Morphology, Anatomy and Mycorrhizae in Subterranean Parts of Zeuxine Gracilis (Orchidaceae)

Total Page:16

File Type:pdf, Size:1020Kb

Morphology, Anatomy and Mycorrhizae in Subterranean Parts of Zeuxine Gracilis (Orchidaceae) Anales de Biología 33: 127-134, 2011 ARTICLE Morphology, anatomy and mycorrhizae in subterranean parts of Zeuxine gracilis (Orchidaceae) Thangavelu Muthukumar1, Eswaranpillai Uma1, Arumugam Karthikeyan2, Kullaiyan Sathiyadash1, Sarah Jaison1, Perumalsamy Priyadharsini1, Ishworani Chongtham3 & Vellaisamy Muniappan1 1 Root and Soil Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India. 2 Institute of Forest Genetics and Tree Breeding, R. S. Puram, Coimbatore 641 002, Tamil Nadu, India 3 Department of Life Sciences, Manipur University, Canchipur, Imphal 795 003, India Resumen Correspondence Morfología, anatomía y micorrizas en las partes subterráneas de T. Muthukumar Zeuxine gracilis (Orchidaceae) E-mail: [email protected] Zeuxine gracilis (Berda) Bl. es una orquídea terrestre endémica cuya Received: 27 July 2011 morfología, anatomía y micorrización es desconocida. A partir de plan- Accepted: 23 November 2011 tas colectadas en la región de los Ghats occidentales se investigó: (a) Published on-line: 14 December 2011 anatomía de la raíz y el rizoma; (b) características de los pelos radicu- lares y patrones de colonización de micorrizas. Los caracteres más re- levantes en raices fueron: ausencia de velamen y espirantosomas; exodermis simple y nueve protoxilemas arqueados. Rizoma con epi- dermis uniseriada, abundantes espirantosomas en células corticales internas, endodermis con bandas de Caspary y paquetes vasculares biseriados. Se descubrió la presencia de hongos micorrícicos tanto en las raíces como en los rizomas. Su entrada es principalmente a través de pelos radiculares y epidermis del rizoma. Los hongos forman pelo- tones y células monilioides en el cótex radicular. Ocasionalmente apa- recieron micorrízas arbusculares (AM), caracterizadas por hifas sifona- les, vesículas y esporas. La falta de arbúsculos en Z.gracilis indica que AM no son funcionales. Palabras clave: Hongos micorrícicos arbusculares, Células monilioides, Pelotones, Rizoma, Raíz. Abstract Zeuxine gracilis (Berda) Bl., is an endemic, terrestrial green orchid whose morphology, anatomy and mycorrhizal status is unknown. So we investigated: (a) root and rhizome anatomy; (b) root hair character- istics and mycorrhizal colonization patterns in Z. gracilis plants collec- ted from Western Ghats region of southern India. The prominent ana- tomical characters in the roots were: absence of velamen, spirantho- somes, and the presence of single layered exodermis and nine arched protoxylem. The rhizome had an uniseriate epidermis, abundant spir- anthosomes in the inner cortical cells, a distinct endodermis with cas- parian strips and biseriate vascular bundles. The presence of fungi both in the roots and rhizomes was revealed. The entry of fungi was chiefly through root hairs and through epidermis in the rhizome. Fungi formed pelotons and monilioid cells in the root cortex. Additionally, ar- buscular mycorrhizal (AM) fungi characterized by the presence of aseptate hyphae, vesicles and spores were present occasionally in roots. The lack of arbuscules in Z. gracilis indicated the AM to be non functional. Key words: Arbuscular mycorrhizal fungi, Monilioid cells, Pelotons, Rhizome, Root. 128 T. Muthukumar et al. Anales de Biología 33, 2011 Introduction ported AM-like colonization in the terrestrial orchid Corybas macranthus (Hook.f.) Reichb.f., Orchidaceae with around 25,000 to 30,000 species from New Zealand. Raman & Nagarajan (1999) is one of the largest families among flowering surveyed the occurrence of mycorrhizae in six plants. One of the peculiar features of this family epiphytic and five terrestrial orchids of Kodaik- includes the production of dust-like non endo- anal tropical forest of Western