23 Evaluation of Genetic Diversity of Origanum

Total Page:16

File Type:pdf, Size:1020Kb

23 Evaluation of Genetic Diversity of Origanum variability of the expression. Consistent with this idea, the proliferation in vitro, under nutritional stress, the presence of exogenous hormones (auxins and cytokinins) and other factors exploit the same multiply mechanism that was established in vivo, during the evolution of hypertrophy and hyperthely. Bibliography 1. Colesnicova L.S., Matienco B.T. Investigation of particularities of binucleation in pericarp cells of old apple cultivars. Rev. of AS of RM, Biol.and chem.., 1994, 1: 30-32 2. Marinescu M., Matienco B. Cytological analysis of tomato fruit callus culture. Proc. VIII Intern. Congr. Plant Cell Culture. Firenze, 12-17 June, 1994: 266. 3. Matienco B. Comparative anatomy and ultrastructure of Cucurbita fruits. Kishinev: Cartea Moldoveneasca, 1969: 407 p. 4. Matienco B., Maximova E., Brezeanu A., Marinescu M. Visualization of intracellular traffi c of phenolic compounds during its biosynthesis and translocation in grape berry callus. Proc. 13th Nat. Electron Microsc. Congr. Ankara, 1-4 Sept., 1997: 167-173. 5. Rumyantseva N.I., Valyeva A.I. et al. Peculiarities of lignifi cation of cell walls of buckwheat calli with different morphogenic ability. Tsitologiya (in Russian), 1998, 40: 835-843. EVALUATION OF GENETIC DIVERSITY OF ORIGANUM GENUS SPECIES Martea Rodica, Mutu Ana, Clapco Steliana, Budeanu Oleg, Duca Maria University of the Academy of Sciences of Moldova Introduction Origanum belonging to the Lamiaceae family is one the most wide-spread genus in the spontaneous fl ora of many landscapes. It has a precious natural resource, as they provide raw material for pharmaceutical industry, modern and traditional forms of medicine and generate employment and income in addition to conservation of biodiversity [1]. The genus includes 43 species of perennial and annual plants, which grow on rocky slopes, at a wide range of altitudes [1, 2, 3]. The aerial part of the plant is often used directly while the extracted essential oils exhibit antimicrobial properties, cytotoxic and antioxidant activities [5]. Taxonomic studies based on morphological characters [3] and on the results of biochemical analysis of the essential oils and their constituent compounds [5] indicate a high degree of variability across species of the Origanum genus. In light of these results, we considered signifi cant to analyze the genetic polymorphism in two species of the Origanum genus - Origanum vulgare L. and Origanum laevigatum Boiss., collected from a region of spontaneous fl ora in Moldova (Orheiul-Vechi). Material and methods The plant material was used in the form of dry leaves. Total genomic DNA was isolated from fully developed leaves using the CTAB extraction protocol [4], by 23 gradually increasing the liquid nitrogen concentration. A total of 8 single decamer random oligonucleotide primers of arbitrary sequence (OPA2, OPA9, OPA19, OPB01, OPG05, OPK17 şi Oligo391) were tested for PCR amplifi cation. DNA amplifi cation according to a basic PCR protocol was performed in a total volume of 15 μL, containing 50 ng of template DNA, 0,4 - 0,6 μM of single primer, 1 U Taq DNA polymerase 200 μM of each dNTP, 2,5 mM MgCl2 [6]. Results and discussions The RAPD-PCR analysis of the Origanum sp. genotypes indicated a high heterogeneity of the results by genotype and tested primers. Based on the electrophoretic spectrum, 82 amplifi cation products were identifi ed with an average of 11,71 bands per primer. The number of amplifi ed fragments varied in the range from 0 to 12 depending on the primer used. The comparative analysis of molecular polymorphism across the named species revealed that the RAPD-PCR generated 47 bands for Origanum vulgare L. and 35 for Origanum laevigatum Boiss. 