Abstract Flores Vergara, Miguel

Total Page:16

File Type:pdf, Size:1020Kb

Abstract Flores Vergara, Miguel ABSTRACT FLORES VERGARA, MIGUEL ANGEL. Diversity of Scaffold/Matrix Attachment Regions (S/MARs) in Arabidopsis is Revealed by Analysis of Sequence Characteristics, Nucleosome Occupancy, Epigenetic Marks, and Gene Expression. (Under the direction of Dr. George C. Allen and Dr. William F. Thompson.) Eukaryotic chromatin is organized as independent loops of varying sizes. Following histone extraction with lithium diiodosalicylate (LIS), these loops can be visualized as a DNA halo anchored to the nuclear matrix structure. As a basic unit, the loop is thought to be essential for DNA replication, transcription and chromosomal packaging. The formation of each loop is dependent on a specific chromatin segment that must function as an anchor to the nuclear matrix. Sequences that attach specifically to the nuclear matrix have been termed scaffold/matrix attachment regions (S/MARs). Since only a limited number of putative S/MARs have been characterized so far, their role in genomic structure and function is not well understood. Thus, a more global analysis is necessary to answer a variety of questions such as: How are S/MARs distributed across the genome? Are S/MARs associated with different genomic features and are S/MARs typically AT-rich, as previously suggested? What is the nucleosomal organization at S/MAR sequences and do they define regions of accessible chromatin? Are S/MARs associated with specific epigenetic features such as certain histone modifications or DNA methylation? What role do S/MARs play in transcriptional regulation? I have approached these questions by mapping the S/MARs on Arabidopsis chromosome 4 (chr4) using a high-resolution tiling array. We find that Arabidopsis S/MARs can be divided into five clusters based on their location in relation to other previously identified genomic features and show that the S/MARs are a diverse group of elements with multiple functions within the genome. While many of the Arabidopsis chr4 S/MARs appear to define structural domains, others are significantly enriched at transcription start sites (TSS) of genes and have a highly significant association with genes that encode transcription factors (TFs). Our data, along with additional genomic information for S/MARs from other organisms, will help our understanding of the roles that different types of S/MARs play within the nucleus. © Copyright 2011 by Miguel Angel Flores Vergara All Rights Reserved Diversity of Scaffold/Matrix Attachment Regions (S/MARs) in Arabidopsis is Revealed by Analysis of Sequence Characteristics, Nucleosome Occupancy, Epigenetic Marks, and Gene Expression. by Miguel Angel Flores Vergara A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Plant Biology Raleigh, North Carolina 2011 APPROVED BY: _______________________________ ______________________________ William F. Thompson George C. Allen Co-chair of Advisory Committee Co-chair of Advisory Committee ________________________________ ________________________________ Linda Hanley-Bowdoin Dominique Robertson DEDICATION This thesis is dedicated to the memory of my Grandfather Angel Flores Patiño and Grandmother Carolina Vergara Sosa for the profound effect they had on my life. For of him, through him, and to him, are all things: to whom be glory for ever. Pro Rege. ii BIOGRAPHY Miguel Angel Flores Vergara was born February 26, 1975 in Chalcatzingo, Morelos, Mexico. He was raised by his grandparents and lived on a farm for the first eighteen years of his life. He received his elementary school education at General Mariano Matamoros school in Chalcatzingo, followed by high school education at Professor Manuel Noceda Barrios High School at Jonacatepec Morelos. He received his Bachelor of Science in Agronomy from Metropolitan Autonomous University in Mexico City, Mexico in 1998. In June, 2002, he received a Master of Science degree in Plant Biotechnology from Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) at Irapuato, Mexico, for studies on plant- geminivirus interactions. In September, 2002, he joined the laboratory of Dr. Dominique Robertson as technician in the Department of Plant Biology, North Carolina State University (NCSU). Miguel was admitted to the Department of Plant Biology at NCSU in 2005, as a candidate for the degree of Doctor of Philosophy. He has undertaken his research under the guidance of Dr. William F. Thompson and Dr. George C. Allen. Miguel married Yokiko Hiromoto on April 12, 2008. They plan to have children. iii ACKNOWLEDGMENTS Although it would be impossible to list all of the people who have influenced the work described here, I would like to acknowledge those who have had the greatest impact. I am especially grateful to my Ph.D. advisors Dr. George C. Allen and Dr. William F. Thompson for their support and untiring efforts as true teachers. I want to thank the members of my committee, Drs. Linda Hanley-Bowdoin and Dominique Robertson for their guidance and support. I would also like to acknowledge Dr. Steve Spiker for thoughtful discussions that were truly the motivation for much of this work. I would also like to acknowledge Dr. Pete Pascuzzi for his contribution in the analysis of the microarray data, processing of the figures and his comments and guidance on this work. I want to thank my friends and co- workers Yokiko Hiromoto, Mariana Franco, Trino Ascencio, Tae-Jin Lee, Sandeep Kumar, Randy Shultz, Emily Markham, Sergei Krasynanski, Roselyn Hatch, Donna Evans, Dolores Sowinski, Gerson Dominguez, and Shingo Nagaya for their encouragement. Special thanks go out to my Mom Edith and Dad Alberto, and