Ghats, South India. spermous seeds. Mode of seed germination and They found exclusive occurrence of AM associ- plant development in Orchidaceae is unique ations in all five terrestrial orchids examined. In- among flowering plants, which require association formation on mycorrhizal association in Zeuxine with the mycorrhizal fungi. Orchids have varied is limited. Burgeff (1932) reported mycorrhizal life-forms like epiphytes, lithophytes, or terrestri- association in Zeuxine clandestine Bl., Zeuxine al. Among these varied life-forms terrestrial orch- sp., and Zeuxine purpurascens Bl., and indicated a ids constitute less than one fourth number of the trend from the autotrophic condition to saprophyt- total orchid species. ism among these species which were strongly re- Zeuxine belonging to the subfamily Orch- lated to mycorrhizal dependence. Porter (1942) re- idoideae and tribe Cranichideae is one of the ported mycorrhizal association in Z. strateumat- largest genus among Orchidaceae. Taxa in Zeux- ica growing in Florida, USA. Apart from these ine are widely distributed in Asia with a few in there appear to be no information on mycorrhizal Africa and Australia. In India Zeuxine is represen- status of other species of Zeuxine. ted by 11 species of which Zeuxine gracilis The objective of the present study was to in- (Berda) Bl., and Zeuxine longilabris (Lindl.) vestigate the morphology and anatomy of roots Benth. ex Hook.f., are found in South India and rhizomes of Z. gracilis and also to record the (Hooker 1895). Zeuxine gracilis is a perennial mycorrhizal incidence and morphology. succulent herb found in shaded woodlands, with brown creeping rhizome, ascending to erect aerial Material and methods shoot with petiolate velvety green leaves (Abra- ham & Vatsala 1981). Zeuxine gracilis is endemic Fresh plant materials of Z. gracilis for our to South India. study were obtained from Top Slip, Indira Gandhi Published work on the anatomy of Zeuxine is Wildlife Sanctuary and National Park, Tamil limited. Stern et al. (1993b) studied the anatomy Nadu, India. This site lies in the Western Ghats of Zeuxine oblonga R. Rogers & C. White and south of the Palaghat Gap, known as Anaimalais Zeuxine strateumatica (L.) Schltr., while examin- with an area of 958 sq. km. The area lies between ing the vegetative anatomy and systematics of the 10.13’-10.33’N and 76.49’-77.21’E, 800 m a.s.l. subfamily Spiranthoideae in which the tribe Rainfall varies between 800-4500 mm. Cranichideae was included at that time. These au- Fresh plant materials of five individuals col- thors found the vascular bundles in Z. oblonga lected during May 2011, were preserved in FAA and Z. strateumatica arranged in one and two (9 parts 70% ethanol, 0.5 parts formalin and 0.5 series respectively and the absence of stored parts glacial acetic acid) for 24h and stored in starch in the former. In this study, Stern et al. 70% ethanol before sectioning. Transverse sec- (1993b) also reported ‘spiranthosomes’, a special- tions of roots and rhizomes were prepared by free ized type of amyloplast in many species of hand sections and stained with safranin or trypan Cranichideae including Z. strateumatica. blue. Observations were made using an Olympus Under natural conditions orchids are associ- BX-51 microscope and images were recorded us- ated with mycorrhizal fungi belonging to basidio- ing Proges 2 camera. mycota and ascomycota (Elena et al. 2010). The For mycorrhizal assessment the roots and fungal hyphae invade the cortical cells and form rhizomes were cut into 1-cm long bits, cleared in tightly interwoven coils called pelotons character- 2.5% aqueous potassium hydroxide at 90 ºC for istic of orchid mycorrhizae (Smith & Read 2008). 