Transcription Regulation in Eukaryotes HFSP Workshop Reports

Total Page:16

File Type:pdf, Size:1020Kb

Transcription Regulation in Eukaryotes HFSP Workshop Reports Transcription Regulation in Eukaryotes HFSP Workshop Reports Senior editor: Jennifer Altman Assistant editor: Chris Coath I. Coincidence Detection in the Nervous System, eds A. Konnerth, R. Y. Tsien, K. Mikoshiba and J. Altman (1996) II. Vision and Movement Mechanisms in the Cerebral Cortex, eds R. Caminiti, K.-P. Hoffmann, F. Laquaniti and J. Altman (1996) III. Genetic Control of Heart Development, eds R. P. Harvey, E. N. Olson, R. A. Schulz and J. S. Altman (1997) IV. Central Synapses: Quantal Mechanisms and Plasticity, eds D. S. Faber, H. Korn, S. J. Redman, S. M. Thompson and J. S. Altman (1998) V. Brain and Mind: Evolutionary Perspectives, eds M. S. Gazzaniga and J. S. Altman (1998) VI. Cell Surface Proteoglycans in Signalling and Development, eds A. Lander, H. Nakato, S. B. Selleck, J. E. Turnbull and C. Coath (1999) VII. Transcription Regulation in Eukaryotes, eds P. Chambon, T. Fukasawa, R. Kornberg and C. Coath (1999) Forthcoming VIII. Replicon Theory and Cell Division, eds M. Kohiyama, W. Fangman, T. Kishimoto and C. Coath IX. The Regulation of Sleep, eds A. A. Borbély, O. Hayaishi, T. Sejnowski and J. S. Altman X. Axis Formation in the Vertebrate Embryo, eds S. Ang, R. Behringer, H. Sasaki, J. S. Altman and C. Coath XI. Neuroenergetics: Relevance for Functional Brain Imaging, eds P. J. Magistretti, R. G. Shulman, R. S. J. Frackowiak and J. S. Altman WORKSHOP VII Transcription Regulation in Eukaryotes Copyright © 1999 by the Human Frontier Science Program Please use the following format for citations: “Transcription Regulation in Eukaryotes” Eds P. Chambon, T. Fukasawa, R. D. Kornberg and C. Coath. HFSP, Strasbourg, 1999 HFSP WORKSHOPS The HFSP workshops were initiated by Michel Cuénod (Secretary-General, HFSPO) with the support of the Board of Trustees and the Council of Scientists. The workshops, held in English, are organized at the HFSPO office in Strasbourg on specific scientific topics of particular timeliness in the two fields of research covered by HFSP: brain functions and biological functions at the molecular level. The guiding principles are general significance and novelty of the topic, treatment by leading experts, emphasis on discussion, and broad international, inter- continental and interdisciplinary representation. There is no general audience but the reports, edited by the organizers, present the issues discussed in a format attractive to specialists, post-doctoral trainees and students. The present report is based on a meeting held in Strasbourg from December 3–5, 1998. Acknowledgements The proposal for the workshop came from Pierre Chambon (Strasbourg), Toshio Fukasawa (Tokyo) and Roger Kornberg (Stanford) and the meeting was organized by them with the help of the HFSP staff. Our thanks go to the five rapporteurs who wrote the initial reports of the talks given at the meeting: Geneviève Almouzni (Paris): Kingston, Hörz, Struhl, Egly Stefan Björklund (Umeå): Kornberg, Sakurai, Green, Svejstrup Irwin Davidson (Strasbourg): Roeder, Meisterernst, Tora, Sentenac Karl Nightingale (Cambridge): Workman, Wu, Becker, Tjian Kerstin Weiss (Zürich): Richmond, Travers, Allis, Cairns These reports were edited and the book produced by Chris Coath (Norwich) and Jennifer Altman (London). We thank Valérie Dupé (London) and Olivia Wendling (Strasbourg) for technical support at the meeting, Stuart Molloy (Resolution Design Ltd, London) for the artwork, Alissa Surges (Ann Arbor) for compiling the bibliography and Solange Metzger (HFSPO, Strasbourg) for her unfailing support in administration and production. We acknowledge the following publishers for their permission to reproduce copy- righted figures: Academic Press (Fig. 9 from The