23 of them are polymorphic and 35 – monomorphic fragments, 22 for O. vulgare L., respectively 13 fragments for O. laevigatum Boiss. The Oligo391 decamer presented six bands for both species, all monomorphic. The obtained results allowed concluding that the most informative primers are: for O. vulgare L. - UBC250 and for O. laevigatum Boiss. - OPK17 showing a maximum number of fragments (12, respectively 9 bands). OPG5 (O. vulgare L.) and UBC250 (O. laevigatum Boiss.) decamers did not generate any amplicons. The most specifi c bands were revealed in the case of OPA02 (O. laevigatum Boiss. - 4) and UBC250 (O. vulgare L. - 12) decamers. Conclusions RAPD-PCR analysis has established a high heterogeneity between Origanum vulgare L. and Origanum laevigatum Boiss. Specifi c particularities of each species depend by tested primers. The most primers showed a high degree of molecular polimorfi sm. The most informative primers are UBC250 for O. vulgare L. and OPK17 for O. laevigatum Boiss.). These studies are the part of Moldova-Romanian project “Genetic intraspecifi c polymorfysm analysis for the elaboration of molecular markers of some medicinal and aromatic plants chemotypes”. Bibliogrphy 1. Cantino, P.D., Harley, R.M., Wagstaff, S.J. Genera of Labiatae: Status and classifi cation. In:Harley, R. M., Reynolds, T. (eds.) Advances in Labiate Science. Royal Botanic Gardens Kew, Richmond, Surrey, UK, 1992. 2. Danin, A., Künne, I. Origanum jordanicum (Labiatae), a new species from Jordan, and notes on other species of sect. Campanulaticalyx, Willdenowia, 1996, 25: 601-611. 3. Ietswaart, J.H. A taxonomic revision of the genus Origanum (Labiatae). Leiden Botanical Series 4, Leiden University Press, The Hague, 1980. 4. Murray, M.G., Thompson, W.F. Rapid isolation of high molecular weight plant DNA, Nucleic Acids Res. 1980, 8,(19):4321-4325. 24 5. Padulosi, S. Oregano. Promoting the conservation and use of underutilized and neglected crops. Proceedings of the IPGRI International Workshop on Oregano, 8-12 May 1996, CIHEAM, Valenzano (Bari), Italy. Institute, ISBN 92-9043-317-5. 6. Williams, J.G.K., Kubelik, A.R., Livak, K.J., et al. DNA polymorphisms amplifi ed by arbitrary primers are useful as genetic markers, Nucl. Acids Res, 1990, vol. 18, nr. 22. p. 6531-6535. THE DEGREE OF ACCUMULATION OF THE RADIONUCLIDE Cs-137 IN SPONTANEOUS VEGETATION Motelica L., Stegărescu V. Institute of Ecology and Geography of ASM Introduction Natural and artifi cial radioactive elements have become vital component parts of environmental pollution. The main source of soil pollution with artifi cial radionuclides and with nuclear decay products has become the global rainfall as a result of nuclear experiments and the impact of Chernobyl Atomic Power Station. In the natural ecosystems and those anthropogenic ones some radionuclides (Cs- 137,Sr-90) are taken over very well especially by the plants that are mentioned in the special literature as bioindicators of environmental radioactivity [1]. For the evaluation of radionuclide transfer processes from the soil in the plant there are used different indices, one of them being the coeffi cient of accumulation (Kac.) [2]. Material and methods As an object of study served the medicinal plants-stinging nettle (Urtica dioca L.) and celandine (Chelidonium majus L.) in Landscape Reserve (LR) Holoşnita and liquorice milkvetch (Astragalus glycyphyllos L.) and moss (Hylocomium splendens) in LR Cosauti, with reduced accumulation of radionuclides from soil [1]. In order to determine radiospectrometrically the content of the radionuclides Cs-137 [3], there were taken samples of ground and vegetation. The accumulation/ transfer degree of the radionuclide was calculated according to the formula: Kac. = Cpl./CSol, where Cpl. – stands for the radionuclide concentration in the plant (Bq/kg), and CSol – radionuclide concentration in the soil (Bq/kg) [2]. Results and discussions Radiospectrometrical analysis of soil samples revealed for the LR Cosui a quantity of 13.37 Bq/kg (leached chernozem soil) and for the LR Holoşnita – 30.52 Bq/kg (uneroded leached chernozem soil). The highest concentration of the radionuclide Cs-137 (16.0 Bq/kg) was observed in moss (Hylocomium splendens) in the LR Cosui compared to 3.0 Bq/kg in wild licorice. In the plants of Urtica dioca L. and Chelidonium majus L. in the LR Holoşnita the concentration of Cs 137 constituted 6.0 Bq/kg. The calculation of storage/transfer coeffi cient of Cs- 137 from the soil of protected areas into the plants revealed the following: for Chelidonium majus L. and Urtica dioca L. – 0.19, Astragalus glycyphyllos L. – 1.22 and Hylocomium splendens – 1.19. According to the Basic Standards of 25 Powered by TCPDF (www.tcpdf.org).