45 min., washed in running water, acidified with 5 Reports in literature also indicate the association N HCl and stained with 0.05% trypan blue in of arbuscular mycorrhizal (AM) fungi (Glomero- lactoglycerol. The extent of mycorrhizal coloniza- mycota) with terrestrial orchids. Hall (1976) re- Anales de Biología 33, 2011 Zeuxine gracilis: anatomy of mycorrhizal subterranean parts 129 tion was estimated according to magnified inter- chymatous, cells rounded with small triangular in- section method (McGonigle et al. 1990). Pelotons tercellular spaces. Cells of the inner cortical layer were considered intact if the constituting hyphae contain abundant spiranthosomes (Fig. 1E). Endo- were distinguishable and considered degenerating dermis uniseriate, cells tangentially flattened with if the fungal hyphae could not be clearly distin- casparian strips (Fig. 1F). Vascular cylinder 13 guished or found as an amorphous mass. Twenty arched with xylem elements arranged in two con- 1-cm long root bits were floated in water on a centric rings. Vascular tissue embedded in the par- glass slide to measure root thickness and to count enchyma. Pith cells: parenchymatous, thin walled, root hairs. Length and width of 50 root hairs, and polygonal, with small intercellular spaces. fungal variables (pelotons, monilioid cells, and in- tracellular hyphae) were measured using an ocular Mycorrhizal association micrometer. We measured only 10 to 12 AM Mycorrhizal colonization occurred uniformly fungal vesicles and spores due to their infrequent throughout the cortex in roots and rhizomes (Fig. occurrence. Measurements were presented as 2A). Fungal hyphae entered the roots by penetrat- (minimum value-) mean ±S.E. (-maximum value). ing root hairs or the rhizodermal cells in roots and rhizomes (Fig. 2B). Although single fungal hypha Results entered each root hair, occasionally more than one could be seen in a root hair (Fig. 2B). Fungal Root entry into roots or rhizomes was not characterized by the presence of vesicular or appresorial struc- Roots arise from the nodal region, off-white, ture.
Recommended publications
  • Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
    Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus.
    [Show full text]
  • The Diversity of Wild Orchids in the Southern Slope of Mount Merapi, Yogyakarta, Indonesia Eight Years After the 2010 Eruption
    BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 9, September 2020 E-ISSN: 2085-4722 Pages: 4457-4465 DOI: 10.13057/biodiv/d210964 The diversity of wild orchids in the southern slope of Mount Merapi, Yogyakarta, Indonesia eight years after the 2010 eruption FEBRI YUDA KURNIAWAN1,2,♥, FAUZANA PUTRI2,3, AHMAD SUYOKO2,3, HIMAWAN MASYHURI2,3, MAYA PURQI SULISTIANINGRUM2,3, ENDANG SEMIARTI3,♥♥ 1Postgraduate School, Universitas Gadjah Mada. Jl. Teknika Utara, Sleman 55281, Yogyakarta, Indonesia. Tel./fax. +62-274-544975, email: [email protected] 2Biology Orchid Study Club (BiOSC), Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sekip Utara, Sleman 55281, Yogyakarta, Indonesia 3Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sekip Utara, Sleman 55281, Yogyakarta, Indonesia. Tel./fax.: +62-274-580839, email: [email protected] Manuscript received: 21 August 2020. Revision accepted: 31 August 2020. Abstract. Kurniawan FY, Putri F, Suyoko A, Masyhuri H, Sulistianingrum MP, Semiarti E. 2020. The diversity of wild orchids in the southern slope of Mount Merapi, Yogyakarta, Indonesia eight years after the 2010 eruption. Biodiversitas 21: 4457-4465. The ecosystem of the slopes of Mount Merapi is mountain tropical forest which is frequently affected by volcanic activities. The dynamics of the volcano affect the diversity and abundance of orchids in the ecosystem. Tritis is an area included in the Turgo Hill of the southern slope of Mount Merapi and is under the management of Mount Merapi National Park. The ecosystem in Tritis area classified as lower mountain forest and it has been affected by Mount Merapi eruption. This study aimed to do an inventory of orchid species in Tritis to know the diversity and abundance of orchids that exist in this area.
