Orchids of Western Ghats
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus. -
The Diversity of Wild Orchids in the Southern Slope of Mount Merapi, Yogyakarta, Indonesia Eight Years After the 2010 Eruption
BIODIVERSITAS ISSN: 1412-033X Volume 21, Number 9, September 2020 E-ISSN: 2085-4722 Pages: 4457-4465 DOI: 10.13057/biodiv/d210964 The diversity of wild orchids in the southern slope of Mount Merapi, Yogyakarta, Indonesia eight years after the 2010 eruption FEBRI YUDA KURNIAWAN1,2,♥, FAUZANA PUTRI2,3, AHMAD SUYOKO2,3, HIMAWAN MASYHURI2,3, MAYA PURQI SULISTIANINGRUM2,3, ENDANG SEMIARTI3,♥♥ 1Postgraduate School, Universitas Gadjah Mada. Jl. Teknika Utara, Sleman 55281, Yogyakarta, Indonesia. Tel./fax. +62-274-544975, email: [email protected] 2Biology Orchid Study Club (BiOSC), Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sekip Utara, Sleman 55281, Yogyakarta, Indonesia 3Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada. Jl. Teknika Selatan, Sekip Utara, Sleman 55281, Yogyakarta, Indonesia. Tel./fax.: +62-274-580839, email: [email protected] Manuscript received: 21 August 2020. Revision accepted: 31 August 2020. Abstract. Kurniawan FY, Putri F, Suyoko A, Masyhuri H, Sulistianingrum MP, Semiarti E. 2020. The diversity of wild orchids in the southern slope of Mount Merapi, Yogyakarta, Indonesia eight years after the 2010 eruption. Biodiversitas 21: 4457-4465. The ecosystem of the slopes of Mount Merapi is mountain tropical forest which is frequently affected by volcanic activities. The dynamics of the volcano affect the diversity and abundance of orchids in the ecosystem. Tritis is an area included in the Turgo Hill of the southern slope of Mount Merapi and is under the management of Mount Merapi National Park. The ecosystem in Tritis area classified as lower mountain forest and it has been affected by Mount Merapi eruption. This study aimed to do an inventory of orchid species in Tritis to know the diversity and abundance of orchids that exist in this area. -
Willi Orchids
growers of distinctively better plants. Nunured and cared for by hand, each plant is well bred and well fed in our nutrient rich soil- a special blend that makes your garden a healthier, happier, more beautiful place. Look for the Monrovia label at your favorite garden center. For the location nearest you, call toll free l-888-Plant It! From our growing fields to your garden, We care for your plants. ~ MONROVIA~ HORTICULTURAL CRAFTSMEN SINCE 1926 Look for the Monrovia label, call toll free 1-888-Plant It! co n t e n t s Volume 77, Number 3 May/June 1998 DEPARTMENTS Commentary 4 Wild Orchids 28 by Paul Martin Brown Members' Forum 5 A penonal tour ofplaces in N01,th America where Gaura lindheimeri, Victorian illustrators. these native beauties can be seen in the wild. News from AHS 7 Washington, D . C. flower show, book awards. From Boon to Bane 37 by Charles E. Williams Focus 10 Brought over f01' their beautiful flowers and colorful America)s roadside plantings. berries, Eurasian bush honeysuckles have adapted all Offshoots 16 too well to their adopted American homeland. Memories ofgardens past. Mock Oranges 41 Gardeners Information Service 17 by Terry Schwartz Magnolias from seeds, woodies that like wet feet. Classic fragrance and the ongoing development of nell? Mail-Order Explorer 18 cultivars make these old favorites worthy of considera Roslyn)s rhodies and more. tion in today)s gardens. Urban Gardener 20 The Melting Plot: Part II 44 Trial and error in that Toddlin) Town. by Susan Davis Price The influences of African, Asian, and Italian immi Plants and Your Health 24 grants a1'e reflected in the plants and designs found in H eading off headaches with herbs. -
Folklore Medicinal Orchids from South India: the Potential Source of Antioxidants