siblings Willy, Ale, and Beto for all their love, support and encouragement. I want to thank my uncles Migue, Milo, Rosalio, and Javier as well as my aunts Roge, Gloria, Chela, Duli, and Rocio for all their love. Finally I want to thank that one person who, more than anyone else, is responsible for my completing this degree. Yokiko, you have stood by me through everything with your love. Thank you. This work was supported by a grant from the National Science Foundation. iv TABLE OF CONTENTS LIST OF TABLES....................................................................................................................................... vii LIST OF FIGURES....................................................................................................................................viii LIST OF ABBREVIATIONS......................................................................................................................ix LIST OF ABBREVIATIONS (CONTINUED) ........................................................................................x CHAPTER 1.....................................................................................................................................................1 High-Order Chromatin Organization .........................................................................................................................1 The Nuclear Matrix.............................................................................................................................................................3 S/MAR Sequence Characteristics..................................................................................................................................6 The S/MAR Binding Assay ............................................................................................................................................11 S/MARs and Gene Transcription................................................................................................................................14 S/MARs and DNA Replication.....................................................................................................................................17 Mapped S/MARs in Metazoans (Large Scale).......................................................................................................19 Mapped S/MARs in Plants ............................................................................................................................................22 Goals of this Thesis.....................................................................................................................................................25 REFERENCES.............................................................................................................................................................29 CHAPTER 2.................................................................................................................................................. 49 INTRODUCTION .............................................................................................................................................................49 MATERIALS AND METHODS .....................................................................................................................................53 Plant Materials and Growth Conditions............................................................................................................53 Isolation of Nuclei.......................................................................................................................................................53 Preparation of Nuclear Halos and Characterization of Proteins............................................................54 Analysis of nuclear matrix proteins by gel
Recommended publications
  • The Nature of Genomes Viral Genomes Prokaryotic Genome
    The nature of genomes • Genomics: study of structure and function of genomes • Genome size – variable, by orders of magnitude – number of genes roughly proportional to genome size • Plasmids – symbiotic DNA molecules, not essential – mostly circular in prokaryotes • Organellar DNA – chloroplast, mitochondrion – derived by endosymbiosis from bacterial ancestors Chapter 2: Genes and genomes © 2002 by W. H. Freeman and Company Chapter 2: Genes and genomes © 2002 by W. H. Freeman and Company Viral genomes • Nonliving particle In prokaryotes, viruses are – nucleic acid sometimes referred to as – protein bacteriophages. • DNA or RNA – single-stranded or double-stranded – linear or circular • Compact genomes with little spacer DNA Chapter 2: Genes and genomes © 2002 by W. H. Freeman and Company Chapter 2: Genes and genomes © 2002 by W. H. Freeman and Company Prokaryotic genome • Usually circular double helix – occupies nucleoid region of cell – attached to plasma membrane • Genes are close together with little intergenic spacer • Operon – tandem cluster of coordinately regulated genes – transcribed as single mRNA • Introns very rare Chapter 2: Genes and genomes © 2002 by W. H. Freeman and Company Chapter 2: Genes and genomes © 2002 by W. H. Freeman and Company 1 Eukaryotic nuclear genomes • Each species has characteristic chromosome number • Genes are segments of nuclear chromosomes • Ploidy refers to number of complete sets of chromosomes –haploid (1n): one complete set of genes – diploid (2n) – polyploid (≥3n) • In diploids, chromosomes come in homologous pairs (homologs) In humans, somatic cells have – structurally similar 2n = 46 chromosomes. – same sequence of genes – may contain different alleles Chapter 2: Genes and genomes © 2002 by W. H.
