The Hallmarks of Cancer a Long Non-Coding RNA Point of View
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Long Noncoding RNA and Cancer: a New Paradigm Arunoday Bhan, Milad Soleimani, and Subhrangsu S
Published OnlineFirst July 12, 2017; DOI: 10.1158/0008-5472.CAN-16-2634 Cancer Review Research Long Noncoding RNA and Cancer: A New Paradigm Arunoday Bhan, Milad Soleimani, and Subhrangsu S. Mandal Abstract In addition to mutations or aberrant expression in the moting (oncogenic) functions. Because of their genome-wide protein-coding genes, mutations and misregulation of noncod- expression patterns in a variety of tissues and their tissue- ing RNAs, in particular long noncoding RNAs (lncRNA), appear specific expression characteristics, lncRNAs hold strong prom- to play major roles in cancer. Genome-wide association studies ise as novel biomarkers and therapeutic targets for cancer. In of tumor samples have identified a large number of lncRNAs this article, we have reviewed the emerging functions and associated with various types of cancer. Alterations in lncRNA association of lncRNAs in different types of cancer and dis- expression and their mutations promote tumorigenesis and cussed their potential implications in cancer diagnosis and metastasis. LncRNAs may exhibit tumor-suppressive and -pro- therapy. Cancer Res; 77(15); 1–17. Ó2017 AACR. Introduction lncRNAs (lincRNA) originate from the region between two pro- tein-coding genes; enhancer lncRNAs (elncRNA) originate from Cancer is a complex disease associated with a variety of genetic the promoter enhancer regions; bidirectional lncRNAs are local- mutations, epigenetic alterations, chromosomal translocations, ized within the vicinity of a coding transcript of the opposite deletions, and amplification (1). Noncoding RNAs (ncRNA) are strand; sense-overlapping lncRNAs overlap with one or more an emerging class of transcripts that are coded by the genome but introns and exons of different protein-coding genes in the sense are mostly not translated into proteins (2). -
Genome Complexity’ Conundrum
Downloaded from genesdev.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press REVIEW Eukaryotic regulatory RNAs: an answer to the ‘genome complexity’ conundrum Kannanganattu V. Prasanth and David L. Spector1 Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA A large portion of the eukaryotic genome is transcribed Caenorhabditis elegans is extremely close (http://www. as noncoding RNAs (ncRNAs). While once thought of ensembl.org). Such analyses suggest that protein-coding primarily as “junk,” recent studies indicate that a large genes alone are not sufficient to account for the com- number of these RNAs play central roles in regulating plexity of higher eukaryotic organisms. Interestingly, gene expression at multiple levels. The increasing diver- from genomic analysis it is evident that as an organism’s sity of ncRNAs identified in the eukaryotic genome sug- complexity increases, the protein-coding contribution of gests a critical nexus between the regulatory potential of its genome decreases (Mattick 2004a,b; Szymanski and ncRNAs and the complexity of genome organization. We Barciszewski 2006). A portion of this paradox can be re- provide an overview of recent advances in the identifi- solved through alternative pre-mRNA splicing, whereby cation and function of eukaryotic ncRNAs and the roles diverse mRNA species, encoding different protein iso- played by these RNAs in chromatin organization, gene forms, can be derived from a single gene (Lareau et al. expression, and disease etiology. 2004). In addition, a range of post-translational modifi- cations contributes to the increased complexity and di- versity of protein species (Yang 2005). Although Jacob and Monod (1961) suggested early on It is estimated that ∼98% of the transcriptional output that structural genes encode proteins and regulatory of the human genome represents RNA that does not en- genes produce noncoding RNAs (ncRNAs), the prevail- code protein (Mattick 2005). -
Mitochondrial Metabolism and Cancer
Cell Research (2018) 28:265-280. REVIEW www.nature.com/cr Mitochondrial metabolism and cancer Paolo Ettore Porporato1, *, Nicoletta Filigheddu2, *, José Manuel Bravo-San Pedro3, 4, 5, 6, 7, Guido Kroemer3, 4, 5, 6, 7, 8, 9, Lorenzo Galluzzi3, 10, 11 1Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, 10124 Torino, Italy; 2Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; 3Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; 4Université Pierre et Marie Curie/Paris VI, 75006 Paris, France; 5Equipe 11 labellisée par la Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; 6INSERM, U1138, 75006 Paris, France; 7Meta- bolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France; 8Pôle de Biologie, Hopitâl Européen George Pompidou, AP-HP, 75015 Paris, France; 