Online - 2455-3891 Vol 11, Issue 6, 2018 Print - 0974-2441 Research Article FOLKLORE MEDICINAL ORCHIDS FROM SOUTH INDIA: THE POTENTIAL SOURCE OF ANTIOXIDANTS SAMEERA PARVEEN, RAMESH CK*, RIAZ MAHMOOD, PALLAVI M 1Postgraduate Department of Studies and Research in Biotechnology, Jnana Sahyadri Campus, Kuvempu University, Shimoga 577451, Karnataka, India. 2Department of Studies and Research in Biotechnology, Sahyadri Science College, Kuvempu University, Shimoga, Karnataka, India. Email: [email protected] Received: 11 January 2017, Revised and Accepted: 17 February 2018 ABSTRACT Objective: Orchids are widely used the economically important ornamental plant. Conventionally, they were also used for the treatment of several diseases. In the present study, five species of medicinal Orchids from South India were selected to evaluate their antioxidant potential. Methods: The selected species were extracted by Soxhlet method using 70% ethanol. The extracts obtained were analyzed for various quantitative and antioxidant assays followed by correlation analysis in between quantitative and antioxidant activity. Results: Antioxidant data revealed that among the extracts of five orchids, Coelogyne breviscapa was proved to be superior in terms of antioxidant activities, followed by Aerides maculosum, Dendrobium macrostachyum, Pholidota pallida, and Vanda testacea. Correlation analysis was performed, and the results proved simple positive correlation and highest average value of “r” (correlation coefficient) for antioxidant activities with quantitative were the total antioxidants, total phenolics, total flavonoids, and ascorbic acid content. Among the qualitative antioxidant activities, the highest average value of “r” was shown by 2, 2-diphenyl-1-picrylhydrazyl, iron chelating, 2,2-azinobis-3-ethyl-benzothiazoline-6-sulfonic acid, and superoxide radical. Conclusion: The study documents that orchid plants have significant antioxidant potential which can contribute to human health. -
(Orchidaceae). Plant Syst
J. Orchid Soc. India, 30: 1-10, 2016 ISSN 0971-5371 DEVELOPMENT OF MALLLEEE AND FEMALLLE GAMETOPHYTES IN HABENARIA OVVVALIFOLIA WIGHT (ORCHIDAAACCCEEEAAAE) M R GURUDEVAAA Department of Botany, Visveswarapura College of Science, K.R. Road, Bengaluru - 560 004, Karnataka, India Abstract The anther in Habenaria ovalifolia Wight was dithecous and tetrasporangiate. Its wall development confirmed to the monocotyledonous type. Each archesporial cell developed into a block of sporogenous cells and finally organized into pollen massulae. The anther wall was 4-5 layered. The endothecial cells developed ring-like tangential thickening on their inner walls. Tapetal cells were uninucleate and showed dual origin. The microspore tetrads were linear, tetrahedral, decussate and isobilateral. The pollens were shed at 2-celled stage. The ovules were anatropous, bitegmic and tenuinucellate. The inner integument alone formed the micropyle. The development of embryo sac was monosporic and G-1a type. The mature embryo sac contained an egg apparatus, secondary nucleus and three antipodal cells. Double fertilization occurred normally. Introduction species. THE ORCHIDACEAE, one of the largest families of Materials and Methods angiosperms is the most evolved amongst the Habenaria ovalifolia Wight is a terrestrial herb with monocotyledons. The orchid embryology is interesting, ellipsoidal underground tubers. There are about 4-6 as these plants exhibit great diversity in the oblong or obovate, acute, entire leaves cluster below development of male and female gametophyte. The the middle of the stem (Fig. 1). The inflorescence is a first embryological study in the family was made by many flowered raceme. The flowers are green, Muller in 1847. Since then several investigations have bracteate and pedicellate (Fig. -
Fine Books and Manuscripts Books Fine
