Precambrian Basement Map of the Trans-Hudson Orogen and Adjacent Terranes, Northern Great Plains, U.S.A

Total Page:16

File Type:pdf, Size:1020Kb

Precambrian Basement Map of the Trans-Hudson Orogen and Adjacent Terranes, Northern Great Plains, U.S.A U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY PRECAMBRIAN BASEMENT MAP OF THE TRANS-HUDSON OROGEN 4' AND ADJACENT TERRANES, NORTHERN GREAT PLAINS, U.S.A. Compiled by P.K. Sims, ZellE. Peterman, T.G. Hildenbrand, and Shannon Mahan Prepared in cooperation with the Geological Surveys of Minnesota, Montana, Nebraska, North Dakota, South Dakota, and Wyoming Pamphlet to accompany MISCELLANEOUS INVESTIGATIONS SERIES MAP 1-2214 CONTEN1.,S Introduction 1 Previous work 1 Geologic terranes 3 Archean gneiss terrane of Superior craton 3 Archean terrane of Wyoming craton 4 Archean greenstone-granite terrane of Superior craton 5 Wisconsin magmatic terranes of Penokean orogen 5 Trans-Hudson orogen 5 Isotopic age data 5 Superior-Churchill boundary zone 7 Central magnetic region 7 Western magnetic region 8 Black Hills domain 8 Western boundary 9 North American Central Plains conductive anomaly 9 Granite batholith(?) in south-central South Dakota 9 Central Plains orogen 10 Sioux Quartzite 10 Northwest-trending faults 11 Northeast-trending faults 11 Tectonic evolution 11 Mineral resource potential in Trans-Hudson orogen 14 Black Hills domain 14 Superior-Churchill boundary zone 14 Other areas 14 References cited 14 Appendix A 19 Appendix B 25 Appendix C 26 FIGURE 1. Regional geology of the Trans-Hudson orogen 2 TABLES 1. Major crust-forming events and associated metalliferous deposits in Precambrian basement 13 2. Abundance of rock types in basement domains 25 Contents INTRODUCTION All available age data were examined for the purpose of assigning ages to the rock units, and selected pub­ lished and unpublished age data are included in Appen­ The Trans-Hudson orogen (Hoffman, 1981) is a dix A. Well data used for delineating the configuration deformed, generally north-trending orogenic belt of Early Proterozoic age that extends from outcrop areas of the basement surface were compiled from lists in the Canadian Shield southward beneath Phanerozoic supplied by the state geological surveys (App. B). Lithologies of basement samples in the various subsur­ strata into the subsurface of the Northern Great Plains, face terranes are shown in a classification appropriate U.S.A. It consists of Early Proterozoic, mainly arc related rocks (Lewry and others, 1985; Green, Weber, for reconnaissance mapping (App. C). The symbols for the age designation used on the and Hajnal, 1985) and Archean rocks. The orogen geologic map are refinements of the formal nomencla­ separates two major Archean cratons, the Superior on the east and the Wyoming on the west, and represents a ture used by the U.S. Geological Survey. The informal unit Y1 in the Middle Proterozoic Era has chronologie •• major constructional phase in the assembly of Lauren­ boundaries at 1,400 and 1,600 Ma, and the informal tia (Hoffman, 1988), the North American craton. It 2 terminates against the younger Early Proterozoic Cen­ unit X in the Early Proterozoic Era has chronologie boundaries at 1,800 and 2,100 Ma. It should be noted, tral Plains orogen in southern South Dakota (Sims and 2 Peterman, 1986; Bickford and others, 1986). however, as an exception that part of unit X s in the This Precambrian basement map was prepared as a Black Hills uplift is somewhat older than 2,100 Ma. companion to the basement map of the northern mid­ continent region (Sims, 1990), in order to provide a better geologic framework of the Precambrian base­ PREVIOUS WORK ment in north-central United States (fig. 1). It was compiled from drill-hole data and magnetic and gravity Delineation of the Trans-Hudson orogen in the sub­ data as part of a cooperative Federal-State project with surface is based largely on the previous work of Green the State Geological Surveys of Minnesota, Montana, and others (1979), Green, Hajnal, and Weber (1985), Nebraska, North Dakota, South Dakota, and Wyoming. and Green, Weber, and Hajnal (1985), who identified The states submitted 1:1,000,000-scale maps or other discrete magnetic regions in southwestern Manitoba records showing basement drill holes and