9Department of Women’s and Children’s Health, Karolinska University Hospital, 17176 Stockholm, Sweden; 10Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA; 11Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA Glycolysis has long been considered as the major metabolic process for energy production and anabolic growth in cancer cells. Although such a view has been instrumental for the development of powerful imaging tools that are still used in the clinics, it is now clear that mitochondria play a key role in oncogenesis. Besides exerting central bioen- ergetic functions, mitochondria provide indeed building blocks for tumor anabolism, control redox and calcium ho- meostasis, participate in transcriptional regulation, and govern cell death. Thus, mitochondria constitute promising targets for the development of novel anticancer agents. -
(12) United States Patent (10) Patent No.: US 7,807,373 B2 Srivastava Et Al
US007807373B2 (12) United States Patent (10) Patent No.: US 7,807,373 B2 Srivastava et al. (45) Date of Patent: Oct. 5, 2010 (54) PROSTATE SPECIFIC GENE, PCGEM1, AND GenBank. Accession No. ACO 13401, GI:8569780, 169700 bp DNA, METHODS OF USING PCEGM1 TO DETECT, Jul. 7, 2000. TREAT, AND PREVENT PROSTATE CANCER “AC003046.” EBI Database XPO02143197, Dec. 1, 2001. (75) Inventors: Shiv Srivastava, Potomac, MD (US); Srikantanet al., “Structure and Expression of a Novel Prostate Spe Judd W. Moul, Bethesda, MD (US); cific Gene: PCGEM1. Proc. American Assoc. Cancer Research Vasantha Srikantan, Rockville, MD Annual, XP000929230, vol. 40, p. 37 (Mar. 1999). (US); Zhiqiang Zou, Gaithersburg, MD Bussemakers et al., “A New Prostate-Specific Arker, Strongly (US) Overexpressed in Prostatic Tumors.” Urological Research, XP0020743.05, vol. 25, No. 1, p. 76 (Feb. 1997). (73) Assignee: Henry M. Jackson Foundation for the Wang et al., “Genes Regulated by Androgen in the Rat Ventral Pros Advancement of Military Medicine, tate.” Proc. Nat.1 Acad. Sci., U.S.A., vol. 94, pp. 12999-13004 (Nov. Rockville, MD (US) 1997). “ACO 13401, EBI Database XP002143200, Apr. 16, 2005. (*) Notice: Subject to any disclaimer, the term of this Srikantan et al., “PCGEM1, a Prostate-Specific Gene, Is Overex patent is extended or adjusted under 35 posed in Prostate Cancer.” Proc. Natl. Acad. Sci., vol.97, No. 22, pp. U.S.C. 154(b) by 285 days. 12216-12221 (Oct. 24, 2000). (21) Appl. No.: 12/166,723 Srikantan et al., Identification of Prostate Cancer Associated Novel Gene Expression Alterations, Proc. American Assoc. Cancer (22) Filed: Jul. -
Cancer and Mitochondrial Function Revista De La Facultad De Medicina, Vol
Revista de la Facultad de Medicina ISSN: 2357-3848 ISSN: 0120-0011 Universidad Nacional de Colombia Freyre-Bernal, Sofía Isabel; Saavedra-Torres, Jhan Sebastian; Zúñiga-Cerón, Luisa Fernanda; Díaz-Córdoba, Wilmer Jair; Pinzón-Fernández, María Virginia Cancer and mitochondrial function Revista de la Facultad de Medicina, vol. 66, no. 1, 2018, January-March, pp. 83-86 Universidad Nacional de Colombia DOI: 10.15446/revfacmed.v66n1.59898 Available in: http://www.redalyc.org/articulo.oa?id=576364217013 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative Rev. Fac. Med. 2017 Vol. 66 No. 1: 83-6 83 ARTÍCULO DE REFLEXIÓN DOI: http://dx.doi.org/10.15446/revfacmed.v66n1.59898 Cancer and mitochondrial function El cáncer en la función mitocondrial Recibido: 3/9/2016. Aceptado: 28/10/2016. Sofía Isabel Freyre-Bernal1 • Jhan Sebastian Saavedra-Torres2,3 • Luisa Fernanda Zúñiga-Cerón2,3 • Wilmer Jair Díaz-Córdoba2,3 • María Virginia Pinzón-Fernández4 1 Universidad del Cauca - Faculty of Health Sciences - Department of Physiological Sciences - Popayán - Colombia. 2 Corporación Del Laboratorio al Campo - Research Seedling Unit - Popayán - Colombia. 3 Universidad del Cauca - Faculty of Health Sciences - Health Research Group - Popayán - Colombia. 4 Universidad del Cauca - Faculty of Health Sciences - Internal Medicine Department - Popayán - Colombia. Corresponding author: Jhan Sebastian Saavedra-Torres. Health Research Group, Faculty of Health Sciences, Universidad del Cauca. Colombia, Cauca. Carrera 6 Nº 13N-50 de Popayán, sector de La Estancia. -
Sarcoma Metabolomics: Current Horizons and Future Perspectives