    [Show full text]
  • Visualization of Chromatin Folding Patterns in Chicken Erythrocytes by Atomic Force Microscopy (AFM)
    Cell Research (1997), 7, 143-150 Visualization of chromatin folding patterns in chicken erythrocytes by atomic force microscopy (AFM) 1 QIAN RUO LAN ZHENG XIA LIU, MEI YUN ZHOU, HEN YUE XIE, CHU JIANG, ZHI JIANG YAN Shanghai Institute of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China LI MIN QIAN, YI ZHANG, JUN HU Shanghai Institute of Nuclear Research, Chinese Academy of Sciences, Shanghai 201800, China ABSTRACT The organization of the higher order structure of chro- matin in chicken erythrocytes has been examined with tapping-mode scanning force microscopy under conditions close to their native environment. Reproducible high- resolution AFM images of chromatin compaction at seve- ral levels can be demonstrated. An extended beads-on-a- string (width of ~ 15-20nm, height of ~ 2-3nm for each individual nucleosome) can be consistently observed. Fur- thermore, superbeads (width of ~ 40nm, height of ~ 7nm) are demonstrated. Visualization of the solenoid conforma- tion at the level of 30nm chromatin fiber is attained either by using AFM or by using electron microscopy. In addi- tion, tightly coiled chromatin fibers (~ 50-60nm and ~ 90- ll0nm) can be revealed. Our data suggest that the chro- matin in the interphase nucleus of chicken erythrocyte rep- resents a high-order conformation and AFM provides use- ful high-resolution structural information concerning the folding pattern of interphase chromatin fibers. Key words: The chromatin folding pattern, chicken erythrocyte, atomic force microscopy. 1. To whom correspondence should be addressed: Shanghai Institute of Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China. 143 The chromatin folding patterns in chicken erythrocytes by AFM INTRODUCTION Owing to the tremendous packing density and folding complexity in mitotic chro- mosomes, analysis of chromosome architecture has recently focused on interphase chromatin structure.
    [Show full text]
  • BIOPHYSICS MEETS GENE THERAPY: HOW EXPLORING SUPERCOILING-DEPENDENT STRUCTURAL CHANGES in DNA LED to the DEVELOPMENT of MINIVECTOR DNA Lynn Zechiedrich and Jonathan M
    Technology and Innovation, Vol. 20, pp. 427-440, 2019 ISSN 1949-821 • E-ISSN 1949-825X http:// Printed in the USA. All rights reserved. dx.doi.org/10.21300/20.4.2019.427 Copyright © 2019 National Academy of Inventors. www.technologyandinnovation.org BIOPHYSICS MEETS GENE THERAPY: HOW EXPLORING SUPERCOILING-DEPENDENT STRUCTURAL CHANGES IN DNA LED TO THE DEVELOPMENT OF MINIVECTOR DNA Lynn Zechiedrich and Jonathan M. Fogg Department of Molecular Virology and Microbiology, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, and Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA Supercoiling affects every aspect of DNA function (replication, transcription, repair, recom- bination, etc.), yet the vast majority of studies on DNA and crystal structures of the molecule utilize short linear duplex DNA, which cannot be supercoiled. To study how supercoiling drives DNA biology, we developed and patented methods to make milligram quantities of tiny supercoiled circles of DNA called minicircles. We used a collaborative and multidisciplinary approach, including computational simulations (both atomistic and coarse-grained), biochem- ical experimentation, and biophysical methods to study these minicircles. By determining the three-dimensional conformations of individual supercoiled DNA minicircles, we revealed the structural diversity of supercoiled DNA and its highly dynamic nature. We uncovered profound structural changes, including sequence-specific base-flipping (where the DNA base flips out into the solvent), bending, and denaturing in negatively supercoiled minicircles. Counterintuitively, exposed DNA bases emerged in the positively supercoiled minicircles, which may result from inside-out DNA (Pauling-like, or “P-DNA”). These structural changes strongly influence how enzymes interact with or act on DNA.