Journal of Molecular Biology); The American Society for Microbiology (Fig. 62 from Molecular and Cellular Biology); Cell Press (Figs 18, 19, 20, 58 and Table 7 from Cell; Figs 21, 36, 37, 38, 41, 42, 60, 68, 69, 70 from Molecular Cell); Cold Spring Harbor Laboratory Press (figure in Box 1 from Cold Spring Harbor Symposium on Quantitative Biology; Fig. 61 from Genes and Development); The National Academy of Sciences USA (Figs 43, 44 from The Proceedings of the National Academy of Sciences USA). HFSP secretariat Secretary-General: Michel Cuénod Deputy Secretary-General: Yoshiki Kurihara Directors for Research Grants: Martin Reddington, Takashi Shimizu Director for Fellowships and Workshops: Danuta Krotoski Director for Administration and Finance: Olivier Laustriat Administrative Officer: Takuya Okamoto Secretarial staff: Pascale Beudin, Laurence Lapp, Solange Metzger, Sarah Naett, Marie-Claude Perdiguès, Carine Schmitt, Dominique Tanguy 2 HFSP WORKSHOP 7 CONTENTS Participants . 3 Glossary and Abbreviations . 7 INTRODUCTION (Roger D. Kornberg) . 17 PART I - CHROMATIN STRUCTURE IN GENE REGULATION Introduction (Karl Nightingale) . 23 The nucleosome core structure at 2.0 Å resolution (Timothy J. Richmond) . 28 Nucleosomal location of the linker histone and its role in transcriptional repression (Andrew A. Travers). 36 Linking histone modifications to gene activation (C. David Allis) . 42 Function and composition of transcription adaptor histone acetyltransferase complexes (Jerry L. Workman) . 50 ATP-dependent chromatin remodelling by NURF and transcriptional activation (Carl Wu) . 57 CHRAC, a chromatin remodelling complex driven by the ATPase ISWI (Peter B. Becker). 65 New components of the chromatin remodelling complexes RSC and SWI/SNF (Bradley R. Cairns) . 72 Regulation of human chromatin remodelling (Robert E. Kingston) . 80 Chromatin remodelling in vivo (Wolfram Hörz) . 88 PART II - FACTORS REQUIRED FOR ACTIVATED TRANSCRIPTION Introduction (Stefan Björklund) . 97 The Mediator complex and in vitro transcriptional activation in yeast (Roger D. Kornberg) . 100 Regulation of transcription through general and gene-specific coactivators (Robert G. Roeder) . 106 Transcriptional activation by Sp1: a biochemical journey (Robert Tjian). 122 TRANSCRIPTION REGULATION IN EUKARYOTES 3 Structure and function of proteins that modulate RNA polymerase II transcription (Michael Meisterernst). 130 Functional correlation between Gal11, TFIIE and TFIIH in S. cerevisiae (Hiroshi Sakurai) . 138 Functional analysis of the components of yeast TFIID in vivo (Michael R. Green) . 146 Mechanism for in vivo transcriptional activation and repression in yeast (Kevin Struhl). 155 The role of TAFII30-containing complexes in vertebrate gene regulation (Làszlò Tora) . 162 TFIIH and the transcription-repair syndromes (Jean-Marc Egly) . 171 Elongator, a component of the elongating RNA polymerase II holoenzyme (Jesper Q. Svejstrup) . 176 Molecular interactions leading to the recruitment of RNA polymerase III (André Sentenac). 183 CONCLUSION (Toshio Fukasawa) . 193 BIBLIOGRAPHY . 200 4 HFSP WORKSHOP 7 PARTICIPANTS* C. David ALLIS Irwin DAVIDSON Department of Biochemistry Institut de Génétique et de Biologie and Molecular Genetics Moléculaire et Cellulaire University of Virginia Université Louis Pasteur Charlottesville, USA Illkirch, FRANCE Geneviève ALMOUZNI Valérie DUPÉ UMR 144 CNRS Department of Developmental Institut Curie, Section Recherche Neurobiology Paris, FRANCE Guy’s and St Thomas Medical and Dental School Jennifer S. ALTMAN London, UK Senior Editor London, UK Jean-Marc EGLY Peter B. BECKER Institut de Génétique et de Biologie Adolf-Butenandt- Institut, Moléculaire et Cellulaire Molekularbiologie Université Louis Pasteur Ludwig-Maximilians-Universität Illkirch, FRANCE München, GERMANY Toshio FUKASAWA Stefan BJÖRKLUND Department of