lithotypes; in and southern Saskatchewan that they correlated with addition, the Nebraska and North Dakota Geological lithostructural domains exposed in northern Saskatch­ Surveys submitted maps at the 1:1,000,000 scale show­ ewan and Manitoba. They extended these magnetic ing basement topography, contoured at 200-ft (60.96- regions southward into the United States. Lewry and m) intervals. J .S. Klasner submitted a map and a report others (1986) criticized some of the details of these on the basement rocks of North Dakota and South correlations, particularly the lithologies in the basement Dakota, prepared under an earlier Federal-State con­ domains versus those in the supposedly correlative tract. In addition, the geologic map of that part of exposed domains. Green and others (1986) countered eastern South Dakota and Nebraska between lat 42° N. with the suggestion that different crustal levels may be and lat 46° N. and east of long 100° W. was revised present in subcrop along strike, thus explaining the because of the availablity of some new drill-hole data lithologic diversity. Earlier, Dutch (1983) had mapped and new gravity and aeromagnetic data. This area the Trans-Hudson orogen in the subsurface of the together with a narrow strip of Minnesota and Iowa was Dakotas on the basis of gravity and magnetic informa­ included on the earlier basement map of the midconti­ tion. Klasner and King (1986) utilized drill-hole data nent region (Sims, 1985; 1990). A report by Faircloth together with gravity and magnetic data to delineate (1988) provided petrologic and geochemical data on several lithotectonic terranes in the Dakotas; their several basement drill core samples in North Dakota, domains are similar to those suggested by Green, South Dakota, and Minnesota. Weber, and Hajnal (1985). One of us (TGH) compiled digital aeromagnetic and The Trans-Hudson orogen was named by Hoffman gravity maps of the Northern Great Plains at the (1981) and defined as the Early Proterozoic orogen compilation scale, and provided a colored map of each between the Archean Wyoming and Hearne provinces, at a scale of 1:2,000,000; Lindrith Cordell (U.S. Geo­ on the west, and the Archean Superior province on the logical Survey) compiled a potential terrace map (Cor­ east (Hoffman, 1988, fig. 1). The term Trans-Hudson dell and McCafferty, 1989) at a scale of 1:2,000,000 for orogen refers to the rocks within the orogenic belt. The use in the geologic interpretation. These geophysical Trans-Hudson orogen is attributed to the Early Proter­ maps were used to define, insofar as possible, the trend, ozoic Hudsonian orogeny, an arc-continent collision. extent, and boundaries of gross geologic rock units. Earlier, the orogen as well as the bounding rocks on its 1 EXPLANATION EARLY AND MIDDLE PROTEROZOIC I YXs I Athabasca Sandstone and Sioux I I Quartzite I EARLY PROTEROZOIC I CXC?~ Central Plains orogen (1. 78- I 1.64 Ga) Rottenstone-La Ronge mag­ I matic belt lz l<i Kisseynew domain ::; ~.· .·' Flin Flon-Snow Lake domains ~ /= ~~~ Aw ~~~ Western magnetic region (sub­ If:· surface) .1I Central magnetic region (sub­ I surface) I Xp Penokean orogen ~ ARCHEAN AND EARLY PROTEROZOIC ! XAn Northwestern cratonic zone I • :·. I .• XAe Ensialic mobile zone (Cree ~----- Lake zone) XAg Glennie domain-Hanson Lake block • Superior-Churchill boundary Aw zone Black Hills terrane ARCHEAN Aw Wyoming age province and northern extension Asp Superior province .t. Basement sample with Early Proterozoic isotopic age (minimum age) • Basement sample with Archean isotopic age ----Fault Xcp • + • • Thrust fault-Sawteeth on upper plate ---- Boundary between exposed geologic domains ---- Boundary between domains in 100 200 300 MILES subsurface ' 200 400 KILOMETERS Figure l Regional geology of the Trans-Hudson orogen. northwest margin, now assigned by Hoffman (1988) to eated a major gravity high parallel to the Thompson the Hearne province, was called the Churchill province belt in northern Manitoba and named it the Nelson (Davidson, 1972). River high. Wilson and Brisbin (1962) traced the high Earlier geophysical and geochronologic studies ex­ to the southwest beneath Phanerozoic sedimentary tended the Churchill province southward from northern cover to the international boundary, and its further Saskatchewan ?into the Dakotas with a fairly clear extension was evident from gravity data for North definition of its eastern boundary. Innes (1960) delin- Dakota (Muehlberger and others, 1967). Isotopic age studies also contributed to the delinea­ east of the map area. It is a complex migmatitic terrane tion of the Trans-Hudson orogen in the subsurface. consisting of granite gneiss, schistose to gneissic am­ Gast and others (1958) established the presence of a phibolite, garnet-, cordierite-, and sillimanite-bearing major Archean terrane in· Wyoming and Montana metasedimentary gneisses, and metagabbro of granulite which is now known as the Wyoming province. K-Ar or amphibolite metamorphic grade (Himmelberg and biotite ages were used to delineate the subsurface Phinney, 1967). Late tectonic granite (=2,600 Ma) extent of the "Churchill province" in the basement of plutons locally intrude the gneisses. Most of the rocks western Canada (Burwash and others, 1962), and a are older than 3,000 Ma and have undergone a long comparable study focused on the basement of the and complex history of multiple deformation and meta­ Dakotas (Peterman and Hedge, 1964). We now know morphism, which culminated at or before 2,600 Ma that these early K-Ar and Rb-Sr biotite ages register (Goldich and Wooden, 1980). The exposed rocks are anorogenic heating and uplift followed by cooling (cra­ folded into large-scale, moderately open and gently tonization) rather than orogenesis (magmatism, tecton­ plunging antiforms and synforms that trend easterly ism, and metamorphism). However, the ages did clearly (Bauer, 1980). The gneisses can be traced in the identify some of the major tectonic boundaries such as subsurface into eastern South Dakota by drill-hole and the Superior-Churchill boundary zone in North Dakota, geophysical data.
Recommended publications
  • Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States
    BEST PRACTICES for: Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States First Edition Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof. Cover Photos—Credits for images shown on the cover are noted with the corresponding figures within this document. Geologic Storage Formation Classification: Understanding Its Importance and Impacts on CCS Opportunities in the United States September 2010 National Energy Technology Laboratory www.netl.doe.gov DOE/NETL-2010/1420 Table of Contents Table of Contents 5 Table of Contents Executive Summary ____________________________________________________________________________ 10 1.0 Introduction and Background
    [Show full text]
  • Geotectonic Model of the Alpine Development of Lakavica Graben in the Eastern Part of the Vardar Zone in the Republic of Macedonia
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UGD Academic Repository Geologica Macedonica, Vol. 27, No. 1, pp. 87–93 (2013) GEOME 2 ISSN 0352 – 1206 Manuscript received: May 17, 2013 UDC: 551.245.03(497.71/.73) Accepted: October 25, 2013 Original scientific paper GEOTECTONIC MODEL OF THE ALPINE DEVELOPMENT OF LAKAVICA GRABEN IN THE EASTERN PART OF THE VARDAR ZONE IN THE REPUBLIC OF MACEDONIA Goše Petrov, Violeta Stojanova, Gorgi Dimov Faculty of Natural and Technical Sciences, “Goce Delčev” University, P.O.Box 201, MK 2000 Štip, Republic of Macedonia [email protected]//[email protected] A b s t r a c t: Lakavica graben is located in the eastern subzone of the Vardar zone, which during the Alpine orogenesis was covered with very complex processes of tectogenesis. On the area of about 200 km2, in the Lakavica graben, are present geological units from the oldest geological periods (Precam- brian) to the youngest (Neogene and Quaternary). Tectonic structure, or rupture tectonic, is very intense developed and gives possibility for analysis of the geotectonic processes in the Alpine orogen phase. This paper presents the possible model for geotectonic processes in the Lakavica graben, according to which can be generalized geotectonic processes in the Vardar zone during the Alpine orogeny. Key words: Lakavica graben; geotectonic model; Alpine orogeny; Vardar zone INTRODUCTION Vardar zone as a tectonic unit, for the first niki Gulf (Greece), than bent eastward and crosses time, is separated and showed on the "Geological- the ophiolite zone Izmir–Ankara (Turkey).
