Paleoartist Brings Human Evolution to Life for Elisabeth Daynès, Sculpting Ancient Humans and Their Ancestors Is Both an Art and a Science

Total Page:16

File Type:pdf, Size:1020Kb

Paleoartist Brings Human Evolution to Life for Elisabeth Daynès, Sculpting Ancient Humans and Their Ancestors Is Both an Art and a Science Paleoartist Brings Human Evolution to Life For Elisabeth Daynès, sculpting ancient humans and their ancestors is both an art and a science A hyper realistic reconstruction of an Australopithecus africanus based on cast of the skull STS5 (nicknamed “Mrs Ples”) discovered in 1947 in Sterkfontein, South Africa. The fossil STS5 is between 2.1 and 2.7 million years old. (Photo: © P.Plailly/E.Daynès – Reconstruction Atelier Daynès Paris) By Helen Thompson SMITHSONIAN.COM MAY 7, 2014 A smiling 3.2-million-year-old face greets visitors to the anthropology hall of the National Museum of Anthropology and History in Mexico City. This reconstruction of the famous Australopithecus afarensis specimen dubbed “Lucy” stands a mere 4 feet tall, is covered in dark hair, and displays a pleasant gaze. She’s no ordinary mannequin: Her skin looks like it could get goose bumps, and her frozen pose and expression make you wonder if she’ll start walking and talking at any moment. This hyper-realistic depiction of Lucy comes from the Atelier Daynès studio in Paris, home of French sculptor and painter Elisabeth Daynès. Her 20-year career is a study in human evolution—in addition to Lucy, she’s recreated Sahelanthropus tchadensis, as well as Paranthropus boisei, Homo erectus, and Homo floresiensis, just to name a few. Her works appear in museums across the globe, and in 2010, Daynès won the prestigious J. Lanzendorf PaleoArt Prize for her reconstructions. Though she got her start in the make-up department of a theater company, Daynès had an early interest in depicting realistic facial anatomy and skin in theatrical masks. When she opened her Paris studio, she began developing relationships with scientific labs. This interest put her on the radar of the Thot Museum in Montignac, France, and in 1988, they tapped Daynès to reconstruct a mammoth and a group of people from the Magdalenian culture who lived around 11,000 years ago. Through this initial project, Daynès found her calling. “I knew it straight away after [my] first contact with this field, when I understood how infinite [scientific] research and creativity could be,” she says. Although her sculpting techniques continue to evolve, she still follows the same basic steps. No matter the reconstruction, Daynès always starts with a close examination of the ancient human’s skull—a defining feature for many hominid fossil groups. Computer modeling of 18 craniometric data points across a skull specimen gives her estimates of musculature and the shape of the nose, chin, and forehead. These points guide Daynès as she molds clay to form muscles, skin and facial features across a cast of the skull. Additional bones and teeth provide more clues to body shape and stature. Images of the skull cast of a 18,000-year-old Homo floresiensis skull with cranial measurements marked with toothpicks. Using cranial measurements, the artist adds layers of clay to form muscles and skin. (Photo: © P.Plailly/E.Daynès – Reconstruction Atelier Daynès Paris) Next, Daynès makes a silicone cast of the sculpture, a skin-like canvas on which she’ll paint complexion, beauty spots and veins. For hair, she typically uses human hair in members of the Homo genus, mixing in yak hair for a thicker effect in older hominids. Dental and eye prosthetics complete the sculpture’s form. For hair and eye color decisions, Daynès gets inspiration from the scientific literature: for example, genetic evidence suggests that Neanderthals had red hair. She also consults with scientific experts on the fossil group at each stage of the reconstruction process. Her first collaboration with a scientist on a reconstruction came in 1998 when she teamed up with longtime friend Jean-Nöel Vignal, a paleoanthropologist and former head of the Police Forensic Research Institute in Paris, to reconstruct a Neanderthal from France’s La Ferrassie cave site. Vignal had developed the computer modeling programs used to estimate muscle and skin thickness. Forensic sleuthing, she says, is the perfect guide: She approaches a reconstruction like a investigator profiling a murder victim. The skull, other bone remains and flora and fauna found in the excavation all help develop a picture of the individual: her age, what she ate, what hominid group she belonged to, any medical conditions she may have suffered from, and where and when she lived. More complete remains yield more accurate reconstructions. “Lucy” proved an exceptionally difficult reconstruction, spanning eight months. Follow the link for more images Daynès synthesizes all of the scientific data about that point in hominid evolution into one sculpture, presenting a hypothesis of what the individual looked like. But the full reconstruction “is both an artistic and scientific challenge,” she says. “Reaching an emotional impact and transmitting life requires important artistic work unlike a conventional reconstruction that would be realized in a forensic laboratory,” explains Daynès. There’s no scientific method to predict what anger or wonder or love might have looked like on the face of Homo erectus, for example. So for facial expressions, Daynès goes with artistic intuition, based on the hominid family, exhibition design, and any inspiration conjured by the skull itself. She also turns to the expressions of modern humans: “I cut out different looks from recent photos in magazines that hit me and that I think can apply to a specific individual.” For example, Daynès modeled a Neanderthal man looking powerlessly at his companion, wounded in a hunting accident, for the CosmoCaixa Museum of Barcelona, on a Life magazine photo of two American soldiers in Vietnam. Through these expressions and the realistic feel of the sculptures, Daynès also tries to dispel stereotypes of ancient hominids being violent, brutish, stupid, or inhuman. “I am proud to know that they will shake up common preconceptions,” Daynès says. “When this happens, the satisfaction is great—this is the promise that visitors will wonder about their origins.” .