Microbiology Department of Medical Biochemistry Keio University School of Medicine and Biophysics Tokyo, JAPAN Umeå University Umeå, SWEDEN Michael R. GREEN Howard Hughes Medical Institute Bradley R. CAIRNS University of Massachusets Department of Oncological Sciences Medical School Huntsman Cancer Institute Worcester, USA University of Utah Salt Lake City, USA Wolfram HÖRZ Institut für Physiologische Chemie Pierre CHAMBON Ludwig-Maximilians-Universität Institut de Génétique et de Biologie München, GERMANY Moléculaire et Cellulaire Université Louis Pasteur Illkirch, FRANCE Robert E. KINGSTON Department of Molecular Biology Harvard University Chris COATH Editor Boston, USA Norwich, UK Roger D. KORNBERG Michel CUÉNOD Department of Structural Biology Secretary-General Stanford University School of Human Frontier Science Program Medicine Strasbourg, FRANCE Stanford, USA * Collaborators have the same affiliation as the participant presenting the paper unless shown in a footnote to the relevant article. TRANSCRIPTION REGULATION IN EUKARYOTES 5 Danuta KROTOSKI Jesper Q. SVEJSTRUP Director of Fellowships Mechanism of Gene Transcription and Workshops Laboratory Human Frontier Science Program Imperial Cancer Research Fund Strasbourg, FRANCE South Mimms, UK Michael MEISTERERNST Robert TJIAN Laboratory for Molecular Biology – Department of Molecular and Cell Genzentrum Biology Ludwig-Maximilians-Universität University of California/HHMI München, GERMANY Berkeley, USA Karl NIGHTINGALE Department of Biochemistry Làszlò TORA University of Cambridge Institut de Génétique et de Biologie Cambridge, UK Moléculaire et Cellulaire Université Louis Pasteur Martin REDDINGTON Illkirch, FRANCE Director of Research Grants Human Frontier Science Program Andrew A. TRAVERS Strasbourg, FRANCE Division of Cell Biology MRC Laboratory of Molecular Timothy J. RICHMOND Biology Institut für Molekularbiologie Cambridge, UK und Biophysik ETH Hönggerberg Kerstin WEISS Zürich, SWITZERLAND Institut für Molekularbiologie Robert
Recommended publications
  • The Nature of Genomes Viral Genomes Prokaryotic Genome
    The nature of genomes • Genomics: study of structure and function of genomes • Genome size – variable, by orders of magnitude – number of genes roughly proportional to genome size • Plasmids – symbiotic DNA molecules, not essential – mostly circular in prokaryotes • Organellar DNA – chloroplast, mitochondrion – derived by endosymbiosis from bacterial ancestors Chapter 2: Genes and genomes © 2002 by W. H. Freeman and Company Chapter 2: Genes and genomes © 2002 by W. H. Freeman and Company Viral genomes • Nonliving particle In prokaryotes, viruses are – nucleic acid sometimes referred to as – protein bacteriophages. • DNA or RNA – single-stranded or double-stranded – linear or circular • Compact genomes with little spacer DNA Chapter 2: Genes and genomes © 2002 by W. H. Freeman and Company Chapter 2: Genes and genomes © 2002 by W. H. Freeman and Company Prokaryotic genome • Usually circular double helix – occupies nucleoid region of cell – attached to plasma membrane • Genes are close together with little intergenic spacer • Operon – tandem cluster of coordinately regulated genes – transcribed as single mRNA • Introns very rare Chapter 2: Genes and genomes © 2002 by W. H. Freeman and Company Chapter 2: Genes and genomes © 2002 by W. H. Freeman and Company 1 Eukaryotic nuclear genomes • Each species has characteristic chromosome number • Genes are segments of nuclear chromosomes • Ploidy refers to number of complete sets of chromosomes –haploid (1n): one complete set of genes – diploid (2n) – polyploid (≥3n) • In diploids, chromosomes come in homologous pairs (homologs) In humans, somatic cells have – structurally similar 2n = 46 chromosomes. – same sequence of genes – may contain different alleles Chapter 2: Genes and genomes © 2002 by W. H.