Recommended publications
  • Determination of Secondary Metabolites of Origanum Vulgare Subsp
    ORIGINAL ARTICLE J. Chem. Metrol. 14:1 (2020) 25-34 Determination of secondary metabolites of Origanum vulgare subsp. hirtum and O. vulgare subsp. vulgare by LC-MS/MS Züleyha Özer 1*, Sema Çarıkçı 2, Hasibe Yılmaz 3, Turgut Kılıç 4, Tuncay Dirmenci 5 and Ahmet C. Gören 6,7* 1 Medicinal and Aromatic Plants Programme, Altinoluk Vocational School, Balikesir University, Edremit-Balikesir, Türkiye 2 Vocational School, Izmir Democracy University, Izmir, Türkiye 3 TUBITAK UME, Chemistry Group, Organic Chemistry Laboratory, Gebze, Kocaeli, Türkiye 4 Department of Science Education, Necatibey Faculty of Education, Balikesir University, Balikesir, Türkiye 5 Department of Biology Education, Necatibey Faculty of Education, Balikesir University, Balikesir, Türkiye 6 Drug Application and Research Center (İLMER), Bezmialem Vakif University, Istanbul, Türkiye 7 Faculty of Pharmacy, Department of Analytical Chemistry, Bezmialem Vakif University, Istanbul, Türkiye (Received April 08, 2020; Revised May 07, 2020; Accepted May 09, 2020) Abstract: Secondary metabolites of solvent extracts of Origanum vulgare subsp. hirtum and O. vulgare subsp. vulgare were determined using liquid chromatography–mass spectrometry (LC-MS/MS). Curcumin was used as an internal standard. Rosmarinic acid was determined as the main compound of studied extracts together with other phenolic acid derivatives. In LC-MS/MS analyses, relative standard deviations (RSD %) ranged between 0.11-9.47. The correlation values were found to be greater than 0.97 for each investigated analyte. Keywords: Origanum; phenolic compounds; LC-MS/MS; method validation; uncertainty assessment; rosmarinic acid. © 2020 ACG Publications. All rights reserved. 1. Introduction The genus Origanum L. is one of the most important genera in the family of Lamiaceae, the species of which are used as herbal tea and spices.
