris (FOD) can be as simple as a nut, a piece of concrete, a piece of paper, a stone, a suitcase handle, a screwdriver or a passenger. Throwaway items are inherently dangerous. In the working environment of an apron, they contribute to the damage or potential damage to aircraft, ground equipment and perhaps even endanger life. Foreign Object Debris can lead to Foreign Object Damage. Examples of FOD • Aircraft parts, rocks, broken pavement, ramp equipment, and vehicle parts: Damage usually occurs when the aircraft is taking off or landing. The intake suction from a jet engine is powerful enough to suck up loose material lying on the runway, and the winds created by a helicopter or prop-driven aircraft's rotors or by a jet blast can send such objects airborne, creating hazards to nearby personnel. • Parts from ground vehicles • Garbage, maintenance tools, etc. mistakenly or purposely deposited on tarmac and/or runway surfaces. • Hail can break windshields and damage or stop engines. • Ice on the wings, propellers, or engine intakes • Dust or ash clogging the air intakes (as in sandstorms in desert operating conditions or ash clouds in volcanic eruptions). • Tools, bolts, metal shavings, lock wire, etc. mistakenly left behind inside aircraft during the manufacturing process or maintenance. Generally speaking, bird strikes (when an aero plane flies into a bird, the impact can cause severe damage from a bird striking the fuselage, engine, etc) are not considered to be FOD strikes, unless the bird or wildlife was already dead and lying on the operating surface when the strike occurred. -
A Study of Foreign Object Damage (Fod) and Prevention Method at the Airport and Aircraft Maintenance Area
Special Issue - 2019 International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 CONFCALL - 2019 Conference Proceedings A Study of Foreign Object Damage (Fod) and Prevention Method at the Airport and Aircraft Maintenance Area N. Rajamurugu Assistant professor of Aero dept Apollo Engineering College. P. Karthikeyan A. Imran Hussain Assistant professor of Aero dept Dept.of Aero Apollo Engineering College. Apollo Engineering College. K. Ajithkumar V. Vimalpraksh Dept.of Aero Dept.of Aero Apollo Engineering College. Apollo Engineering College. Abstract:- Foreign object damage (FOD) is a common risk for FOD cases happened. Apart from that, this paper is aimed aviation industry that causes potential damage for an aircraft to classify FOD based on their specification, understand the ,external FOD hazards include bird strikes , sand stormes ,ash consequences of FOD to the aircraft and identify the cost clouds on the runway .Internal FOD Hazards creates an contributed by FOD. Throughout the completion of this interference with flight safety by means of sort out electrical research, several methods had been used to gather reliable connections, improper control cables etc,since long time ago and it has contributed to many terrible incidents .The cost of information and data. Most information was obtained FOD obstrucles every year is very high, which is around RM through research from reliable sources such as internet, 1.2 billion. Therefore, FOD has to be eliminated without technical report, books, articles and journals. Moreover, creating an impact on performance and it should proper Federal Aviation Administration (FAA) and ATSB technique and strategy has to be taken by the designated websites were really useful in searching for information, organizations including airlines to further eliminate the FOD especially for FOD occurrences and the FOD Prevention occurrences. -
Chapter Number
Rocky Mountain Metropolitan Airport Airport Master Plan Update CHAPTER 4 FACILITY REQUIREMENTS The existing and future facility needs of Rocky Mountain Metropolitan Airport (Metro or Airport) are the focus of this chapter. The facility needs are based on the Airport’s existing facilities, aviation activity forecast, and Jefferson County’s strategic vision and direction for the future of the Airport and community. Specific facility expansion and airport development alternatives to meet the future facility needs are addressed in Chapter 5, Identification, and Evaluation of Alternatives. 4.1 SUMMARY A summary of the facility development needed to accommodate the forecast growth at Metro is provided in this section. Certain identified facilities will need further analysis based on the recommended development alternatives. Key conclusions from the facility requirement analysis include: • Critical aircraft changes from a Grumman Gulfstream II to a Gulfstream G550, which is an adjustment in Aircraft Reference Code (ARC) from D-II to D-III. (See section 4.2.2 - Critical Aircraft Identification and Airport Reference Code) • The demand capacity ratio is expected to grow throughout the planning period from 54 percent today to 93 percent in 2030. Additional airfield capacity analysis should be done to support major airfield investment decisions, and to help reduce the Annual Service Volume (ASV) ratio during this planning period. (See section - 4.3.2 Airfield Capacity) • The runway magnetic azimuths for Runways 11L/29R, 11R/29L and 2/20 are several minutes over the existing declination; therefore, the runways are in need of a redesignation. The redesignation should be timed to correspond with the pavement maintenance or improvements to the runways.