    [Show full text]
  • Visualization of Chromatin Folding Patterns in Chicken Erythrocytes by Atomic Force Microscopy (AFM)
    Cell Research (1997), 7, 143-150 Visualization of chromatin folding patterns in chicken erythrocytes by atomic force microscopy (AFM) 1 QIAN RUO LAN ZHENG XIA LIU, MEI YUN ZHOU, HEN YUE XIE, CHU JIANG, ZHI JIANG YAN Shanghai Institute of Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China LI MIN QIAN, YI ZHANG, JUN HU Shanghai Institute of Nuclear Research, Chinese Academy of Sciences, Shanghai 201800, China ABSTRACT The organization of the higher order structure of chro- matin in chicken erythrocytes has been examined with tapping-mode scanning force microscopy under conditions close to their native environment. Reproducible high- resolution AFM images of chromatin compaction at seve- ral levels can be demonstrated. An extended beads-on-a- string (width of ~ 15-20nm, height of ~ 2-3nm for each individual nucleosome) can be consistently observed. Fur- thermore, superbeads (width of ~ 40nm, height of ~ 7nm) are demonstrated. Visualization of the solenoid conforma- tion at the level of 30nm chromatin fiber is attained either by using AFM or by using electron microscopy. In addi- tion, tightly coiled chromatin fibers (~ 50-60nm and ~ 90- ll0nm) can be revealed. Our data suggest that the chro- matin in the interphase nucleus of chicken erythrocyte rep- resents a high-order conformation and AFM provides use- ful high-resolution structural information concerning the folding pattern of interphase chromatin fibers. Key words: The chromatin folding pattern, chicken erythrocyte, atomic force microscopy. 1. To whom correspondence should be addressed: Shanghai Institute of Cell Biology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China. 143 The chromatin folding patterns in chicken erythrocytes by AFM INTRODUCTION Owing to the tremendous packing density and folding complexity in mitotic chro- mosomes, analysis of chromosome architecture has recently focused on interphase chromatin structure.
    [Show full text]
  • The Origin of the Eukaryotic Cell Based on Conservation of Existing
    The Origin of the Eukaryotic Albert D. G. de Roos The Beagle Armada Cell Based on Conservation Bioinformatics Division of Existing Interfaces Einsteinstraat 67 3316GG Dordrecht, The Netherlands [email protected] Abstract Current theories about the origin of the eukaryotic Keywords cell all assume that during evolution a prokaryotic cell acquired a Evolution, nucleus, eukaryotes, self-assembly, cellular membranes nucleus. Here, it is shown that a scenario in which the nucleus acquired a plasma membrane is inherently less complex because existing interfaces remain intact during evolution. Using this scenario, the evolution to the first eukaryotic cell can be modeled in three steps, based on the self-assembly of cellular membranes by lipid-protein interactions. First, the inclusion of chromosomes in a nuclear membrane is mediated by interactions between laminar proteins and lipid vesicles. Second, the formation of a primitive endoplasmic reticulum, or exomembrane, is induced by the expression of intrinsic membrane proteins. Third, a plasma membrane is formed by fusion of exomembrane vesicles on the cytoskeletal protein scaffold. All three self-assembly processes occur both in vivo and in vitro. This new model provides a gradual Darwinistic evolutionary model of the origins of the eukaryotic cell and suggests an inherent ability of an ancestral, primitive genome to induce its own inclusion in a membrane. 1 Introduction The origin of eukaryotes is one of the major challenges in evolutionary cell biology. No inter- mediates between prokaryotes and eukaryotes have been found, and the steps leading to eukaryotic endomembranes and endoskeleton are poorly understood. There are basically two competing classes of hypotheses: the endosymbiotic and the autogenic.