Wednesday 21 March 2018 21 March Wednesday FINE BOOKS AND MANUSCRIPTS FINE BOOKS AND MANUSCRIPTS | Knightsbridge, London | Wednesday 21 March 2018 24633 FINE BOOKS AND MANUSCRIPTS Wednesday 21 March 2018 at 10am Knightsbridge, London BONHAMS ENQUIRIES Please see page 2 for bidder Montpelier Street Matthew Haley information including after-sale Knightsbridge Simon Roberts collection and shipment. London SW7 1HH Luke Batterham www.bonhams.com Sarah Lindberg Please see back of catalogue +44 (0) 20 7393 3828 for important notice to bidders VIEWING +44 (0) 20 7393 3831 Sunday 18 March ILLUSTRATIONS 11am - 3pm Shipping and Collections Front cover: Lot 83 Monday 19 March Leor Cohen Back cover: Lot 245 9am - 4.30pm +44 (0) 20 7393 3841 Tuesday 20 March +44 (0) 20 7393 3879 Fax 9am - 4.30pm [email protected] Please note that Bonhams will be closed Friday 30 March BIDS PRESS ENQUIRIES 2018 – Monday 2 April 2018 +44 (0) 20 7447 7447 [email protected] for the Easter Holiday. +44 (0) 20 7447 7401 fax [email protected] CUSTOMER SERVICES To bid via the internet Monday to Friday please visit www.bonhams.com 8.30am – 6pm +44 (0) 20 7447 7447 New bidders must also provide proof of identity when submitting LIVE ONLINE BIDDING IS bids. Failure to do this may result AVAILABLE FOR THIS SALE in your bids not being processed. Please email [email protected] with “Live bidding” in the subject Please note that bids should be line up to 48 hours before the submitted no later than 4pm on auction to register for this service. -
Research Priorities and Future Directions in Conservation of Wild Orchids in Sri Lanka: a Review
Nature Conservation Research. Заповедная наука 2020. 5(Suppl.1): 34–45 https://dx.doi.org/10.24189/ncr.2020.029 RESEARCH PRIORITIES AND FUTURE DIRECTIONS IN CONSERVATION OF WILD ORCHIDS IN SRI LANKA: A REVIEW J. Dananjaya Kottawa-Arachchi1,*, R. Samantha Gunasekara2 1Tea Research Institute of Sri Lanka, Sri Lanka 2Lanka Nature Conservationists, Sri Lanka *e-mail: [email protected], [email protected] Received: 24.03.2020. Revised: 22.05.2020. Accepted: 29.05.2020. Together with Western Ghats, Sri Lanka is a biodiversity hotspot amongst the 35 regions known worldwide. Considering the Sri Lankan orchids, 70.6% of the orchid species, including 84% of the endemics, are categorised as threatened. The distribution of the family Orchidaceae is mostly correlated with the distribution pattern of the main bioclimatic zones which is governed by the amount and intensity of rainfall and altitude. Habitat deterioration and degradation, clearing of vegetation, intentional forest fires and spread of invasive alien species are significant threats to native species. Illegally collection and exporting of indigenous species has been another alarming issue in the past decades. Protection of native species, increased public awareness, enforcement of legislation and introduction of new propagation techniques would certainly bring a beneficial effect to the native orchid flora. Conduct awareness programs, strengthen existing laws, and reviewing the legal framework related to the native orchid flora could be vital for future conservation. Apart from the identification of new species and their distribution, future research on understanding soil chemical and physical parameters of terrestrial habitats, plant association of terrestrial orchids, phenology patterns and interactions of pollinators, associations with mycorrhiza, effect of invasive alien species and impact of climate change are highlighted. -
Diversity and Distribution of Vascular Epiphytic Flora in Sub-Temperate Forests of Darjeeling Himalaya, India
Annual Research & Review in Biology 35(5): 63-81, 2020; Article no.ARRB.57913 ISSN: 2347-565X, NLM ID: 101632869 Diversity and Distribution of Vascular Epiphytic Flora in Sub-temperate Forests of Darjeeling Himalaya, India Preshina Rai1 and Saurav Moktan1* 1Department of Botany, University of Calcutta, 35, B.C. Road, Kolkata, 700 019, West Bengal, India. Authors’ contributions This work was carried out in collaboration between both authors. Author PR conducted field study, collected data and prepared initial draft including literature searches. Author SM provided taxonomic expertise with identification and data analysis. Both authors read and approved the final