    [Show full text]
  • Willi Orchids
    growers of distinctively better plants. Nunured and cared for by hand, each plant is well bred and well fed in our nutrient rich soil- a special blend that makes your garden a healthier, happier, more beautiful place. Look for the Monrovia label at your favorite garden center. For the location nearest you, call toll free l-888-Plant It! From our growing fields to your garden, We care for your plants. ~ MONROVIA~ HORTICULTURAL CRAFTSMEN SINCE 1926 Look for the Monrovia label, call toll free 1-888-Plant It! co n t e n t s Volume 77, Number 3 May/June 1998 DEPARTMENTS Commentary 4 Wild Orchids 28 by Paul Martin Brown Members' Forum 5 A penonal tour ofplaces in N01,th America where Gaura lindheimeri, Victorian illustrators. these native beauties can be seen in the wild. News from AHS 7 Washington, D . C. flower show, book awards. From Boon to Bane 37 by Charles E. Williams Focus 10 Brought over f01' their beautiful flowers and colorful America)s roadside plantings. berries, Eurasian bush honeysuckles have adapted all Offshoots 16 too well to their adopted American homeland. Memories ofgardens past. Mock Oranges 41 Gardeners Information Service 17 by Terry Schwartz Magnolias from seeds, woodies that like wet feet. Classic fragrance and the ongoing development of nell? Mail-Order Explorer 18 cultivars make these old favorites worthy of considera­ Roslyn)s rhodies and more. tion in today)s gardens. Urban Gardener 20 The Melting Plot: Part II 44 Trial and error in that Toddlin) Town. by Susan Davis Price The influences of African, Asian, and Italian immi­ Plants and Your Health 24 grants a1'e reflected in the plants and designs found in H eading off headaches with herbs.
    [Show full text]
  • App. 12 – EPBC Act Protected Matters Report and Wildlife Online
    Environmental Impact Statement - VOLUME 3 Appendix 12 EPBC Act Protected Matters Report and Wildlife Online PR100246 / R72894; Volume 3 EPBC Act Protected Matters Report This report provides general guidance on matters of national environmental significance and other matters protected by the EPBC Act in the area you have selected. Information on the coverage of this report and qualifications on data supporting this report are contained in the caveat at the end of the report. Information is available about Environment Assessments and the EPBC Act including significance guidelines, forms and application process details. Report created: 26/09/13 12:19:15 Summary Details Matters of NES Other Matters Protected by the EPBC Act Extra Information Caveat Acknowledgements This map may contain data which are ©Commonwealth of Australia (Geoscience Australia), ©PSMA 2010 Coordinates Buffer: 10.0Km Summary Matters of National Environmental Significance This part of the report summarises the matters of national environmental significance that may occur in, or may relate to, the area you nominated. Further information is available in the detail part of the report, which can be accessed by scrolling or following the links below. If you are proposing to undertake an activity that may have a significant impact on one or more matters of national environmental significance then you should consider the Administrative Guidelines on Significance. World Heritage Properties: None National Heritage Places: None Wetlands of International Importance: None Great Barrier Reef Marine Park: None Commonwealth Marine Areas: None Listed Threatened Ecological Communities: 2 Listed Threatened Species: 47 Listed Migratory Species: 16 Other Matters Protected by the EPBC Act This part of the report summarises other matters protected under the Act that may relate to the area you nominated.
    [Show full text]
  • 65 Possibly Lost Orchid Treasure of Bangladesh
    J. biodivers. conserv. bioresour. manag. 3(1), 2017 POSSIBLY LOST ORCHID TREASURE OF BANGLADESH AND THEIR ENUMERATION WITH CONSERVATION STATUS Rashid, M. E., M. A. Rahman and M. K. Huda Department of Botany, University of Chittagong, Chittagong 4331, Bangladesh Abstract The study aimed at determining the status of occurrence of the orchid treasure of Bangladesh for providing data for Planning National Conservation Strategy and Development of Conservation Management. 54 orchid species are assessed to be presumably lost from the flora of Bangladesh due to environmental degradation and ecosystem depletion. The assessment of their status of occurrence was made based on long term field investigation, collection and identification of orchid taxa; examination and identification of herbarium specimens preserved at CAL, E, K, DACB, DUSH, BFRIH,BCSIRH, HCU; and survey of relevant upto date floristic literature. These species had been recorded from the present Bangladesh territory for more than 50 to 100 years ago, since then no further report of occurrence or collection from elsewhere in Bangladesh is available and could not be located to their recorded localities through field investigations. Of these, 29 species were epiphytic in nature and 25 terrestrial. More than 41% of these taxa are economically very important for their potential medicinal and ornamental values. Enumeration of these orchid taxa is provided with updated nomenclature, bangla name(s) and short annotation with data on habitats, phenology, potential values, recorded locality, global distribution conservation status and list of specimens available in different herbaria. Key words: Orchid species, lost treasure, Bangladesh, conservation status, assessment. INTRODUCTION The orchid species belonging to the family Orchidaceae are represented mostly in the tropical parts of the world by 880 genera and about 26567 species (Cai et al.