    [Show full text]
  • The Physics of Chromatin
    The physics of chromatin Helmut Schiessel Max-Planck-Institut f¨ur Polymerforschung, Theory Group, P.O.Box 3148, D-55021 Mainz, Germany Abstract. Recent progress has been made in the understanding of the physical properties of chromatin – the dense complex of DNA and histone proteins that occupies the nuclei of plant and animal cells. Here I will focus on the two lowest levels of the hierarchy of DNA folding into the chromatin complex: (i) the nucleosome, the chromatin repeating unit consisting of a globular aggregate of eight histone proteins with the DNA wrapped around: its overcharging, the DNA unwrapping transition, the ”sliding” of the octamer along the DNA. (ii) The 30nm chromatin fiber, the necklace- like structure of nucleosomes connected via linker DNA: its geometry, its mechanical properties under stretching and its response to changing ionic conditions. I will stress that chromatin combines two seemingly contradictory features: (1) high compaction of DNA within the nuclear envelope and at the same time (2) accessibility to genes, promoter regions and gene regulatory sequences. Contents 1 Introduction 3 2 Single nucleosome 8 2.1 Experimentalfactsonthecoreparticle . 8 2.2 Polyelectrolyte–charged sphere complexes as model systems for the nucleosome 11 2.2.1 Single-sphere complex (highly charged case) . 12 2.2.2 Multi-sphere complex (highly charged case) . 14 2.2.3 Weaklychargedcase ......................... 16 2.2.4 Physiological conditions . 20 arXiv:cond-mat/0303455v1 [cond-mat.soft] 21 Mar 2003 2.3 Unwrappingtransition............................ 23 2.3.1 Instabilities of the nucleosome core particle at low and at high ionic strength 23 2.3.2 The rosette state at high ionic strength .
    [Show full text]
  • Archaea and the Origin of Eukaryotes
    REVIEWS Archaea and the origin of eukaryotes Laura Eme, Anja Spang, Jonathan Lombard, Courtney W. Stairs and Thijs J. G. Ettema Abstract | Woese and Fox’s 1977 paper on the discovery of the Archaea triggered a revolution in the field of evolutionary biology by showing that life was divided into not only prokaryotes and eukaryotes. Rather, they revealed that prokaryotes comprise two distinct types of organisms, the Bacteria and the Archaea. In subsequent years, molecular phylogenetic analyses indicated that eukaryotes and the Archaea represent sister groups in the tree of life. During the genomic era, it became evident that eukaryotic cells possess a mixture of archaeal and bacterial features in addition to eukaryotic-specific features. Although it has been generally accepted for some time that mitochondria descend from endosymbiotic alphaproteobacteria, the precise evolutionary relationship between eukaryotes and archaea has continued to be a subject of debate. In this Review, we outline a brief history of the changing shape of the tree of life and examine how the recent discovery of a myriad of diverse archaeal lineages has changed our understanding of the evolutionary relationships between the three domains of life and the origin of eukaryotes. Furthermore, we revisit central questions regarding the process of eukaryogenesis and discuss what can currently be inferred about the evolutionary transition from the first to the last eukaryotic common ancestor. Sister groups Two descendants that split The pioneering work by Carl Woese and colleagues In this Review, we discuss how culture- independent from the same node; the revealed that all cellular life could be divided into three genomics has transformed our understanding of descendants are each other’s major evolutionary lines (also called domains): the archaeal diversity and how this has influenced our closest relative.