    [Show full text]
  • Checklist of the Washington Baltimore Area
    Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area Part I Ferns, Fern Allies, Gymnosperms, and Dicotyledons by Stanwyn G. Shetler and Sylvia Stone Orli Department of Botany National Museum of Natural History 2000 Department of Botany, National Museum of Natural History Smithsonian Institution, Washington, DC 20560-0166 ii iii PREFACE The better part of a century has elapsed since A. S. Hitchcock and Paul C. Standley published their succinct manual in 1919 for the identification of the vascular flora in the Washington, DC, area. A comparable new manual has long been needed. As with their work, such a manual should be produced through a collaborative effort of the region’s botanists and other experts. The Annotated Checklist is offered as a first step, in the hope that it will spark and facilitate that effort. In preparing this checklist, Shetler has been responsible for the taxonomy and nomenclature and Orli for the database. We have chosen to distribute the first part in preliminary form, so that it can be used, criticized, and revised while it is current and the second part (Monocotyledons) is still in progress. Additions, corrections, and comments are welcome. We hope that our checklist will stimulate a new wave of fieldwork to check on the current status of the local flora relative to what is reported here. When Part II is finished, the two parts will be combined into a single publication. We also maintain a Web site for the Flora of the Washington-Baltimore Area, and the database can be searched there (http://www.nmnh.si.edu/botany/projects/dcflora).
    [Show full text]
  • Caryologia International Journal of Cytology, Cytosystematics and Cytogenetics
    0008-7114 2020 2 73 – n. Vol. Caryologia 2020 International Journal of Cytology, Vol. 73 - n. 2 Cytosystematics and Cytogenetics Caryologia FIRENZE PRESSUNIVERSITY Caryologia. International Journal of Cytology, Cytosystematics and Cytogenetics Caryologia is devoted to the publication of original papers, and occasionally of reviews, about plant, animal and human kar- yological, cytological, cytogenetic, embryological and ultrastructural studies. Articles about the structure, the organization and the biological events relating to DNA and chromatin organization in eukaryotic cells are considered. Caryologia has a strong tradition in plant and animal cytosystematics and in cytotoxicology. Bioinformatics articles may be considered, but only if they have an emphasis on the relationship between the nucleus and cytoplasm and/or the structural organization of the eukaryotic cell. Editor in Chief Associate Editors Alessio Papini Alfonso Carabez-Trejo - Mexico City, Mexico Dipartimento di Biologia Vegetale Katsuhiko Kondo - Hagishi-Hiroshima, Japan Università degli Studi di Firenze Canio G. Vosa - Pisa, Italy Via La Pira, 4 – 0121 Firenze, Italy Subject Editors Mycology Plant Cytogenetics Histology and Cell Biology Renato Benesperi Lorenzo Peruzzi Alessio Papini Università di Firenze, Italy Università di Pisa Università di Firenze Human and Animal Cytogenetics Plant Karyology and Phylogeny Zoology Michael Schmid Andrea Coppi Mauro Mandrioli University of Würzburg, Germany Università di Firenze Università di Modena e Reggio Emilia Editorial Assistant Sara Falsini Università degli Studi di Firenze, Italy Editorial Advisory Board G. Berta - Alessandria, Italy G. Delfino - Firenze, Italy M. Mandrioli - Modena, Italy D. Bizzaro - Ancona, Italy S. D'Emerico - Bari, Italy G. C. Manicardi - Modena, Italy A. Brito Da Cunha - Sao Paulo, Brazil F. Garbari - Pisa, Italy P.
    [Show full text]
  • Erican Horticulturist Volume 74, Number 4 April 1995
    erican Horticulturist Volume 74, Number 4 April 1995 ARTICLES Great Native Graminoids by Shelly Stiles . .. ........ ..... .. ... ............ 18 Bristly, bearded, fuzzy, seedy, frothy, spiky, spreading, reedy .. it's the versatile "hair of the earth." Classic Composition by Rob Proctor . .. ...... .... ....................... 24 He knew what he wanted in his new garden: formal lines and a symphony of color. Inspiring Spireas by Terry Schwartz . .............. ... .. ... ... ... .... 29 Multicolored flowers and colorful fall foliage are just a few of the possibilities offered by these tough shrubs. The Reintroduction Myth APRIL'S COVER by William H. Allen .. .. .. .. .. .. ... .. ... .. .. .... 33 Photographed by Dorothy Long: PhotolNats Biologists can relocate endangered plants that are in the path of development. True or false? Native to Europe and Asia, Solanum dulcamara is widely A Little Light on Nightshades naturalized in the United States, by Jack Henning . ..................................... 38 where it is found in semi-shady There's nothing deadly about the way these potato relatives perform locations at the edges of woods in the garden. and in vacant lots. Its flowers are a regal combination of deep violet petals and clustered golden DEPARTMENTS stamens, while its green berry fruits ripen to a bright red. The Commentary .............. ....................... 4 taste of its fruit earned it the name bittersweet-the translation Members' Forum ..... ............................... 5 of dulcamara-among early European herbalists, but in Offshoots . 6 America it is more commonly Gardeners' Information Service . 8 known as woody nightshade. Its historic reputation for various Natives at Risk ........................ .. ... .. ... .. ... 10 medicinal qualities has been replaced by due respect for Natural Connections ................................... 12 its toxicity. Book Reviews ....... ................................ 13 Planting the Future ...... ............... ... ... ...... 15 The Urban Gardener ................