    [Show full text]
  • Phylogenetic Relationships of Rhizoctonia Fungi Within the Cantharellales
    fungal biology 120 (2016) 603e619 journal homepage: www.elsevier.com/locate/funbio Phylogenetic relationships of Rhizoctonia fungi within the Cantharellales Dolores GONZALEZa,*, Marianela RODRIGUEZ-CARRESb, Teun BOEKHOUTc, Joost STALPERSc, Eiko E. KURAMAEd, Andreia K. NAKATANIe, Rytas VILGALYSf, Marc A. CUBETAb aInstituto de Ecologıa, A.C., Red de Biodiversidad y Sistematica, Carretera Antigua a Coatepec No. 351, El Haya, 91070 Xalapa, Veracruz, Mexico bDepartment of Plant Pathology, North Carolina State University, Center for Integrated Fungal Research, Campus Box 7251, Raleigh, NC 27695, USA cCBS Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands dDepartment of Microbial Ecology, Netherlands Institute of Ecology (NIOO/KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands eUNESP, Faculdade de Ci^encias Agronomicas,^ CP 237, 18603-970 Botucatu, SP, Brazil fDepartment of Biology, Duke University, Durham, NC 27708, USA article info abstract Article history: Phylogenetic relationships of Rhizoctonia fungi within the order Cantharellales were studied Received 2 January 2015 using sequence data from portions of the ribosomal DNA cluster regions ITS-LSU, rpb2, tef1, Received in revised form and atp6 for 50 taxa, and public sequence data from the rpb2 locus for 165 taxa. Data sets 1 January 2016 were analysed individually and combined using Maximum Parsimony, Maximum Likeli- Accepted 19 January 2016 hood, and Bayesian Phylogenetic Inference methods. All analyses supported the mono- Available online 29 January 2016 phyly of the family Ceratobasidiaceae, which comprises the genera Ceratobasidium and Corresponding Editor: Thanatephorus. Multi-locus analysis revealed 10 well-supported monophyletic groups that Joseph W. Spatafora were consistent with previous separation into anastomosis groups based on hyphal fusion criteria.
    [Show full text]
  • Fungal Diversity Driven by Bark Features Affects Phorophyte
    www.nature.com/scientificreports OPEN Fungal diversity driven by bark features afects phorophyte preference in epiphytic orchids from southern China Lorenzo Pecoraro1*, Hanne N. Rasmussen2, Sofa I. F. Gomes3, Xiao Wang1, Vincent S. F. T. Merckx3, Lei Cai4 & Finn N. Rasmussen5 Epiphytic orchids exhibit varying degrees of phorophyte tree specifcity. We performed a pilot study to investigate why epiphytic orchids prefer or avoid certain trees. We selected two orchid species, Panisea unifora and Bulbophyllum odoratissimum co-occurring in a forest habitat in southern China, where they showed a specifc association with Quercus yiwuensis and Pistacia weinmannifolia trees, respectively. We analysed a number of environmental factors potentially infuencing the relationship between orchids and trees. Diference in bark features, such as water holding capacity and pH were recorded between Q. yiwuensis and P. weinmannifolia, which could infuence both orchid seed germination and fungal diversity on the two phorophytes. Morphological and molecular culture-based methods, combined with metabarcoding analyses, were used to assess fungal communities associated with studied orchids and trees. A total of 162 fungal species in 74 genera were isolated from bark samples. Only two genera, Acremonium and Verticillium, were shared by the two phorophyte species. Metabarcoding analysis confrmed the presence of signifcantly diferent fungal communities on the investigated tree and orchid species, with considerable similarity between each orchid species and its host tree, suggesting that the orchid-host tree association is infuenced by the fungal communities of the host tree bark. Epiphytism is one of the most common examples of commensalism occurring in terrestrial environments, which provides advantages, such as less competition and increased access to light, protection from terrestrial herbivores, and better fower exposure to pollinators and seed dispersal 1,2.
