Atmos. Meas. Tech., 13, 1593–1608, 2020 https://doi.org/10.5194/amt-13-1593-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. Towards objective identification and tracking of convective outflow boundaries in next-generation geostationary satellite imagery Jason M. Apke1, Kyle A. Hilburn1, Steven D. Miller1, and David A. Peterson2 1Cooperative Institute for Research in the Atmosphere (CIRA), Colorado State University, Fort Collins, CO, USA 2Naval Research Laboratory, Monterey CA, USA Correspondence: Jason M. Apke (
[email protected]) Received: 31 March 2019 – Discussion started: 1 July 2019 Revised: 4 February 2020 – Accepted: 17 February 2020 – Published: 2 April 2020 Abstract. Sudden wind direction and speed shifts from out- ture improvements to this process are described to ultimately flow boundaries (OFBs) associated with deep convection sig- provide a fully automated OFB identification algorithm. nificantly affect weather in the lower troposphere. Specific OFB impacts include rapid variation in wildfire spread rate and direction, the formation of convection, aviation hazards, and degradation of visibility and air quality due to min- 1 Introduction eral dust aerosol lofting. Despite their recognized impor- tance to operational weather forecasters, OFB characteriza- Downburst outflows from associated deep convection (Byers tion (location, timing, intensity, etc.) in numerical models and Braham Jr., 1949; Mitchell and Hovermale, 1977) play remains challenging. Thus, there remains a need