    [Show full text]
  • Minicircle DNA and Mc-Ips Cells Cat. #SC301A-1, SRMXXXPA-1
    Minicircle DNA and mc-iPS Cells Cat. #SC301A-1, SRMXXXPA-1 User Manual A limited-use label license covers this product. By use of this product, you accept the terms and conditions outlined in the Licensing and Warranty Statement ver. 2-111910 contained in this user manual. Minicircle DNA and mc-iPS Cells Cats. # SC301A-1, SRMXXXPA-1 Contents I. Introduction and Background .................................................. 2 A. The Minicircle Technology .................................................. 2 B. Minicircle derived iPS cell line ............................................ 3 II. Protocols ................................................................................. 5 A. Minicircle Production .......................................................... 5 B. Transfection of Minicircle DNA for reprogramming............. 7 C. Growing mc-iPS cells in Feeder-Free Media ...................... 8 III. References........................................................................ 10 IV. Technical Support ............................................................. 11 V. Licensing and Warranty ........................................................ 11 888-266-5066 (Toll Free) 650-968-2200 (outside US) Page 1 System Biosciences (SBI) User Manual I. Introduction and Background A. The Minicircle Technology Minicircles (MC) are circular non-viral DNA elements that are generated by an intramolecular (cis-) recombination from a parental plasmid (PP) mediated by ФC31 integrase. The full-size MC-DNA construct is grown in a special host
    [Show full text]
  • Stable Episomes Based on Non-Integrative Lentiviral Vectors
    (19) TZZ _T (11) EP 2 878 674 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 03.06.2015 Bulletin 2015/23 C12N 15/86 (2006.01) (21) Application number: 13382481.3 (22) Date of filing: 28.11.2013 (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • Ramírez Martínez, Juan Carlos GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO E-28029 Madrid (ES) PL PT RO RS SE SI SK SM TR • Torres Ruiz, Raúl Designated Extension States: E-28029 Madrid (ES) BA ME • García Torralba, Aida E-28029 Madrid (ES) (71) Applicant: Fundación Centro Nacional de Investigaciones (74) Representative: ABG Patentes, S.L. Cardiovasculares Carlos III (CNIC) Avenida de Burgos, 16D 28029 Madrid (ES) Edificio Euromor 28036 Madrid (ES) (54) Stable episomes based on non-integrative lentiviral vectors (57) The invention relates to non-intregrative lentivi- the use of these vectors for the production of recombinant ral vectors and their use for the stable transgenesis of lentiviruses, and the use of these recombinant lentivirus- both dividing and no- dividing eukaryotic cells. The inven- es for obtaining a cell able to stably produce a product tion also provides methods for obtaining these vectors, of interest. EP 2 878 674 A1 Printed by Jouve, 75001 PARIS (FR) EP 2 878 674 A1 Description FIELD OF THE INVENTION 5 [0001] The present invention falls within the field of eukaryotic cell transgenesis and, more specifically, relates to episomes based on non-integrative lentiviral vectors and their use for the generation of cell lines that stably express a heterologous gene of interest.
    [Show full text]
  • The Origin of the Eukaryotic Cell Based on Conservation of Existing
    The Origin of the Eukaryotic Albert D. G. de Roos The Beagle Armada Cell Based on Conservation Bioinformatics Division of Existing Interfaces Einsteinstraat 67 3316GG Dordrecht, The Netherlands [email protected] Abstract Current theories about the origin of the eukaryotic Keywords cell all assume that during evolution a prokaryotic cell acquired a Evolution, nucleus, eukaryotes, self-assembly, cellular membranes nucleus. Here, it is shown that a scenario in which the nucleus acquired a plasma membrane is inherently less complex because existing interfaces remain intact during evolution. Using this scenario, the evolution to the first eukaryotic cell can be modeled in three steps, based on the self-assembly of cellular membranes by lipid-protein interactions. First, the inclusion of chromosomes in a nuclear membrane is mediated by interactions between laminar proteins and lipid vesicles. Second, the formation of a primitive endoplasmic reticulum, or exomembrane, is induced by the expression of intrinsic membrane proteins. Third, a plasma membrane is formed by fusion of exomembrane vesicles on the cytoskeletal protein scaffold. All three self-assembly processes occur both in vivo and in vitro. This new model provides a gradual Darwinistic evolutionary model of the origins of the eukaryotic cell and suggests an inherent ability of an ancestral, primitive genome to induce its own inclusion in a membrane. 1 Introduction The origin of eukaryotes is one of the major challenges in evolutionary cell biology. No inter- mediates between prokaryotes and eukaryotes have been found, and the steps leading to eukaryotic endomembranes and endoskeleton are poorly understood. There are basically two competing classes of hypotheses: the endosymbiotic and the autogenic.