    [Show full text]
  • (Orchidaceae). Plant Syst
    J. Orchid Soc. India, 30: 1-10, 2016 ISSN 0971-5371 DEVELOPMENT OF MALLLEEE AND FEMALLLE GAMETOPHYTES IN HABENARIA OVVVALIFOLIA WIGHT (ORCHIDAAACCCEEEAAAE) M R GURUDEVAAA Department of Botany, Visveswarapura College of Science, K.R. Road, Bengaluru - 560 004, Karnataka, India Abstract The anther in Habenaria ovalifolia Wight was dithecous and tetrasporangiate. Its wall development confirmed to the monocotyledonous type. Each archesporial cell developed into a block of sporogenous cells and finally organized into pollen massulae. The anther wall was 4-5 layered. The endothecial cells developed ring-like tangential thickening on their inner walls. Tapetal cells were uninucleate and showed dual origin. The microspore tetrads were linear, tetrahedral, decussate and isobilateral. The pollens were shed at 2-celled stage. The ovules were anatropous, bitegmic and tenuinucellate. The inner integument alone formed the micropyle. The development of embryo sac was monosporic and G-1a type. The mature embryo sac contained an egg apparatus, secondary nucleus and three antipodal cells. Double fertilization occurred normally. Introduction species. THE ORCHIDACEAE, one of the largest families of Materials and Methods angiosperms is the most evolved amongst the Habenaria ovalifolia Wight is a terrestrial herb with monocotyledons. The orchid embryology is interesting, ellipsoidal underground tubers. There are about 4-6 as these plants exhibit great diversity in the oblong or obovate, acute, entire leaves cluster below development of male and female gametophyte. The the middle of the stem (Fig. 1). The inflorescence is a first embryological study in the family was made by many flowered raceme. The flowers are green, Muller in 1847. Since then several investigations have bracteate and pedicellate (Fig.
    [Show full text]
  • Cranichideae; Orchidaceae)
    Phytotaxa 202 (3): 207–213 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.202.3.4 Morphological comparisons of two pairs of easily confused species in subtribe Goodyerinae (Cranichideae; Orchidaceae) QIAO-XIAO LIU1, ZHI-QUAN CHENG1, HONG-YUN TAN2, TIAN-CHUAN HSU3 & HUAI-ZHEN TIAN1* 1School of Life Sciences, East China Normal University, Shanghai 200241, China; E-mail: [email protected] 2Key Laboratory of Tropical Forest Ecology, Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China 3Institute of Molecular & Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, China Abstract Two yellow-lipped species of Zeuxine viz. Z. flava and Z. sakagutii and another pair of species of Rhomboda, R. moulmei- nensis and R. fanjingensis, are so similar that they are frequently misidentified. In this paper, based on field observations, study of type specimens and protologues, illustrations and comparisons of these two pairs of confused species are provided to enable identification. Key words: Chinese orchids, Rhomboda, Zeuxine Introduction Zeuxine Lindley (1826: 18) and Rhomboda Lindley (1857: 181) belong to subtribe Goodyerinae (Orchidoideae; Cranichideae; Pridgeon et al. 2003a, 2003b). Zeuxine comprises about 80 species distributed in tropical and southern Africa through tropical and subtropical Asia, to New Guinea, northeastern Australia, and the southwestern Pacific islands; with 14 species occurring in China, two of them are endemic (Chen et al. 2009b). Flowers of Zeuxine species are nearly always white or green, but a few are yellow.