    [Show full text]
  • Map: Basement-Cover Relationships
    Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 • BASEMENT-COVER RELATIONSHIPS Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 BASEMENT-COVER RELATIONSHIPS FLINN ET AL~g~ JOHNSTONE ET AL RATHBONE ~ HARRIS~'~ RAMSAY & STURT SANDERSi I & VAN BREEMEN BREWER ET AL" 0 km 100 I I WATSON & DUNNING- GENERAL REVIEW KENNAN ET AL-- PARATECTONIC IRELAND BAMFORD-- SEISMIC CONSTRAINTS Downloaded from http://sp.lyellcollection.org/ by guest on September 30, 2021 The Caledonides of the British Isles--reviewed. 1979. Geological Society of London. Basement-cover relations in the British Caledonides Janet Watson & F. W. Dunning CONTENTS 1. Introduction 67 2. The Metamorphic Caledonides 68 a The Lewisian complex and related rocks 68 b Pre-Caledonian cover units 70 c Other possible basement units 72 d The Caledonian orogenic front 73 e Grenville activity in the northern Caledonian province 74 3. The Non-metamorphic Caledonides 76 a Basic facts relating to the belt in general 76 b The Midland Valley Transition Zone 77 c The Southern Uplands-Longford-Down-Clare Inliers Belt 83 d The Iapetus Suture 84 e The Lake District-Isle of Man-Leinster Belt 84 f The Irish Sea Horst 85 g The Welsh Basin and its eastern borders 85 h Eastern England 86 j The Midland Craton 86 4. Conclusions 87 5. Acknowledgements 88 6. References 88 1. Introduction underlying the Metamorphic Caledonides (which Although the conventional regional subdivi- consists mainly of gneisses) and that underlying sion of the British and Irish
    [Show full text]
  • From Orogeny to Rifting: When and How Does Rifting Begin? Insights from the Norwegian ‘Reactivation Phase’
    EGU21-469 https://doi.org/10.5194/egusphere-egu21-469 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. From orogeny to rifting: when and how does rifting begin? Insights from the Norwegian ‘reactivation phase’. Gwenn Peron-Pinvidic1,2, Per Terje Osmundsen2, Loic Fourel1, and Susanne Buiter3 1NGU - Geological Survey of Norway, 7040 Trondheim, Norway 2NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway 3Tectonics and Geodynamics, RWTH Aachen University, 52064 Aachen, Germany Following the Wilson Cycle theory, most rifts and rifted margins around the world developed on former orogenic suture zones (Wilson, 1966). This implies that the pre-rift lithospheric configuration is heterogeneous in most cases. However, for convenience and lack of robust information, most models envisage the onset of rifting based on a homogeneously layered lithosphere (e.g. Lavier and Manatschal, 2006). In the last decade this has seen a change, thanks to the increased academic access to high-resolution, deeply imaging seismic datasets, and numerous studies have focused on the impact of inheritance on the architecture of rifts and rifted margins. The pre-rift tectonic history has often been shown as strongly influencing the subsequent rift phases (e.g. the North Sea case - Phillips et al., 2016). In the case of rifts developing on former orogens, one important question relates to the distinction between extensional structures formed during the orogenic collapse and the ones related to the proper onset of rifting. The collapse deformation is generally associated with polarity reversal along orogenic thrusts, ductile to brittle deformation and important crustal thinning with exhumation of deeply buried rocks (Andersen et al., 1994; Fossen, 2000).