    [Show full text]
  • 14)1 :(67-59) 1392( a Survey of Lamiaceae in the Flora of Iran
    Z. Jamzad / A survey of Lamiaceae in the flora of Iran …/ Rostaniha 14(1), 201359 رﺳﺘﻨﻴﻬﺎ Rostaniha 14(1): 59-67 (2013) (1392 ) 59-67 :( 14)1 A survey of Lamiaceae in the flora of Iran Received: 27.02.2013 / Accepted: 29.05.2013 Z. Jamzad: Research Prof., Research Institute of Forests and Rangelands, P.O. Box 13185-116, Tehran, Iran ([email protected] & [email protected]) Abstract In Iran, the Lamiaceae family is represented by 46 genera, 406 species and 97 infraspecific taxa; of these, 165 taxa are endemic. The distribution of family in Iran covers the whole country but the species number decreases from the centre towards the east, south-east and south. The distribution pattern of endemic taxa shows that Chaharmahal-va- Bakhtiari, Esfahan, Fars, Tehran, Azarbayejan, Kohgiloueh-va-Boirahamad, Lurestan and Hamadan provinces are the hot spots for speciation of the family and in these provinces most of the endemic taxa occur. From the conservation point of view, 14 species are suspected of being extinct, or very rare and 55 taxa rare and endangered and are in a critical condition because of their narrow distribution. These taxa have been recorded only from one location in Iran and need special attention and must be considered in conservation programs. Nonetheless, there are a few species with very wide distributions and high frequency. Some of these species occur in ruderal or disturbed habitats. Keywords: Distribution pattern, endemics, flora of Iran, Labiatae Introduction Lamiaceae ( Labiatae ) is a family in the Lamiales order. It has important medicinal and aromatic plants, very important in the honey and cosmetic industry.
    [Show full text]
  • Sayı Tam Dosyası
    BioDiCon Biyolojik Çeşitlilik ve Koruma Biological Diversity and Conservation Biyolojik Çeşitlilik ve Koruma Üzerine Yayın Yapan Hakemli Uluslararası Bir Dergidir An International Journal is About Biological Diversity and Conservation With Refree Cilt / Volume 4, Sayı / Number 1, Nisan/April 2011 Editör / Editor-in-Chief: Ersin YÜCEL ISSN 1308-5301 Print ISSN 1308-8084 Online Açıklama “Biological Diversity and Conservation”, biyolojik çeşitlilik, koruma, biyoteknoloji, çevre düzenleme, tehlike altındaki türler, tehlike altındaki habitatlar, sistematik, vejetasyon, ekoloji, biyocoğrafya, genetik, bitkiler, hayvanlar ve mikroorganizmalar arasındaki ilişkileri konu alan orijinal makaleleri yayınlar. Tanımlayıcı yada deneysel ve sonuçları net olarak belirlenmiş deneysel çalışmalar kabul edilir. Makale yazım dili Türkçe veya İngilizce’dir. Yayınlanmak üzere gönderilen yazı orijinal, daha önce hiçbir yerde yayınlanmamış olmalı veya işlem görüyor olmamalıdır. Yayınlanma yeri Türkiye’dir. Bu dergi yılda üç sayı yayınlanır. Description “Biological Diversity and Conservation” publishes original articles on biological diversity, conservation, biotechnology, environmental management, threatened of species, threatened of habitats, systematics, vegetation science, the ecology, biogeography, genetics and interactions among plants and animals or microorganisms. Descriptive or experimental studies presenting clear research questions are accepted. The submitted paper must be original and unpublished or under consideration for publication. Manuscripts in
    [Show full text]
  • A Cross-Disciplinary Study of the Work and Collections by Roberto De Visiani (1800–1878)