    [Show full text]
  • Struhl, 1984 PNAS.Pdf
    Proc. Nati. Acad. Sci. USA Vol. 81, pp. 7865-7869, December 1984 Genetics Genetic properties and chromatin structure of the yeast gal regulatory element: An enhancer-like sequence (gene regulation/promoters/transcription/yeast genetics/enhancer elements) KEVIN STRUHL Department of Biological Chemistry; Harvard Medical School, Boston, MA 02115 Communicated by Boris Magasanik, August 16, 1984 ABSTRACT DNA molecules created by fusing a 365-base- but as yet inexplicable, properties (5-10). They are function- pair segment of yeast DNA encoding the galactose-regulated al when located at various distances from either the TATA upstream promoter element (gal) to a set of derivatives that box or the start of transcription, even as far away as hun- systematically delete sequences upstream from the his3 gene dreds (and perhaps thousands) of base pairs. Furthermore, are introduced in single copy back into the yeast genome pre- these elements can work in either orientation and also when cisely at the hisM locus and then assayed for transcription. Fu- located downstream from the transcriptional initiation site. sions of the gal regulatory element to hisM derivatives contain- In some cases, enhancer sequences are also regulatory ing all normal mRNA coding sequences but lacking essentially sites-i.e., they activate transcription only under certain the entire promoter region fail to express his3 under any physiological conditions, such as in response to hormones growth conditions. Fusions to derivatives lacking the his3 up- (8), or only in specific cell types (9, 10). From these proper- stream promoter element but containing the "TATA box" ties, it is popularly supposed that enhancer sequences are place his3 expression under gal control-i.e., extremely high the critical elements that regulate gene expression during RNA levels in galactose-containing medium and essentially no normal and abnormal development of multicellular orga- his3 RNA in glucose-containing medium.
    [Show full text]
  • A 1-Dimensional Statistical Mechanics Model for Nucleosome Positioning on Genomic DNA
    A 1-dimensional statistical mechanics model for nucleosome positioning on genomic DNA S. Tesoro1, I. Ali2, A. N. Morozov3, N. Sulaiman2, D. Marenduzzo3 1Theory of Condensed Matter, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom 2Department of Physics, College of Science, PO Box 36, Sultan Qaboos University, Al-Khodh 123, Oman 3SUPA, School of Physics and Astronomy, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ E-mail: [email protected] Abstract. The first level of folding of DNA in eukaryotes is provided by the so-called \10-nm chromatin fibre”, where DNA wraps around histone proteins (∼10 nm in size) to form nucleosomes, which go on to create a zig-zagging bead-on-a-string structure. In this work we present a 1-dimensional statistical mechanics model to study nucleosome positioning within one such 10 nm fibre. We focus on the case of genomic sheep DNA, and we start from effective potentials valid at infinite dilution and determined from high-resolution in vitro salt dialysis experiments. We study positioning within a polynucleosome chain, and compare the results for genomic DNA to that obtained in the simplest case of homogeneous DNA, where the problem can be mapped to a Tonks gas [1]. First, we consider the simple, analytically solvable, case where nucleosomes are assumed to be point-like. Then, we perform numerical simulations to gauge the effect of their finite size on the nucleosomal distribution probabilities. Finally we compare nucleosome distributions and simulated nuclease digestion patterns for the two cases (homogeneous and sheep DNA), thereby providing testable predictions of the effect of sequence on experimentally observable quantities in experiments on polynucleosome chromatin fibres reconstituted in vitro.