manuscript. Article Information DOI: 10.9734/ARRB/2020/v35i530226 Editor(s): (1) Dr. Rishee K. Kalaria, Navsari Agricultural University, India. Reviewers: (1) Sameh Cherif, University of Carthage, Tunisia. (2) Ricardo Moreno-González, University of Göttingen, Germany. (3) Nelson Túlio Lage Pena, Universidade Federal de Viçosa, Brazil. Complete Peer review History: http://www.sdiarticle4.com/review-history/57913 Received 06 April 2020 Accepted 11 June 2020 Original Research Article Published 22 June 2020 ABSTRACT Aims: This communication deals with the diversity and distribution including host species distribution of vascular epiphytes also reflecting its phenological observations. Study Design: Random field survey was carried out in the study site to identify and record the taxa. Host species was identified and vascular epiphytes were noted. Study Site and Duration: The study was conducted in the sub-temperate forests of Darjeeling Himalaya which is a part of the eastern Himalaya hotspot. The zone extends between 1200 to 1850 m amsl representing the amalgamation of both sub-tropical and temperate vegetation. -
Cranichideae; Orchidaceae)
Phytotaxa 202 (3): 207–213 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2015 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.202.3.4 Morphological comparisons of two pairs of easily confused species in subtribe Goodyerinae (Cranichideae; Orchidaceae) QIAO-XIAO LIU1, ZHI-QUAN CHENG1, HONG-YUN TAN2, TIAN-CHUAN HSU3 & HUAI-ZHEN TIAN1* 1School of Life Sciences, East China Normal University, Shanghai 200241, China; E-mail: [email protected] 2Key Laboratory of Tropical Forest Ecology, Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China 3Institute of Molecular & Cellular Biology, National Tsing Hua University, Hsinchu 30013, Taiwan, China Abstract Two yellow-lipped species of Zeuxine viz. Z. flava and Z. sakagutii and another pair of species of Rhomboda, R. moulmei- nensis and R. fanjingensis, are so similar that they are frequently misidentified. In this paper, based on field observations, study of type specimens and protologues, illustrations and comparisons of these two pairs of confused species are provided to enable identification. Key words: Chinese orchids, Rhomboda, Zeuxine Introduction Zeuxine Lindley (1826: 18) and Rhomboda Lindley (1857: 181) belong to subtribe Goodyerinae (Orchidoideae; Cranichideae; Pridgeon et al. 2003a, 2003b). Zeuxine comprises about 80 species distributed in tropical and southern Africa through tropical and subtropical Asia, to New Guinea, northeastern Australia, and the southwestern Pacific islands; with 14 species occurring in China, two of them are endemic (Chen et al. 2009b). Flowers of Zeuxine species are nearly always white or green, but a few are yellow. -
An Asian Orchid, Eulophia Graminea (Orchidaceae: Cymbidieae), Naturalizes in Florida
LANKESTERIANA 8(1): 5-14. 2008. AN ASIAN ORCHID, EULOPHIA GRAMINEA (ORCHIDACEAE: CYMBIDIEAE), NATURALIZES IN FLORIDA ROBE R T W. PEMBE R TON 1,3, TIMOTHY M. COLLINS 2 & SUZANNE KO P TU R 2 1Fairchild Tropical Botanic Garden, 2121 SW 28th Terrace Ft. Lauderdale, Florida 33312 2Department of Biological Sciences, Florida International University, Miami, FL 33199 3Author for correspondence: [email protected] ABST R A C T . Eulophia graminea, a terrestrial orchid native to Asia, has naturalized in southern Florida. Orchids naturalize less often than other flowering plants or ferns, butE. graminea has also recently become naturalized in Australia. Plants were found growing in five neighborhoods in Miami-Dade County, spanning 35 km from the most northern to the most southern site, and growing only in woodchip mulch at four of the sites. Plants at four sites bore flowers, and fruit were observed at two sites. Hand pollination treatments determined that the flowers are self compatible but fewer fruit were set in selfed flowers (4/10) than in out-crossed flowers (10/10). No fruit set occurred in plants isolated from pollinators, indicating that E. graminea is not autogamous. Pollinia removal was not detected at one site, but was 24.3 % at the other site evaluated for reproductive success. A total of 26 and 92 fruit were found at these two sites, where an average of 6.5 and 3.4 fruit were produced per plant. These fruits ripened and dehisced rapidly; some dehiscing while their inflorescences still bore open flowers. Fruit set averaged 9.2 and 4.5 % at the two sites. -
