Efficient Design of Precision Medical Robotics
Total Page:16
File Type:pdf, Size:1020Kb
Efficient Design of Precision Medical Robotics by NEVAN CLANCY HANUMARA S.M. Mechanical Engineering Massachusetts Institute of Technology, 2006 B.S. Mechanical Engineering, B.A. French University of Rhode Island, 2004 Submitted to the Department of Mechanical Engineering in Partial Fulfillment of the Requirements for the Degree of Doctorate of Philosophy in Mechanical Engineering at the Massachusetts Institute of Technology September 2012 ©2012 Massachusetts Institute of Technology All Rights Reserved Author: Department of Mechanical Engineering 30 August 2012 Certified by: Alexander H. Slocum Pappalardo Professor of Mechanical Engineering Thesis Supervisor Accepted by: David E. Hardt Professor of Mechanical Engineering Graduate Officer Efficient Design of Precision Medical Robotics by NEVAN CLANCY HANUMARA Submitted to the M.I.T. Department of Mechanical Engineering on 30 August 2012 in Partial Fulfillment of the Requirements of the Degree of Doctorate of Philosophy in Mechanical Engineering Abstract Medical robotics is increasingly demonstrating the potential to improve patient care through more precise interventions. However, taking inspiration from industrial robotics has often resulted in large, sometimes cumbersome designs, which represent high capital and per procedure expenditures, as well as increased procedure times. This thesis proposes and demonstrates an alternative model and method for developing economical, appropriately scaled medical robots that improve care and efficiency, while moderating costs. Key to this approach is a structured design process that actively reduces complexity. A selected medical procedure is decomposed into discrete tasks which are then separated into those that are conducted satisfactorily and those where the clinician encounters limitations, often where robots’ strengths would be complimentary. Then by following deterministic principles and with continual user participation, prototyping and testing, a system can be designed that integrates into and assists with current procedures, rather than requiring a completely new protocol. This model is expected to lay the groundwork for increasing the use of hands-on technology in interventional medicine. Thesis Supervisor: Alexander H. Slocum Title: Pappalardo Professor of Mechanical Engineering Table of Contents Abstract ......................................................................................................................................................... 2 Table of Contents .......................................................................................................................................... 2 1. Introduction .......................................................................................................................................... 5 1.1. Definitions ..................................................................................................................................... 6 1.2. Economics in Medical Robotics Design ......................................................................................... 7 2. Background on Medical Robotics ......................................................................................................... 9 2.1. Early Robots .................................................................................................................................. 9 2.2. Orthopedic Robots ...................................................................................................................... 11 2.2.1. Robodoc .............................................................................................................................. 11 2.2.2. Acrobot................................................................................................................................ 12 2.2.3. Zeus ..................................................................................................................................... 13 2.2.4. Steady Hand ........................................................................................................................ 14 2.3. Probe Insertion Robots ............................................................................................................... 14 2.3.1. PAKY-RCM ........................................................................................................................... 15 2.3.2. Piga CT ................................................................................................................................. 16 2.3.3. CT Bot .................................................................................................................................. 17 2.3.4. Light Puncture Robot .......................................................................................................... 18 2.3.5. Innomedic ........................................................................................................................... 19 2.3.6. Spine Assist ......................................................................................................................... 19 2.4. Steerable Robots ......................................................................................................................... 21 2.4.1. Hansen Medical ................................................................................................................... 21 2.4.2. TU Delft ............................................................................................................................... 22 2.5. daVinci Surgical System .............................................................................................................. 23 2.5.1. System & Safety .................................................................................................................. 23 2.5.2. Adoption & Financials ......................................................................................................... 24 2.5.3. Efficacy & Cost..................................................................................................................... 25 3. Implications for the Future of Robotic Surgery .................................................................................. 28 4. Medical Device Prototype Design Process .......................................................................................... 29 5. Robopsy – Robotic Biopsy System ...................................................................................................... 34 5.1. Introduction ................................................................................................................................ 34 5.1.1. Significance ......................................................................................................................... 34 5.1.2. Frequency of Percutaneous & Image Guided Approaches ................................................. 36 5.1.3. Project Overview ................................................................................................................. 37 5.2. Prior Art Review .......................................................................................................................... 37 5.3. Procedural Analysis ..................................................................................................................... 39 5.3.1. Biopsy Observation & Task Partitioning .............................................................................. 40 5.3.2. 10-Case Observational Study .............................................................................................. 42 5.3.3. 50-Case Retrospective Biopsy Study ................................................................................... 44 5.3.4. Financial Consideration ....................................................................................................... 45 - 2 - 5.4. Strategies, Functional Requirements & Concept Development ................................................. 45 5.4.1. Strategy Selection ............................................................................................................... 45 5.4.2. Functional Requirements & Concept Development ........................................................... 47 5.4.3. Actuation Modality ............................................................................................................. 50 5.4.4. Prototype Overview ............................................................................................................ 51 5.5. Alpha & Beta Prototypes ............................................................................................................. 52 5.5.1. Structural Design ................................................................................................................. 52 5.5.2. Torques & Motor Selection ................................................................................................. 54 5.5.3. Alpha Interface .................................................................................................................... 56 5.5.4. Robot-Assisted Biopsy Protocol .......................................................................................... 56 5.5.5. Alpha Validation Testing ..................................................................................................... 57 5.5.6. Beta Prototype .................................................................................................................... 58 5.5.7. Beta Interface .....................................................................................................................