    Sede Amministrativa: Università degli Studi di Padova Dipartimento di Scienze Storiche, Geografche e dell’Antichità Corso di Dotorato di Ricerca in Studi Storici, Geografci e Antropologici Curricolo: Geografa Umana e Fisica Ciclo ⅩⅨ A Cross-disciplinary Study of the Work and Collections by Roberto de Visiani (1800–1878) Coordinatore: Ch.ma Prof. Maria Cristina La Rocca Supervisore: Dr. Antonella Miola Dottorando: Moreno Clementi Botany: n. Te science of vegetables—those that are not good to eat, as well as those that are. It deals largely with their fowers, which are commonly badly designed, inartistic in color, and ill-smelling. Ambrose Bierce [1] Table of Contents Preface.......................................................................................................................... 11 1. Introduction.............................................................................................................. 13 1.1 Research Project.......................................................................................................13 1.2 State of the Art.........................................................................................................14 1.2.1 Literature on Visiani 14 1.2.2 Studies at the Herbarium of Padova 15 1.2.3 Exploration of Dalmatia 17 1.2.4 Types 17 1.3 Subjects of Particular Focus..................................................................................17 1.3.1 Works with Josif Pančić 17 1.3.2 Flora Dalmatica 18 1.3.3 Visiani’s Relationship with Massalongo 18 1.4 Historical Context...................................................................................................18
    [Show full text]
  • Proceedings of the IPGRI International Workshop on Oregano 8-12 May 1996
    Proceedings of the IPGRI International Workshop on Oregano 8-12 May 1996 CIHEAM, Valenzano, Bari, Italy S. Padulosi, editor ii OREGANO The International Plant Genetic Resources Institute (IPGRI) is an autonomous international scientific organization operating under the aegis of the Consultative Group on International Agricultural Research (CGIAR). The international status of IPGRI is conferred under an Establishment Agreement which, by January 1997, had been signed by the Governments of Australia, Belgium, Benin, Bolivia, Brazil, Burkina Faso, Cameroon, Chile, China, Congo, Costa Rica, Côte d’Ivoire, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Greece, Guinea, Hungary, India, Indonesia, Iran, Israel, Italy, Jordan, Kenya, Malaysia, Mauritania, Morocco, Pakistan, Panama, Peru, Poland, Portugal, Romania, Russia, Senegal, Slovak Republic, Sudan, Switzerland, Syria, Tunisia, Turkey, Uganda and Ukraine. IPGRI's mandate is to advance the conservation and use of plant genetic resources for the benefit of present and future generations. IPGRI works in partnership with other organizations, undertaking research, training and the provision of scientific and technical advice and information, and has a particularly strong programme link with the Food and Agriculture Organization of the United Nations. Financial support for the research agenda of IPGRI is provided by the Governments of Australia, Austria, Belgium, Canada, China, Denmark, Finland, France, Germany, India, Italy, Japan, the Republic of Korea, Luxembourg, Mexico, the Netherlands, Norway, the Philippines, Spain, Sweden, Switzerland, the UK and the USA, and by the Asian Development Bank, CTA, European Union, IDRC, IFAD, Interamerican Development Bank, UNDP and the World Bank. The geographical designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of IPGRI, the CGIAR or IPK concerning the legal status of any country, territory, city or area or its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Brassica Oleracea Var. Viridis L. Ve Smilax Excelsa L. Bitki Özütlerinin