Recommended publications
  • Sahelanthropus Or 'Sahelpithecus'?
    brief communications 10.Noonkester, V. R. J. Atmos. Sci. 41, 829–845 (1984). 1.2 claim that there are other facial similarities 1.8 11.Hudson, J. G. & Yum, S. S. J. Atmos. Sci. 58, 915–926 (2001). to Homo. However, the facial similarities are 12.Garrett, T. J. & Hobbs, P. V. J. Atmos. Sci. 52, 2977–2984 (1995). 1.0 13.Hudson, J. G. & Li, H. J. Atmos. Sci. 52, 3031–3040 (1995). mostly not with early hominids but with 1.6 14.Noone, K. J. et al. J. Atmos. Sci. 57, 2729–2747 (2000). Pleistocene Homo, and therefore do not 0.8 15.Noone, K. J. et al. J. Atmos. Sci. 57, 2748–2764 (2000). β provide any phylogenetic information (no Competing financial interests: declared none. 1.4 evidence hints that Homo erectus could be 0.6 6–7 million years old). There is little sub- 0.4 nasal prognathism because the canines are Relative dispersion 1.2 small and the subnasal region is short, 0.2 COMMUNICATIONS ARISING and the closely packed anterior dentition, 0 200 400 600 Palaeoanthropology Droplet number concentration (cm–3) crowded together because of the expanded postcanine teeth, explains the absence of Figure 1 Relation between the relative dispersion of cloud droplet Sahelanthropus or diastemata. The vertical height of the size distribution, ᒎ, and the number concentration of cloud ‘Sahelpithecus’? impressive supraorbitals is greater than in droplets, N. Symbols indicate programs and/or references from any extant ape or australopithecine, and can which the data points were derived. Connected points represent eginning with Ramapithecus, there has only be matched in Homo erectus and in a cases previously identified as evidence for an indirect aerosol been a continued search for an ape- few later humans.
    [Show full text]
  • Human Evolution: a Paleoanthropological Perspective - F.H
    PHYSICAL (BIOLOGICAL) ANTHROPOLOGY - Human Evolution: A Paleoanthropological Perspective - F.H. Smith HUMAN EVOLUTION: A PALEOANTHROPOLOGICAL PERSPECTIVE F.H. Smith Department of Anthropology, Loyola University Chicago, USA Keywords: Human evolution, Miocene apes, Sahelanthropus, australopithecines, Australopithecus afarensis, cladogenesis, robust australopithecines, early Homo, Homo erectus, Homo heidelbergensis, Australopithecus africanus/Australopithecus garhi, mitochondrial DNA, homology, Neandertals, modern human origins, African Transitional Group. Contents 1. Introduction 2. Reconstructing Biological History: The Relationship of Humans and Apes 3. The Human Fossil Record: Basal Hominins 4. The Earliest Definite Hominins: The Australopithecines 5. Early Australopithecines as Primitive Humans 6. The Australopithecine Radiation 7. Origin and Evolution of the Genus Homo 8. Explaining Early Hominin Evolution: Controversy and the Documentation- Explanation Controversy 9. Early Homo erectus in East Africa and the Initial Radiation of Homo 10. After Homo erectus: The Middle Range of the Evolution of the Genus Homo 11. Neandertals and Late Archaics from Africa and Asia: The Hominin World before Modernity 12. The Origin of Modern Humans 13. Closing Perspective Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS The basic course of human biological history is well represented by the existing fossil record, although there is considerable debate on the details of that history. This review details both what is firmly understood (first echelon issues) and what is contentious concerning humanSAMPLE evolution. Most of the coCHAPTERSntention actually concerns the details (second echelon issues) of human evolution rather than the fundamental issues. For example, both anatomical and molecular evidence on living (extant) hominoids (apes and humans) suggests the close relationship of African great apes and humans (hominins). That relationship is demonstrated by the existing hominoid fossil record, including that of early hominins.