    [Show full text]
  • Nucleotide Sequence and Transcriptional Mapping of the Yeast Pets6-His3dedl Gene Region
    Research Volume 13 Number 23 1985 Nucleic Acids Research Nucleotide sequence and transcriptional mapping of the yeast petS6-his3dedl gene region Kevin Struhl Department of Biological Chemistry, Harvard Medical School, Boston, MA 02115, USA Received 28 August 1985; Revised 24 October 1985; Accepted 29 October 1985 ABSTRACT Genes of the baker's yeast Saccharomyces cerevisiae are densely clustered on 16 linear chromosomes. Here, I characterize a 1.8 kb region of chromosome XV containing the entire structural gene for the histidine biosynthetic enzyme imidazoleglycerolphosphate (IGP) dehydratase (his3) as well as the promoter sequences and 5'-proximal mRNA coding regions for the adjacent genes. The his3 gene encodes several mRNA species averaging 820 bases in length, all of which contain an open reading frame of 219 codons. The location of this open reading frame coincides with the his3 gene as defined by functional criteria, suggesting that the primary translation product of yeast IGP dehydratase has a molecular weight of 23,850. Phenotypic analysis of mutations constructed in vitro indicate that one of the adjacent genes (pet56) is required for mitochondrial function, whereas the other gene (dedl) is essential for cell viability. The petS6 and his3 genes are transcribed divergently from initiation sites that are separated by only 192 bp. Transcription of the dedl gene is initiated only 130 bp beyond the 3'-end of the his3 mRNA coding region. These results suggest that these unrelated genes are located extremely close together and that the spacer regions between them consist largely ofpromoter and teminator sequences. INTRODUCTION The genome of the yeast Saccharomyces cerevisiae contains approximately 10,000 kb of DNA, about half of which is transcribed under normal growth conditions (1,2).
    [Show full text]
  • Abstract Flores Vergara, Miguel
    ABSTRACT FLORES VERGARA, MIGUEL ANGEL. Diversity of Scaffold/Matrix Attachment Regions (S/MARs) in Arabidopsis is Revealed by Analysis of Sequence Characteristics, Nucleosome Occupancy, Epigenetic Marks, and Gene Expression. (Under the direction of Dr. George C. Allen and Dr. William F. Thompson.) Eukaryotic chromatin is organized as independent loops of varying sizes. Following histone extraction with lithium diiodosalicylate (LIS), these loops can be visualized as a DNA halo anchored to the nuclear matrix structure. As a basic unit, the loop is thought to be essential for DNA replication, transcription and chromosomal packaging. The formation of each loop is dependent on a specific chromatin segment that must function as an anchor to the nuclear matrix. Sequences that attach specifically to the nuclear matrix have been termed scaffold/matrix attachment regions (S/MARs). Since only a limited number of putative S/MARs have been characterized so far, their role in genomic structure and function is not well understood. Thus, a more global analysis is necessary to answer a variety of questions such as: How are S/MARs distributed across the genome? Are S/MARs associated with different genomic features and are S/MARs typically AT-rich, as previously suggested? What is the nucleosomal organization at S/MAR sequences and do they define regions of accessible chromatin? Are S/MARs associated with specific epigenetic features such as certain histone modifications or DNA methylation? What role do S/MARs play in transcriptional regulation? I have approached these questions by mapping the S/MARs on Arabidopsis chromosome 4 (chr4) using a high-resolution tiling array.
    [Show full text]
  • Explain the Importance of Gene Regulation in Both Prokaryotes And
    Unit 4 - Gene Expression and Module 4A – Control of Gene Expression Genetic Technology Every cell contains thousands of genes 4A. Control of Gene Expression which code for proteins. However, every gene is not actively 4B. Biotechnology producing proteins at all times. 4C. Genomics In this module, we will examine some 4D. Genes and Development of the factors that help regulate when a gene is active, and how strongly it is expressed. 1 2 Objective # 1 Objective 1 Prokaryotes: Explain the importance of gene ¾ are unicellular or colonial regulation in both prokaryotes ¾ evolved to quickly exploit transient and eukaryotes. resources ¾ main role of gene regulation is to allow cells to adjust to changing conditions ¾ in the same cell, different genes are active at different times 3 4 Objective 1 Objective # 2 Eukaryotes: ¾ mostly complex multicellular organisms List and describe the different ¾ evolved the ability to maintain a stable levels of gene regulation, and internal environment (homeostasis) identify the level where genes ¾ main role of gene regulation is to allow are most commonly regulated. specialization and division of labor among cells ¾ at the same time, different genes are active in different cells 5 6 1 Objective 2 Objective 2 We can classify levels of gene To be expressed, a gene must be regulation into 2 main categories: transcribed into m-RNA, the m-RNA must be translated into a protein, and ¾ Transcriptional controls - factors that the protein must become active. regulate transcription ¾ Posttranscriptional controls – factors Gene regulation can theoretically occur that regulate any step in gene at any step in this process.