Diversity of Orchid Species of Odisha State, India. with Note on the Medicinal and Economic Uses
Diversity of orchid species of Odisha state, India. With note on the medicinal and economic uses Sanjeet Kumar1*, Sweta Mishra1 & Arun Kumar Mishra2 ________________________________ 1Biodiversity and Conservation Lab., Ambika Prasad Research Foundation, India 2Divisional Forest Office, Rairangpur, Odisha, India * author for correspondence: [email protected] ________________________________ Abstract The state of Odisha is home to a great floral and faunistic wealth with diverse landscapes. It enjoys almost all types of vegetations. Among its floral wealth, the diversity of orchids plays an important role. They are known for their beautiful flowers having ecological values. An extensive survey in the field done from 2009 to 2020 in different areas of the state, supported by information found in the literature and by the material kept in the collections of local herbariums, allows us to propose, in this article, a list of 160 species belonging to 50 different genera. Furthermore, endemism, conservation aspects, medicinal and economic values of some of them are discussed. Résumé L'État d'Odisha abrite une grande richesse florale et faunistique avec des paysages variés. Il bénéficie de presque tous les types de végétations. Parmi ses richesses florales, la diversité des orchidées joue un rôle important. Ces dernières sont connues pour leurs belles fleurs ayant une valeurs écologiques. Une étude approfondie réalisée sur le terrain de 2009 à 2020 Manuscrit reçu le 04/09/2020 Article mis en ligne le 21/02/2021 – pp. 1-26 dans différentes zones de l'état, appuyée par des informations trouvées dans la littérature et par le matériel conservé dans les collections d'herbiers locaux, nous permettent de proposer, dans cet article, une liste de 160 espèces appartenant à 50 genres distincts. -
Orchid Historical Biogeography, Diversification, Antarctica and The
Journal of Biogeography (J. Biogeogr.) (2016) ORIGINAL Orchid historical biogeography, ARTICLE diversification, Antarctica and the paradox of orchid dispersal Thomas J. Givnish1*, Daniel Spalink1, Mercedes Ames1, Stephanie P. Lyon1, Steven J. Hunter1, Alejandro Zuluaga1,2, Alfonso Doucette1, Giovanny Giraldo Caro1, James McDaniel1, Mark A. Clements3, Mary T. K. Arroyo4, Lorena Endara5, Ricardo Kriebel1, Norris H. Williams5 and Kenneth M. Cameron1 1Department of Botany, University of ABSTRACT Wisconsin-Madison, Madison, WI 53706, Aim Orchidaceae is the most species-rich angiosperm family and has one of USA, 2Departamento de Biologıa, the broadest distributions. Until now, the lack of a well-resolved phylogeny has Universidad del Valle, Cali, Colombia, 3Centre for Australian National Biodiversity prevented analyses of orchid historical biogeography. In this study, we use such Research, Canberra, ACT 2601, Australia, a phylogeny to estimate the geographical spread of orchids, evaluate the impor- 4Institute of Ecology and Biodiversity, tance of different regions in their diversification and assess the role of long-dis- Facultad de Ciencias, Universidad de Chile, tance dispersal (LDD) in generating orchid diversity. 5 Santiago, Chile, Department of Biology, Location Global. University of Florida, Gainesville, FL 32611, USA Methods Analyses use a phylogeny including species representing all five orchid subfamilies and almost all tribes and subtribes, calibrated against 17 angiosperm fossils. We estimated historical biogeography and assessed the