    [Show full text]
  • Morphological Affinities of the Sahelanthropus Tchadensis (Late Miocene Hominid from Chad) Cranium
    Morphological affinities of the Sahelanthropus tchadensis (Late Miocene hominid from Chad) cranium Franck Guy*, Daniel E. Lieberman†, David Pilbeam†‡, Marcia Ponce de Leo´ n§, Andossa Likius¶, Hassane T. Mackaye¶, Patrick Vignaud*, Christoph Zollikofer§, and Michel Brunet*‡ *Laboratoire de Ge´obiologie, Biochronologie et Pale´ontologie Humaine, Centre National de la Recherche Scientifique Unite´Mixte de Recherche 6046, Faculte´des Sciences, Universite´de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France; §Anthropologisches Institut, Universita¨t Zu¨rich-Irchel, Winterthurerstrasse 190, 8057 Zu¨rich, Switzerland; †Peabody Museum, Harvard University, 11 Divinity Avenue, Cambridge, MA 02138; and ¶Department de Pale´ontologie, Universite´deNЈDjamena, BP 1117, NЈDjamena, Republic of Chad Contributed by David Pilbeam, November 5, 2005 The recent reconstruction of the Sahelanthropus tchadensis cra- cross-sectional ontogenetic samples of Pan troglodytes (n ϭ 40), nium (TM 266-01-60-1) provides an opportunity to examine in Gorilla gorilla (n ϭ 41), and Homo sapiens (n ϭ 24) (see Table detail differences in cranial shape between this earliest-known 3, which is published as supporting information on the PNAS hominid, African apes, and other hominid taxa. Here we compare web site). In addition, we digitized as many of the same land- the reconstruction of TM 266-01-60-1 with crania of African apes, marks as possible on a sample of available relatively complete humans, and several Pliocene hominids. The results not only fossil hominid crania: the stereolithograhic replica of AL 444-2 confirm that TM 266-01-60-1 is a hominid but also reveal a unique (Australopithecus afarensis) (9); CT scans of Sts 5 and Sts 71 mosaic of characters.
    [Show full text]
  • Darwin and the Recent African Origin of Modern Humans
    EDITORIAL Darwin and the recent African origin of modern humans Richard G. Klein1 Program in Human Biology, Stanford University, Stanford, CA 94305 n this 200th anniversary of When Darwin and Huxley were ac- The Course of Human Evolution Charles Darwin’s birth and tive, many respected scientists sub- In the absence of fossils, Darwin could the 150th anniversary of the scribed to the now discredited idea that not have predicted the fundamental pat- publication of his monumen- human races represented variably tern of human evolution, but his evolu- Otal The Origin of Species (1859) (1), it evolved populations of Homo sapiens. tionary theory readily accommodates seems fitting to summarize Darwin’s The original Neanderthal skull had a the pattern we now recognize. Probably views on human evolution and to show conspicuous browridge, and compared the most fundamental finding is that the how far we have come since. Darwin with the skulls of modern humans, it australopithecines, who existed from at famously neglected the subject in The was decidedly long and low. At the same least 4.5 million to 2 million years ago, Origin, except near the end where he time, it had a large braincase, and Hux- were distinguished from apes primarily noted only that ‘‘light would be thrown ley regarded it as ‘‘the extreme term of by anatomical specializations for habit- on the origin of man and his history’’ by a series leading gradually from it to the ual bipedalism, and it was only after 2 the massive evidence he had compiled highest and best developed of [modern] million years ago that people began to for evolution by means of natural selec- human crania.’’ It was only in 1891 that acquire the other traits, including our tion.