    [Show full text]
  • Basement Characteristic Western Part of Java, Indonesia
    Vol.8 (2018) No. 5 ISSN: 2088-5334 Basement Characteristic Western Part of Java, Indonesia; Case Study in Bayah Area, Banten Province Aton Patonah# , Haryadi Permana* #Faculty of Geological Engineering, Padjadjaran University, Sumedang KM 21. Jatinangor, 45363, West Java, Indonesia E-mail: [email protected] *Research Center for Geotechnology LIPI, Jl Sangkuriang Bandung 40135, West Java, Indonesia E-mail: [email protected] Abstract — Recent study reveals that in Bayah Complex, 20 km west of Ciletuh Melange Complex, discovered a metamorphic rock that interpreted as the basement of Java. This research aims to know the characteristic of metamorphic in Bayah areas. The result shows that the metamorphic rocks of Bayah Geological Complex are dominated by mica schist group, i.e., muscovite schist, muscovite-biotite schist, garnet biotite schist and chlorite schist associated with Pelitic - Psammitic protolith. The amphibolite, epidote amphibolite and actinolite schist found were metamorphosed of mafic rock protolith. All of them have been deformed and altered. Based on mineral assemblage, mica schist group included lower greenschist - epidote-amphibolite facies, whereas actinolite schist, epidote amphibolite schist, and hornblende schist included greenschist facies, epidote-amphibolite facies, and amphibolite facies respectively. Based on the data, these metamorphic rocks are associated with the orogenic style. The metamorphic rocks exposed to the surface through a complex process since Late Cretaceous. Metamorphic rocks have been deformed, folded and faulted since its formation. Its possible this rock was uplifted to the surface due to the intrusion of Cihara Granodiorite. Keywords — Bayah Geological Complex; greenschist facies; amphibolite facies; orogenic style; uplifted. [12]. According to [11], metamorphic rocks that exposed in I.
    [Show full text]
  • Development of the Rocky Mountain Foreland Basin: Combined Structural
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2007 DEVELOPMENT OF THE ROCKY MOUNTAIN FORELAND BASIN: COMBINED STRUCTURAL, MINERALOGICAL, AND GEOCHEMICAL ANALYSIS OF BASIN EVOLUTION, ROCKY MOUNTAIN THRUST FRONT, NORTHWEST MONTANA Emily Geraghty Ward The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Ward, Emily Geraghty, "DEVELOPMENT OF THE ROCKY MOUNTAIN FORELAND BASIN: COMBINED STRUCTURAL, MINERALOGICAL, AND GEOCHEMICAL ANALYSIS OF BASIN EVOLUTION, ROCKY MOUNTAIN THRUST FRONT, NORTHWEST MONTANA" (2007). Graduate Student Theses, Dissertations, & Professional Papers. 1234. https://scholarworks.umt.edu/etd/1234 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. DEVELOPMENT OF THE ROCKY MOUNTAIN FORELAND BASIN: COMBINED STRUCTURAL, MINERALOGICAL, AND GEOCHEMICAL ANALYSIS OF BASIN EVOLUTION ROCKY MOUNTAIN THRUST FRONT, NORTHWEST MONTANA By Emily M. Geraghty Ward B.A., Whitman College, Walla Walla, WA, 1999 M.S., Washington State University, Pullman, WA, 2002 Dissertation presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Geology The University of Montana Missoula, MT Spring 2007 Approved by: Dr. David A. Strobel, Dean Graduate School James W. Sears, Chair Department of Geosciences Julia A. Baldwin Department of Geosciences Marc S. Hendrix Department of Geosciences Steven D.
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Pan-African Orogeny 1
    Encyclopedia 0f Geology (2004), vol. 1, Elsevier, Amsterdam AFRICA/Pan-African Orogeny 1 Contents Pan-African Orogeny North African Phanerozoic Rift Valley Within the Pan-African domains, two broad types of Pan-African Orogeny orogenic or mobile belts can be distinguished. One type consists predominantly of Neoproterozoic supracrustal and magmatic assemblages, many of juvenile (mantle- A Kröner, Universität Mainz, Mainz, Germany R J Stern, University of Texas-Dallas, Richardson derived) origin, with structural and metamorphic his- TX, USA tories that are similar to those in Phanerozoic collision and accretion belts. These belts expose upper to middle O 2005, Elsevier Ltd. All Rights Reserved. crustal levels and contain diagnostic features such as ophiolites, subduction- or collision-related granitoids, lntroduction island-arc or passive continental margin assemblages as well as exotic terranes that permit reconstruction of The term 'Pan-African' was coined by WQ Kennedy in their evolution in Phanerozoic-style plate tectonic scen- 1964 on the basis of an assessment of available Rb-Sr arios. Such belts include the Arabian-Nubian shield of and K-Ar ages in Africa. The Pan-African was inter- Arabia and north-east Africa (Figure 2), the Damara- preted as a tectono-thermal event, some 500 Ma ago, Kaoko-Gariep Belt and Lufilian Arc of south-central during which a number of mobile belts formed, sur- and south-western Africa, the West Congo Belt of rounding older cratons. The concept was then extended Angola and Congo Republic, the Trans-Sahara Belt of to the Gondwana continents (Figure 1) although West Africa, and the Rokelide and Mauretanian belts regional names were proposed such as Brasiliano along the western Part of the West African Craton for South America, Adelaidean for Australia, and (Figure 1).