    [Show full text]
  • The Physics of Chromatin
    The physics of chromatin Helmut Schiessel Max-Planck-Institut f¨ur Polymerforschung, Theory Group, P.O.Box 3148, D-55021 Mainz, Germany Abstract. Recent progress has been made in the understanding of the physical properties of chromatin – the dense complex of DNA and histone proteins that occupies the nuclei of plant and animal cells. Here I will focus on the two lowest levels of the hierarchy of DNA folding into the chromatin complex: (i) the nucleosome, the chromatin repeating unit consisting of a globular aggregate of eight histone proteins with the DNA wrapped around: its overcharging, the DNA unwrapping transition, the ”sliding” of the octamer along the DNA. (ii) The 30nm chromatin fiber, the necklace- like structure of nucleosomes connected via linker DNA: its geometry, its mechanical properties under stretching and its response to changing ionic conditions. I will stress that chromatin combines two seemingly contradictory features: (1) high compaction of DNA within the nuclear envelope and at the same time (2) accessibility to genes, promoter regions and gene regulatory sequences. Contents 1 Introduction 3 2 Single nucleosome 8 2.1 Experimentalfactsonthecoreparticle . 8 2.2 Polyelectrolyte–charged sphere complexes as model systems for the nucleosome 11 2.2.1 Single-sphere complex (highly charged case) . 12 2.2.2 Multi-sphere complex (highly charged case) . 14 2.2.3 Weaklychargedcase ......................... 16 2.2.4 Physiological conditions . 20 arXiv:cond-mat/0303455v1 [cond-mat.soft] 21 Mar 2003 2.3 Unwrappingtransition............................ 23 2.3.1 Instabilities of the nucleosome core particle at low and at high ionic strength 23 2.3.2 The rosette state at high ionic strength .
    [Show full text]
  • Archaea and the Origin of Eukaryotes
    REVIEWS Archaea and the origin of eukaryotes Laura Eme, Anja Spang, Jonathan Lombard, Courtney W. Stairs and Thijs J. G. Ettema Abstract | Woese and Fox’s 1977 paper on the discovery of the Archaea triggered a revolution in the field of evolutionary biology by showing that life was divided into not only prokaryotes and eukaryotes. Rather, they revealed that prokaryotes comprise two distinct types of organisms, the Bacteria and the Archaea. In subsequent years, molecular phylogenetic analyses indicated that eukaryotes and the Archaea represent sister groups in the tree of life. During the genomic era, it became evident that eukaryotic cells possess a mixture of archaeal and bacterial features in addition to eukaryotic-specific features. Although it has been generally accepted for some time that mitochondria descend from endosymbiotic alphaproteobacteria, the precise evolutionary relationship between eukaryotes and archaea has continued to be a subject of debate. In this Review, we outline a brief history of the changing shape of the tree of life and examine how the recent discovery of a myriad of diverse archaeal lineages has changed our understanding of the evolutionary relationships between the three domains of life and the origin of eukaryotes. Furthermore, we revisit central questions regarding the process of eukaryogenesis and discuss what can currently be inferred about the evolutionary transition from the first to the last eukaryotic common ancestor. Sister groups Two descendants that split The pioneering work by Carl Woese and colleagues In this Review, we discuss how culture- independent from the same node; the revealed that all cellular life could be divided into three genomics has transformed our understanding of descendants are each other’s major evolutionary lines (also called domains): the archaeal diversity and how this has influenced our closest relative.
    [Show full text]
  • Minicircle DNA Technology
    Minicircle DNA Technology MNxxxx-1 User Manual Please see PAC for storage temperatures A limited-use label license covers this product. By use of this product, you accept Version 7 the terms and conditions outlined in the 5/30/2017 License and Warranty Statement contained in this user manual. Contents Product Description ...................................................................................................................................................... 1 Minicircle Technology ............................................................................................................................................... 1 ZYCY10P3S2T E.coli ................................................................................................................................................... 2 List of Components ....................................................................................................................................................... 2 Storage .......................................................................................................................................................................... 2 Protocols ....................................................................................................................................................................... 2 cDNA Cloning into Minicircle Parental Plasmids ...................................................................................................... 2 Cloning into Minicircle shRNA Parental Plasmids ....................................................................................................