    [Show full text]
  • Craniofacial Morphology of Homo Floresiensis: Description, Taxonomic
    Journal of Human Evolution 61 (2011) 644e682 Contents lists available at SciVerse ScienceDirect Journal of Human Evolution journal homepage: www.elsevier.com/locate/jhevol Craniofacial morphology of Homo floresiensis: Description, taxonomic affinities, and evolutionary implication Yousuke Kaifu a,b,*, Hisao Baba a, Thomas Sutikna c, Michael J. Morwood d, Daisuke Kubo b, E. Wahyu Saptomo c, Jatmiko c, Rokhus Due Awe c, Tony Djubiantono c a Department of Anthropology, National Museum of Nature and Science, 4-1-1 Amakubo, Tsukuba-shi, Ibaraki Prefecture Japan b Department of Biological Sciences, The University of Tokyo, 3-1-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan c National Research and Development Centre for Archaeology, Jl. Raya Condet Pejaten No 4, Jakarta 12001, Indonesia d Centre for Archaeological Science, School of Earth and Environmental Sciences, University of Wollongong, Wollongong, NSW 2522, Australia article info abstract Article history: This paper describes in detail the external morphology of LB1/1, the nearly complete and only known Received 5 October 2010 cranium of Homo floresiensis. Comparisons were made with a large sample of early groups of the genus Accepted 21 August 2011 Homo to assess primitive, derived, and unique craniofacial traits of LB1 and discuss its evolution. Prin- cipal cranial shape differences between H. floresiensis and Homo sapiens are also explored metrically. Keywords: The LB1 specimen exhibits a marked reductive trend in its facial skeleton, which is comparable to the LB1/1 H. sapiens condition and is probably associated with reduced masticatory stresses. However, LB1 is Homo erectus craniometrically different from H. sapiens showing an extremely small overall cranial size, and the Homo habilis Cranium combination of a primitive low and anteriorly narrow vault shape, a relatively prognathic face, a rounded Face oval foramen that is greatly separated anteriorly from the carotid canal/jugular foramen, and a unique, tall orbital shape.
    [Show full text]
  • The Homo Floresiensis Cranium (LB1): Size, Scaling, and Early Homo Affinities
    The Homo floresiensis cranium (LB1): Size, scaling, and early Homo affinities Adam D. Gordon*, Lisa Nevell, and Bernard Wood Department of Anthropology, Center for the Advanced Study of Hominid Paleobiology, The George Washington University, 2110 G Street Northwest, Washington, DC 20052 Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved February 8, 2008 (received for review October 22, 2007) The skeletal remains of a diminutive small-brained hominin found to endocranial size (as it scales with body size) (3, 5, 6, 11) and in Late Pleistocene cave deposits on the island of Flores, Indonesia brain component size (as they scale with endocranial size) (14), were assigned to a new species, Homo floresiensis [Brown P, et al. but, to date, no study has considered the scaling of cranial vault (2004) A new small-bodied hominin from the Late Pleistocene of shape and cranial size when assessing morphological similarity Flores, Indonesia. Nature 431: 1055–1061]. A dramatically different between LB1, modern humans, and fossil hominins. Because the interpretation is that this material belongs not to a novel hominin LB1 cranium is so small relative to modern humans and most taxon but to a population of small-bodied modern humans af- fossil Homo, morphological analyses must take into account how fected, or unaffected, by microcephaly. The debate has primarily cranial shape scales with cranial size because this relationship focused on the size and shape of the endocranial cavity of the type may not be isometric. However, care must be taken when doing specimen, LB1, with less attention being paid to the morphological this, because LB1 falls well outside the size range used to evidence provided by the rest of the LB1 cranium and postcranium, generate regression slopes.
    [Show full text]
  • Homo Floresiensis
    Homo floresiensis CHARLES J. VELLA 2016 CALIFORNIA ACADEMY OF SCIENCE DOCENTS GROUP DOWNLOADABLE AT WEBSITE: WWW.CHARLESJVELLAPHD.COM THANKS: L. AIELLO, D. FALK, G. HURLEY Every once in a while, there comes to light a fossil that shakes the foundation of paleoanthropology to its very core and forces us to reconsider what we thought we knew about human evolution. —Donald C. Johanson, Lucy’s Legacy This applies to Homo floresiensis Flores legend of Ebu Gogo There were legends about the existence of little people on the island of Flores, Indonesia. They were called the Ebu Gogo. The islanders describe Ebu Gogo as being about one meter tall, hairy and prone to "murmuring" to each other in some form of language. Discovery 2003 Homo floresiensis, (“the hobbit,”) found in a late Pleistocene context at the cave of Liang Bua by Michael Morwood’s group 2003: Associated with a core and flake assemblage that extended back to ca 95 ka LB1 originally dated to 38 to 13 ka; Lived there from 74 to 17 ka according to original conclusions. An arm bone provisionally assigned to H. floresiensis is about 74,000 years old 2016: new geological assessment places H. floresiensis between 100,000 and 60,000 years old. Measurements of the decay of radioactive elements in an arm bone from the partial skeleton indicate that the find dates to between 86,900 and 71,500 years ago. Until now, researchers suspected these bones were only about 18,000 years old. Later excavations that have dated more rock and sediment around the remains now suggest that hobbits were gone from the cave by 50,000 years ago, according to a study published in Nature on 30 March 2016.