    T.C. ORDU ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ Brassica oleracea var. viridis L. ve Smilax excelsa L. Bitki Özütlerinin Acanthamoeba castellanii TROFOZOİTLERİ ÜZERİNE İN VİTRO AMOEBİSİDAL AKTİVİTELERİNİN ARAŞTIRILMASI HAMİ YEŞİLTAŞ YÜKSEK LİSANS TEZİ ORDU 2018 ÖZET BRASSİCA OLERACEA VAR. VİRİDİS L. VE SMİLAX EXCELSA L. YAPRAK ÖZÜTLERİNİN ACANTHAMOEBA CASTELLANİİ TROFOZOİTLERİ ÜZERİNE İN VİTRO AMOEBİSİDAL ETKİSİNİN ARAŞTIRILMASI Hami YEŞİLTAŞ Ordu Üniversitesi Fen Bilimleri Enstitüsü Moleküler Biyoloji ve Genetik Anabilim Dalı, 2018 Yüksek Lisans Tezi, 58s. Danışman: Doç. Dr. Zeynep KOLÖREN Acanthamoeba spp. rutubetli ya da ıslak topraklarda, göllerde, yüzme havuzlarında, baraj göllerinde, tatlı su birikintilerinde, çeşme sularında, kontak lens solüsyonlarında ve havada yaygın olarak bulunmaktadır. Toprak, su ve havayla sıkı temasta olan insanlara serbest yaşayan amiplerin yerleşmesi ve amebiyaz, oluşturabilmesi olasılığı yüksektir. Serbest yaşayan amipler arasında Acanthamoeba türleri, Granülomatöz amibik ensefalit, Acanthamoeba keratitis ve Kutanöz acanthamoebiasis gibi önemli hastalıklara neden olmaktadır. Günümüzde bu hastalıkları tamamen ortadan kaldıracak tedavi protokolleri bulunmamaktadır. Özellikle Acanthamoeba kistlerinin oluşturduğu enfeksiyonlar uygun ve etkili tedaviler uygulanmadığı sürece genellikle tekrarlayabilmektedir. Kistlerin uygulanan tedavi yöntemlerine karşı dirençli olması, uygulanan tedavi protokollerinin çok fazla yan etkilere sahip olması ve istenilen selektiviteyi göstermemesi gibi nedenler bu parazitlere karşı
    [Show full text]
  • Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area
    Annotated Checklist of the Vascular Plants of the Washington - Baltimore Area Part I Ferns, Fern Allies, Gymnosperms, and Dicotyledons by Stanwyn G. Shetler and Sylvia Stone Orli Department of Botany National Museum of Natural History 2000 Department of Botany, National Museum of Natural History Smithsonian Institution, Washington, DC 20560-0166 ii iii PREFACE The better part of a century has elapsed since A. S. Hitchcock and Paul C. Standley published their succinct manual in 1919 for the identification of the vascular flora in the Washington, DC, area. A comparable new manual has long been needed. As with their work, such a manual should be produced through a collaborative effort of the region’s botanists and other experts. The Annotated Checklist is offered as a first step, in the hope that it will spark and facilitate that effort. In preparing this checklist, Shetler has been responsible for the taxonomy and nomenclature and Orli for the database. We have chosen to distribute the first part in preliminary form, so that it can be used, criticized, and revised while it is current and the second part (Monocotyledons) is still in progress. Additions, corrections, and comments are welcome. We hope that our checklist will stimulate a new wave of fieldwork to check on the current status of the local flora relative to what is reported here. When Part II is finished, the two parts will be combined into a single publication. We also maintain a Web site for the Flora of the Washington-Baltimore Area, and the database can be searched there (http://www.nmnh.si.edu/botany/projects/dcflora).