    [Show full text]
  • Precambrian Basement Terrane of South Dakota
    BULLETIN 41 Precambrian Basement Terrane of South Dakota KELLI A. MCCORMICK Department of Environment and Natural Resources Geological Survey Program Akeley-Lawrence Science Center University of South Dakota Vermillion, South Dakota 2010 GEOLOGICAL SURVEY PROGRAM DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES AKELEY-LAWRENCE SCIENCE CENTER, USD 414 EAST CLARK STREET VERMILLION, SOUTH DAKOTA 57069-2390 (605) 677-5227 Derric L. Iles, M.S., C.P.G. State Geologist Sarah A. Chadima, M.S., C.P.G. Senior Geologist Daniel E. Costello, M.S. Geologist Timothy C. Cowman, M.S. Natural Resources Administrator Brian A. Fagnan, M.S. Senior Geologist Dragan Filipovic, M.S. Senior Hydrologist Ann R. Jensen, B.S. Senior Geologist Darren J. Johnson, M.S. Geologist Matthew T. Noonan, B.S. Hydrologist Thomas B. Rich, M.S. Senior Hydrologist Layne D. Schulz, B.S. Senior Geologist Dennis D. Iverson Civil Engineering Technician Scott W. Jensen Civil Engineering Technician Ted R. Miller, B.S. Civil Engineering Technician Colleen K. Odenbrett Word Processing Supervisor Jeffrey J. Puthoff, B.A. Natural Resources Technician Lori L. Roinstad Cartographer Priscilla E. Young, B.S. Senior Secretary RAPID CITY REGIONAL OFFICE 2050 WEST MAIN, SUITE 1 RAPID CITY, SOUTH DAKOTA 57702-2493 (605) 394-2229 Mark D. Fahrenbach, Ph.D. Senior Geologist Kelli A. McCormick, Ph.D. Senior Geologist Joanne M. Noyes, M.S., P.E. Senior Hydrologist STATE OF SOUTH DAKOTA M. Michael Rounds, Governor DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES Steven M. Pirner, Secretary DIVISION OF FINANCIAL AND TECHNICAL ASSISTANCE David Templeton, Director GEOLOGICAL SURVEY PROGRAM Derric L. Iles, State Geologist BULLETIN 41 PRECAMBRIAN BASEMENT TERRANE OF SOUTH DAKOTA KELLI A.
    [Show full text]
  • Field Trip - Alps 2013
    Student paper Field trip - Alps 2013 Evolution of the Penninic nappes - geometry & P-T-t history Kevin Urhahn Abstract Continental collision during alpine orogeny entailed a thrust and fold belt system. The Penninic nappes are one of the major thrust sheet systems in the internal Alps. Extensive seismic researches (NFP20,...) and geological windows (Tauern-window, Engadin-window, Rechnitz-window), as well as a range of outcrops lead to an improved understanding about the nappe architecture of the Penninic system. This paper deals with the shape, structure and composition of the Penninic nappes. Furthermore, the P-T-t history1 of the Penninic nappes during the alpine orogeny, from the Cretaceous until the Oligocene, will be discussed. 1 The P-T-t history of the Penninic nappes is not completely covered in this paper. The second part, of the last evolution of the Alpine orogeny, from Oligocene until today is covered by Daniel Finken. 1. Introduction The Penninic can be subdivided into three partitions which are distinguishable by their depositional environment (PFIFFNER 2010). The depositional environments are situated between the continental margin of Europe and the Adriatic continent (MAXELON et al. 2005). The Sediments of the Valais-trough (mostly Bündnerschists) where deposited onto a thin continental crust and are summarized to the Lower Penninic nappes (PFIFFNER 2010). The Middle Penninic nappes are comprised of sediments of the Briançon-micro-continent. The rock compositions of the Lower- (Simano-, Adula- and Antigori-nappe) and Middle- Penninic nappes (Klippen-nappe) encompass Mesozoic to Cenozoic sediments, which are sheared off from their crystalline basement. Additionally crystalline basement form separate nappe stacks (PFIFFNER 2010).