    [Show full text]
  • Fossil Primates
    AccessScience from McGraw-Hill Education Page 1 of 16 www.accessscience.com Fossil primates Contributed by: Eric Delson Publication year: 2014 Extinct members of the order of mammals to which humans belong. All current classifications divide the living primates into two major groups (suborders): the Strepsirhini or “lower” primates (lemurs, lorises, and bushbabies) and the Haplorhini or “higher” primates [tarsiers and anthropoids (New and Old World monkeys, greater and lesser apes, and humans)]. Some fossil groups (omomyiforms and adapiforms) can be placed with or near these two extant groupings; however, there is contention whether the Plesiadapiformes represent the earliest relatives of primates and are best placed within the order (as here) or outside it. See also: FOSSIL; MAMMALIA; PHYLOGENY; PHYSICAL ANTHROPOLOGY; PRIMATES. Vast evidence suggests that the order Primates is a monophyletic group, that is, the primates have a common genetic origin. Although several peculiarities of the primate bauplan (body plan) appear to be inherited from an inferred common ancestor, it seems that the order as a whole is characterized by showing a variety of parallel adaptations in different groups to a predominantly arboreal lifestyle, including anatomical and behavioral complexes related to improved grasping and manipulative capacities, a variety of locomotor styles, and enlargement of the higher centers of the brain. Among the extant primates, the lower primates more closely resemble forms that evolved relatively early in the history of the order, whereas the higher primates represent a group that evolved more recently (Fig. 1). A classification of the primates, as accepted here, appears above. Early primates The earliest primates are placed in their own semiorder, Plesiadapiformes (as contrasted with the semiorder Euprimates for all living forms), because they have no direct evolutionary links with, and bear few adaptive resemblances to, any group of living primates.
    [Show full text]
  • 100,000–11,000 Years Ago 75°
    Copyrighted Material GREENLAND ICE SHEET 100,000–11,000 years ago 75° the spread of modern humans Berelekh 13,400–10,600 B ( E around the world during A ALASKA la R I ) SCANDINAVIAN n I e Bluefish Cave d N Arctic Circle G g 16,000 d ICE SHEET b G the ice age N i 25,000–10,000 r r i I d I b g e A R d Ice ) E n -fr SIBERIA a Dry Creek e l e B c All modern humans are descended from populations of ( o 35,000 Dyuktai Cvae 13,500 rri do 18,000 r Homo sapiens that lived in Africa c. 200,000 years ago. op LAURENTIDE en s ICE SHEET 1 Malaya Sya Around 60,000 years ago a small group of humans left 4 CORDILLERAN ,0 Cresswell 34,000 0 Africa and over the next 50,000 years its descendants 0 ICE SHEET – Crags 1 2 14,000 colonized all the world’s other continents except Antarctica, ,0 Wally’s Beach 0 Paviland Cave Mal’ta 0 EUROPE Mezhirich Mladecˇ in the process replacing all other human species. These 13,000–11,000 y 29,000 Denisova Cave 24,000 . 15,000 a 33,000 45,000 . Kostenki 41,000 migrations were aided by low sea levels during glaciations, Willendorf 40,000 Lascaux 41,700–39,500 which created land bridges linking islands and continents: Kennewick Cro Magnon 17,000 9,300 45° humans were able to reach most parts of the world on foot. Spirit 30,000 Cave Meadowcroft Altamira It was in this period of initial colonization of the globe that 10,600 Rockshelter 14,000 16,000 Lagar Velho Hintabayashi Tianyuan JAPAN modern racial characteristics evolved.