    [Show full text]
  • A Taxonomic Revision of the Genus Origanum (Labiatae)
    A taxonomic revision of the Genus Origanum (Labiatae) J.H. Ietswaart Vrije Universiteit, Amsterdam 1980 LEIDEN UNIVERSITY PRESS THE HAGUE / BOSTON / LONDON Distributors; for the United States and Canada Kluwer Boston, Inc. 190 Old Derby Street Hingham, MA 02043 USA for all other countries Kluwer Academic Publishers Group Distribution Center P.O.Box 322 3300 AH Dordrecht The Netherlands Published with the Netherlands the Advancement Research financialsupport from Organizationfor of Pure (Z.W.O.). ISBN 90 6021 464 3 (this volume) ISBN 90 6021 462 5 (series) Copyright© 1980 by Martinus NijhoffPublishers bv reserved. No be All rights part of this publication may reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical,photocopying, recording, or otherwise, without the prior written permission of the publisher, Martinus Nijhoff Publishers bv, P.O.Box 566, 2501 CN The Hague, The Netherlands. PRINTED IN THE NETHERLANDS Aan mijn ouders Voor Else Contents SUMMARY ix ACKNOWLEDGEMENTS xi I. GENERAL CHAPTER 1 1. Introduction 1 2. Taxonomic history of Origanum 1 3. Concept of Origanum in this revision 3 4. Morphological characters of Origanum 3 5. Comparison of Origanum with related genera 7 6. Criteria for limitation of sections, species and subspecific taxa 14 7. Gynodioecy 14 8. Chromosome numbers 15 9. Chemical characters 15 10. Geography and ecology 17 11. Hybridization 19 12. A hypothesis for speciation 21 13. Cultivationof Origanum species 24 14. Phytoparasites 26 15. References 26 II. TAXONOMIC TREATMENT 31 1. Introduction 31 2. Origanum 32 3. Keys to all taxa except hybrids 34 4.
    [Show full text]
  • The Type Specimens in Eugen Von Halácsy´S Herbarium Graecum
    Phytotaxa 493 (1): 001–156 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2021 Magnolia Press Monograph ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.493.1.1 PHYTOTAXA 493 The type specimens in Eugen von Halácsy´s Herbarium Graecum DIETER REICH1*, WALTER GUTERMANN1, KATHARINA BARDY2, HEIMO RAINER1,3, THOMAS RAUS4, MICHAELA SONNLEITNER1,5, KIT TAN6 & MARGARITA LACHMAYER7* 1Division of Systematic and Evolutionary Botany, University of Vienna, Rennweg 14, Vienna, 1030, Austria [email protected], http://orcid.org/0000-0003-0784-0048 [email protected], https://orcid.org/0000-0002-9201-6872 2Institute for Integrative Nature Conservation Research, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, Vienna, 1180, Austria [email protected], http://orcid.org/0000-0002-5882-8818 3 Department of Botany, Natural History Museum Vienna, Burgring 7, Vienna, 1010, Austria [email protected], http://orcid.org/0000-0002-5963-349X 4 Botanic Garden and Botanical Museum Berlin, Freie Universität Berlin, Königin-Luise-Str. 6-8, 14195 Berlin, Germany [email protected], http://orcid.org/0000-0001-5778-4705 5 Department of Botany, Natural History Museum Vienna, Burgring 7, Vienna, 1010, Austria [email protected]; https://orcid.org/0000-0002-2026-8229 6 Institute of Biology, University of Copenhagen, Universitetsparken 15D, 2100 Copenhagen Ø, Denmark [email protected]; https://orcid.org/0000-0001-8742-4612 7 Division of Structural and Functional Botany, University of Vienna, Rennweg 14, Vienna, 1030, Austria [email protected]; https://orcid.org/0000-0001-8369-9037 *Authors for correspondence Magnolia Press Auckland, New Zealand Accepted by Christian Bräuchler: 29 Dec.
    [Show full text]