    [Show full text]
  • The Penokean Orogeny in the Lake Superior Region Klaus J
    Precambrian Research 157 (2007) 4–25 The Penokean orogeny in the Lake Superior region Klaus J. Schulz ∗, William F. Cannon U.S. Geological Survey, 954 National Center, Reston, VA 20192, USA Received 16 March 2006; received in revised form 1 September 2006; accepted 5 February 2007 Abstract The Penokean orogeny began at about 1880 Ma when an oceanic arc, now the Pembine–Wausau terrane, collided with the southern margin of the Archean Superior craton marking the end of a period of south-directed subduction. The docking of the buoyant craton to the arc resulted in a subduction jump to the south and development of back-arc extension both in the initial arc and adjacent craton margin to the north. A belt of volcanogenic massive sulfide deposits formed in the extending back-arc rift within the arc. Synchronous extension and subsidence of the Superior craton resulted in a broad shallow sea characterized by volcanic grabens (Menominee Group in northern Michigan). The classic Lake Superior banded iron-formations, including those in the Marquette, Gogebic, Mesabi and Gunflint Iron Ranges, formed in that sea. The newly established subduction zone caused continued arc volcanism until about 1850 Ma when a fragment of Archean crust, now the basement of the Marshfield terrane, arrived at the subduction zone. The convergence of Archean blocks of the Superior and Marshfield cratons resulted in the major contractional phase of the Penokean orogeny. Rocks of the Pembine–Wausau arc were thrust northward onto the Superior craton causing subsidence of a foreland basin in which sedimentation began at about 1850 Ma in the south (Baraga Group rocks) and 1835 Ma in the north (Rove and Virginia Formations).
    [Show full text]
  • Collision Orogeny
    Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 PROCESSES OF COLLISION OROGENY Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 Downloaded from http://sp.lyellcollection.org/ by guest on October 6, 2021 Shortening of continental lithosphere: the neotectonics of Eastern Anatolia a young collision zone J.F. Dewey, M.R. Hempton, W.S.F. Kidd, F. Saroglu & A.M.C. ~eng6r SUMMARY: We use the tectonics of Eastern Anatolia to exemplify many of the different aspects of collision tectonics, namely the formation of plateaux, thrust belts, foreland flexures, widespread foreland/hinterland deformation zones and orogenic collapse/distension zones. Eastern Anatolia is a 2 km high plateau bounded to the S by the southward-verging Bitlis Thrust Zone and to the N by the Pontide/Minor Caucasus Zone. It has developed as the surface expression of a zone of progressively thickening crust beginning about 12 Ma in the medial Miocene and has resulted from the squeezing and shortening of Eastern Anatolia between the Arabian and European Plates following the Serravallian demise of the last oceanic or quasi- oceanic tract between Arabia and Eurasia. Thickening of the crust to about 52 km has been accompanied by major strike-slip faulting on the rightqateral N Anatolian Transform Fault (NATF) and the left-lateral E Anatolian Transform Fault (EATF) which approximately bound an Anatolian Wedge that is being driven westwards to override the oceanic lithosphere of the Mediterranean along subduction zones from Cephalonia to Crete, and Rhodes to Cyprus. This neotectonic regime began about 12 Ma in Late Serravallian times with uplift from wide- spread littoral/neritic marine conditions to open seasonal wooded savanna with coiluvial, fluvial and limnic environments, and the deposition of the thick Tortonian Kythrean Flysch in the Eastern Mediterranean.
    [Show full text]