    [Show full text]
  • Yeast GCN4 As a Probe for Oncogenesis by AP-1. Transcription Factors: Transcnpuonal Activation Through AP-1 Sites Is Not Sufficient for Cellular Transformation
    Downloaded from genesdev.cshlp.org on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Yeast GCN4 as a probe for oncogenesis by AP-1. transcription factors: transcnpuonal activation through AP-1 sites is not sufficient for cellular transformation Salvatore Oliviero, 1'3 Gregory S. Robinson, 1'2 Kevin Struhl, 1 and Bruce M. Spiegelman 1'2 1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115 USA; 2Division of Cellular and Molecular Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115 USA; 3Dipartimento di Biologia, Universita degli Studi di Padova, via Trieste, 75-35121 Padova, Italy The Jun and Fos oncoproteins belong to the AP-1 family of transcriptional activators and are believed to induce cellular transformation by inappropriately activating genes involved in cell replication. To determine whether transcriptional activation through AP-1 sites is sufficient for transforming activity, we examined the properties of an autonomous and heterologous AP-1 protein, yeast GCN4, in rat embryo fibroblasts. GCN4 induces transcriptional activation through AP-1 sites but, unlike Jun and Fos, fails to induce cellular transformation, in cooperation with Ha-ras. Jun-GCN4 and Fos-GCN4 homodimers independently induce cellular transformation indicating that the amino-terminal regions of Jun and Fos each contain regulatory functions that are required for oncogenesis but are distinct from generic transcriptional activation domains. In addition, these observations have implications for the nature of the oncogenically relevant target genes that respond to Jun and Fos. IKey Words: Yeast GCN4; Jun; Fos; AP-1 transcription factors; oncogenesis; cellular transformation] Received May 21, 1992; revised version accepted July 7, 1992.
    [Show full text]
  • Struhl, 1983 Gene.Pdf
    Gene. 26 (1983) 231-242 231 Elsevier GENE 916 Direct selection for gene replacement events in yeast (Chromosome manipulation; cycloheximide; DNA transformation; recombinant DNA; ribosomal protein; Saceharomyces cerevisiae) KevinStruhl Department of Biological Chemistry, Harvard Medical School, Boston, MA 02115 (U.S.A.) Tel. (617) 732-3104 (Received June 24th, 1983) (Revision received September 16th, 1983) (Accepted September 20th, 1983) SUMMARY A method that facilitates gene replacement at the HZS3 locus of Saccharomyces cerevisiae (yeast) has been developed. First, an internal region of the cloned HZS3 gene was replaced by a DNA segment containing the wild-type ribosomal protein gene, CYH2. Second, by using standard yeast tr~sfo~ation methods, the wild-type HIS3 locus of a cycloheximide resistant strain (cyZz2’)was replaced by this h&3-CYH2 substitution. The resulting strain is sensitive to cycloheximide because CYH2 is dominant to cyh2’. Third, his3 mutations cloned into integrating or replicating vectors were introduced into this strain by selecting transformants via the vector-encoded marker. Selection for cycloheximide-resistant colonies resulted in the replacement of the his3-CYH2 allele by newly introduced his3 alleles. Thus, this scheme provides for the direct selection of gene replacement events at the HZS3 locus independently of the phenotype of the cloned his3 derivatives. In principle, it can be extended to any region of the yeast genome. INTRODUCTION Gene replacement depends upon homologous A major attraction for studies on the yeast S. cere- recombination between transforming DNA se- Mae is the ability to replace normal chromosomal quences and their host genomic counterparts (Morse sequences with mutated derivatives constructed in et al., 1956).
    [Show full text]