    [Show full text]
  • The Landscape of Non-Viral Gene Augmentation Strategies for Inherited Retinal Diseases
    International Journal of Molecular Sciences Review The Landscape of Non-Viral Gene Augmentation Strategies for Inherited Retinal Diseases Lyes Toualbi 1,2, Maria Toms 1,2 and Mariya Moosajee 1,2,3,4,* 1 UCL Institute of Ophthalmology, London EC1V 9EL, UK; [email protected] (L.T.); [email protected] (M.T.) 2 The Francis Crick Institute, London NW1 1AT, UK 3 Moorfields Eye Hospital NHS Foundation Trust, London EC1V 2PD, UK 4 Great Ormond Street Hospital for Children NHS Found Trust, London WC1N 3JH, UK * Correspondence: [email protected]; Tel.: +44-207-608-6971 Abstract: Inherited retinal diseases (IRDs) are a heterogeneous group of disorders causing progres- sive loss of vision, affecting approximately one in 1000 people worldwide. Gene augmentation therapy, which typically involves using adeno-associated viral vectors for delivery of healthy gene copies to affected tissues, has shown great promise as a strategy for the treatment of IRDs. How- ever, the use of viruses is associated with several limitations, including harmful immune responses, genome integration, and limited gene carrying capacity. Here, we review the advances in non-viral gene augmentation strategies, such as the use of plasmids with minimal bacterial backbones and scaffold/matrix attachment region (S/MAR) sequences, that have the capability to overcome these weaknesses by accommodating genes of any size and maintaining episomal transgene expression with a lower risk of eliciting an immune response. Low retinal transfection rates remain a limita- tion, but various strategies, including coupling the DNA with different types of chemical vehicles (nanoparticles) and the use of electrical methods such as iontophoresis and electrotransfection to aid Citation: Toualbi, L.; Toms, M.; Moosajee, M.
    [Show full text]
  • Transcription Regulation in Eukaryotes HFSP Workshop Reports
    Transcription Regulation in Eukaryotes HFSP Workshop Reports Senior editor: Jennifer Altman Assistant editor: Chris Coath I. Coincidence Detection in the Nervous System, eds A. Konnerth, R. Y. Tsien, K. Mikoshiba and J. Altman (1996) II. Vision and Movement Mechanisms in the Cerebral Cortex, eds R. Caminiti, K.-P. Hoffmann, F. Laquaniti and J. Altman (1996) III. Genetic Control of Heart Development, eds R. P. Harvey, E. N. Olson, R. A. Schulz and J. S. Altman (1997) IV. Central Synapses: Quantal Mechanisms and Plasticity, eds D. S. Faber, H. Korn, S. J. Redman, S. M. Thompson and J. S. Altman (1998) V. Brain and Mind: Evolutionary Perspectives, eds M. S. Gazzaniga and J. S. Altman (1998) VI. Cell Surface Proteoglycans in Signalling and Development, eds A. Lander, H. Nakato, S. B. Selleck, J. E. Turnbull and C. Coath (1999) VII. Transcription Regulation in Eukaryotes, eds P. Chambon, T. Fukasawa, R. Kornberg and C. Coath (1999) Forthcoming VIII. Replicon Theory and Cell Division, eds M. Kohiyama, W. Fangman, T. Kishimoto and C. Coath IX. The Regulation of Sleep, eds A. A. Borbély, O. Hayaishi, T. Sejnowski and J. S. Altman X. Axis Formation in the Vertebrate Embryo, eds S. Ang, R. Behringer, H. Sasaki, J. S. Altman and C. Coath XI. Neuroenergetics: Relevance for Functional Brain Imaging, eds P. J. Magistretti, R. G. Shulman, R. S. J. Frackowiak and J. S. Altman WORKSHOP VII Transcription Regulation in Eukaryotes Copyright © 1999 by the Human Frontier Science Program Please use the following format for citations: “Transcription Regulation in Eukaryotes” Eds P. Chambon, T. Fukasawa, R.
    [Show full text]
  • BMC Genomics Biomed Central
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central BMC Genomics BioMed Central Research article Open Access Comparative analysis of dinoflagellate chloroplast genomes reveals rRNA and tRNA genes Adrian C Barbrook*1, Nicole Santucci2, Lindsey J Plenderleith1, Roger G Hiller3 and Christopher J Howe1 Address: 1Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK, 2Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, Sydney, NSW 2145, Australia and 3Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia Email: Adrian C Barbrook* - [email protected]; Nicole Santucci - [email protected]; Lindsey J Plenderleith - [email protected]; Roger G Hiller - [email protected]; Christopher J Howe - [email protected] * Corresponding author Published: 23 November 2006 Received: 23 June 2006 Accepted: 23 November 2006 BMC Genomics 2006, 7:297 doi:10.1186/1471-2164-7-297 This article is available from: http://www.biomedcentral.com/1471-2164/7/297 © 2006 Barbrook et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: Peridinin-containing dinoflagellates have a highly reduced chloroplast genome, which is unlike that found in other chloroplast containing organisms. Genome reduction appears to be the result of extensive transfer of genes to the nuclear genome.
    [Show full text]