    [Show full text]
  • And the Evolution of Homo Floresiensis
    1 2 Primate brains, the ‘island rule’ and the evolution of Homo floresiensis 3 Stephen H. Montgomery 4 Dept. of Genetics, Evolution and Environment, University College London, Gower Street, 5 London, WC1E 6BT. 6 Email: [email protected] 7 Tel: +442076792170 8 Key words: Homo floresiensis, brain size, the island rule, dwarfism, primates 9 Running head: Primate brains & the island rule 10 11 12 13 14 15 16 17 18 Summary 19 The taxonomic status of the small bodied hominin, Homo floresiensis, remains controversial. 20 One contentious aspect of the debate concerns the small brain size estimated for specimen LB1 21 (Liang Bua 1). Based on intraspecific mammalian allometric relationships between brain and 22 body size it has been argued that the brain of LB1 is too small for its body mass and is therefore 23 likely to be pathological. The relevance and general applicability of these scaling rules has, 24 however, been challenged, and it is not known whether highly encephalised primates adapt to 25 insular habitats in a consistent manner. Here, an analysis of brain and body evolution in seven 26 extant insular primates reveals that although insular primates follow the ‘island rule’, having 27 consistently reduced body masses compared to their mainland relatives, neither brain mass or 28 relative brain size follow similar patterns, contrary to expectations that energetic constraints will 29 favour decreased relative brain size. Brain:body scaling relationships previously used to assess 30 the plausibility of dwarfism in H. floresiensis tend to underestimate body masses of insular 31 primates. In contrast, under a number of phylogenetic scenarios, the evolution of brain and body 32 mass in H.
    [Show full text]
  • Homo Erectus Years Ago Australopithecus Sediba Homo Habilis Homo Rudolfensis
    Dr. Briana Pobiner Smithsonian Institution “The human family tree: meet your ancestors” February 3, 2014 George Mason University Osher Lifelong Learning Institute Course: The History of Life, Part 2 Milestones in the 10,000 years ago Evolution of Humans 32,000 years ago 800,000 years ago 2.6 million years ago 6 million years ago 90,000 years ago 4 million years ago 1.8 million years ago 200,000 years ago You are here. Today Homo group Paranthropus group 1 Million years ago 2 Million years ago 3 Million years ago 4 Million years ago Ardipithecus group Australopithecus group 5 Million years ago 6 Million years ago Past You are here. Homo sapiens Today Homo neanderthalensis Homo floresiensis Homo group Paranthropus group Homo heidelbergensis 1 Paranthropus boisei Million Homo erectus years ago Australopithecus sediba Homo habilis Homo rudolfensis 2 Australopithecus africanus Million years ago Paranthropus robustus Australopithecus afarensis 3 Million Paranthropus aethiopicus years ago Australopithecus garhi 4 Ardipithecus ramidus Million years ago Ardipithecus group Australopithecus group 5 Australopithecus anamensis Million years ago Sahelanthropus tchadensis 6 Ardipithecus kadabba Million years ago Orrorin tugenensis Past Today 1 Million years ago 2 Million years ago 3 Million Ardipithecus group years ago 4 Ardipithecus ramidus The earliest humans are our closest link to other primates. They evolved in Africa Million years ago and took the first steps towards walking upright. 5 Million years ago Sahelanthropus tchadensis Ardipithecus kadabba 6 Million years ago Orrorin tugenensis Past Sahelanthropus tchadensis Name Means: Sahel ape-man from Chad Nickname: “Toumai” When Found: 2001 Who Found: M.
    [Show full text]
  • Lieberman 2009C.Pdf
    Vol 459|7 May 2009 NEWS & VIEWS PALAEOANTHROPOLOGY Homo floresiensis from head to toe Daniel E. Lieberman Fossils of tiny ancient humans, found on the island of Flores, have provoked much debate and speculation. Evidence that they are a real species comes from analyses of the foot and also — more surprisingly — of dwarf hippos. Good science requires a healthy dose of tem- pered scepticism — at its heart, the process involves trying to reject proposed hypotheses. So it was understandable that the announce- ment1,2 in 2004 of the discovery of a species of dwarfed hominin, Homo floresiensis, from the island of Flores, Indonesia, stimulated a range of opinions, many of them sceptical, that the fos- WOLLONGONG UNIV. TURNEY, C. sils constituted a new species and were not the consequence of some pathological condition. Two papers in this issue, by Jungers and col- leagues3 and by Weston and Lister4, together with contributions to a special online issue of the Journal of Human Evolution, will go a long way towards addressing the sceptics’ concerns. The studies provide considerable evidence — literally from head to toe — that H. floresiensis is a true species of hominin (that is, a species more closely related to humans than to chim- panzees and other apes). More importantly, the analyses prompt hypotheses about the human family tree that will require more fossil evidence to test. So far, remains of H. floresiensis have been excavated from just a single cave, Liang Bua (Fig. 1). The fossils include a partial skeleton Figure 1 | Fossil site — Liang Bua cave on the island of Flores.
    [Show full text]