    [Show full text]
  • An Asian Orchid, Eulophia Graminea (Orchidaceae: Cymbidieae), Naturalizes in Florida
    LANKESTERIANA 8(1): 5-14. 2008. AN ASIAN ORCHID, EULOPHIA GRAMINEA (ORCHIDACEAE: CYMBIDIEAE), NATURALIZES IN FLORIDA ROBE R T W. PEMBE R TON 1,3, TIMOTHY M. COLLINS 2 & SUZANNE KO P TU R 2 1Fairchild Tropical Botanic Garden, 2121 SW 28th Terrace Ft. Lauderdale, Florida 33312 2Department of Biological Sciences, Florida International University, Miami, FL 33199 3Author for correspondence: [email protected] ABST R A C T . Eulophia graminea, a terrestrial orchid native to Asia, has naturalized in southern Florida. Orchids naturalize less often than other flowering plants or ferns, butE. graminea has also recently become naturalized in Australia. Plants were found growing in five neighborhoods in Miami-Dade County, spanning 35 km from the most northern to the most southern site, and growing only in woodchip mulch at four of the sites. Plants at four sites bore flowers, and fruit were observed at two sites. Hand pollination treatments determined that the flowers are self compatible but fewer fruit were set in selfed flowers (4/10) than in out-crossed flowers (10/10). No fruit set occurred in plants isolated from pollinators, indicating that E. graminea is not autogamous. Pollinia removal was not detected at one site, but was 24.3 % at the other site evaluated for reproductive success. A total of 26 and 92 fruit were found at these two sites, where an average of 6.5 and 3.4 fruit were produced per plant. These fruits ripened and dehisced rapidly; some dehiscing while their inflorescences still bore open flowers. Fruit set averaged 9.2 and 4.5 % at the two sites.
    [Show full text]
  • Redalyc.ARE OUR ORCHIDS SAFE DOWN UNDER?
    Lankesteriana International Journal on Orchidology ISSN: 1409-3871 [email protected] Universidad de Costa Rica Costa Rica BACKHOUSE, GARY N. ARE OUR ORCHIDS SAFE DOWN UNDER? A NATIONAL ASSESSMENT OF THREATENED ORCHIDS IN AUSTRALIA Lankesteriana International Journal on Orchidology, vol. 7, núm. 1-2, marzo, 2007, pp. 28- 43 Universidad de Costa Rica Cartago, Costa Rica Available in: http://www.redalyc.org/articulo.oa?id=44339813005 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative LANKESTERIANA 7(1-2): 28-43. 2007. ARE OUR ORCHIDS SAFE DOWN UNDER? A NATIONAL ASSESSMENT OF THREATENED ORCHIDS IN AUSTRALIA GARY N. BACKHOUSE Biodiversity and Ecosystem Services Division, Department of Sustainability and Environment 8 Nicholson Street, East Melbourne, Victoria 3002 Australia [email protected] KEY WORDS:threatened orchids Australia conservation status Introduction Many orchid species are included in this list. This paper examines the listing process for threatened Australia has about 1700 species of orchids, com- orchids in Australia, compares regional and national prising about 1300 named species in about 190 gen- lists of threatened orchids, and provides recommen- era, plus at least 400 undescribed species (Jones dations for improving the process of listing regionally 2006, pers. comm.). About 1400 species (82%) are and nationally threatened orchids. geophytes, almost all deciduous, seasonal species, while 300 species (18%) are evergreen epiphytes Methods and/or lithophytes. At least 95% of this orchid flora is endemic to Australia.
    [Show full text]
  • Orchids of Western Ghats
    Orchids of Western Ghats Dr. S.K. Jogdand P.G. Dept. of Botany Mrs. K.S.K. College Beed Orchids, one of the beautiful creations of the nature, comprise an unique group of plants. Being one of the largest families of the flowering plants, Orchidaceae constitutes about 7% species of all Angiosperms and nearly 40% of monocotyledons. It is one of the largest and most diversified families of Angiosperms represented by 25,000 to 35,000 species belonging to 600 – 800 genera (Arditti, 1979) distributed in all parts of the world except, perhaps, in the Antarctica (Abraham and Vatsala, 1981). India represents about 1,141 species belonging to 140 genera of orchids with Himalayas as their main home (Kumar and Manilal, 1994). Orchids are perennial herbs and exhibit incredible range of diversity in habit; shape, size, colour and fragrance of flower and its fascination. Orchids are highly evolved among the monocotyledons and also possess evolved flower and seed. The Western Ghats of India, one of the salubrious spots providing vast range of habitats for a good number of orchid species is one of the Hot- Spots of endemic plants of India. It is the second richest and diverse spot as far as orchids are concerned. It harbors 267 species, 3 subspecies, and 2 varieties of orchids belonging to 72 genera of which more than 46% are endemic. Orchidaceae are one of the dominant families in the Western Ghats only next to the Poaceae and Leguminoceae. Among the Monocotyledons, family Orchidaceae is found to be interesting for its Taxonomy, Cytogenetics, Adaptations, and Propagation.
    [Show full text]