cells Review Sarcoma Metabolomics: Current Horizons and Future Perspectives Miguel Esperança-Martins 1,2,3,* , Isabel Fernandes 1,3,4 , Joaquim Soares do Brito 4,5, Daniela Macedo 6, Hugo Vasques 4,7, Teresa Serafim 2, Luís Costa 1,3,4 and Sérgio Dias 2,4 1 Centro Hospitalar Universitário Lisboa Norte, Medical Oncology Department, Hospital Santa Maria, 1649-028 Lisboa, Portugal; [email protected] (I.F.); [email protected] (L.C.) 2 Vascular Biology & Cancer Microenvironment Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; tserafi[email protected] (T.S.); [email protected] (S.D.) 3 Translational Oncobiology Lab, Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal 4 Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; [email protected] (J.S.d.B.); [email protected] (H.V.) 5 Centro Hospitalar Universitário Lisboa Norte, Orthopedics and Traumatology Department, Hospital Santa Maria, 1649-028 Lisboa, Portugal 6 Medical Oncology Department, Hospital Lusíadas Lisboa, 1500-458 Lisboa, Portugal; [email protected] 7 General Surgery Department, Instituto Português de Oncologia de Lisboa Francisco Gentil, 1099-023 Lisboa, Portugal * Correspondence: [email protected] Abstract: The vast array of metabolic adaptations that cancer cells are capable of assuming, not Citation: Esperança-Martins, M.; only support their biosynthetic activity, but also fulfill their bioenergetic demands and keep their Fernandes, I.; Soares do Brito, J.; intracellular reduction–oxidation (redox) balance. Spotlight has recently been placed on the en- Macedo, D.; Vasques, H.; Serafim, T.; ergy metabolism reprogramming strategies employed by cancer cells to proliferate. -
Oncotarget-05-764.Pdf
Open Research Online The Open University’s repository of research publications and other research outputs Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer Journal Item How to cite: Crea, Francesco; Watahiki, Akira; Quagliata, Luca; Xue, Hui; Pikor, Larissa; Parolia, Abhijit; Wang, Yuwei; Lin, Dong; Lam, Wan L.; Farrar, William L.; Isogai, Takao; Morant, Rudolf; Castori-Eppenberger, Serenella; Chi, Kim N.; Wang, Yuzhuo and Helgason, Cheryl D. (2014). Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer. Oncotarget, 5(3) pp. 764–774. For guidance on citations see FAQs. c 2014 The Authors https://creativecommons.org/licenses/by/4.0/ Version: Version of Record Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.18632/oncotarget.1769 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk www.impactjournals.com/oncotarget/ Oncotarget, Vol. 5, No. 3 Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer Francesco Crea1, Akira Watahiki1,2, Luca Quagliata3, Hui Xue1, Larissa Pikor4, Abhijit Parolia1,5, Yuwei Wang1, Dong Lin1,2, Wan L. Lam4, William L. Farrar6, Takao Isogai7, Rudolf Morant8, Serenella Castori-Eppenberger3, Kim N. Chi2,9, Yuzhuo Wang1,2, and Cheryl D. Helgason1 1 Experimental Therapeutics, BC Cancer Agency Cancer Research Centre, Vancouver BC, Canada. -
Hallmarks of Cancer: an Organizing Principle for Cancer Medicine
Health Library | Content http://oncology.lwwhealthlibrary.com/content.aspx?section... Chapter 2: Hallmarks of Cancer: An Organizing Principle for Cancer Medicine Douglas Hanahan, Robert A. Weinberg Introduction The hallmarks of cancer comprise eight biologic capabilities acquired by incipient cancer cells during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, activating invasion and metastasis, reprogramming energy metabolism, and evading immune destruction. Facilitating the acquisition of these hallmark capabilities are genome instability, which enables mutational alteration of hallmark-enabling genes, and immune inflammation, which fosters the acquisition of multiple hallmark functions. In addition to cancer cells, tumors exhibit another dimension of complexity: They contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the tumor microenvironment. Recognition of the widespread applicability of these concepts will increasingly influence the development of new means to treat human cancer. At the beginning of the new millennium, we proposed that six hallmarks of cancer embody an organizing principle that provides a logical framework for understanding the remarkable diversity of neoplastic diseases.[1] Implicit in our discussion was the notion that, as normal cells evolve progressively to a neoplastic state, they acquire a succession of these hallmark capabilities, and that the multistep process of human tumor pathogenesis can be rationalized by the need of incipient cancer cells to acquire the diverse traits that in aggregate enable them to become tumorigenic and, ultimately, malignant. -
Causes and Consequences of Increased Glucose Metabolism of Cancers
Causes and Consequences of Increased Glucose Metabolism of Cancers Robert J. Gillies, Ian Robey, and Robert A. Gatenby University of Arizona, Tucson, Arizona does not appear to be a significant adaptive advantage of using In this review we examine the mechanisms (causes) underlying glycolysis when oxygen is present (the Warburg effect). Yet, the increased glucose consumption observed in tumors within its prevalence in the overwhelming majority of metastatic a teleological context (consequences). In other words, we will tumors is compelling evidence that aerobic glycolysis plays a ask not only ‘‘How do cancers have high glycolysis?’’ but also, very significant role in promoting tumor development. ‘‘Why?’’ We believe that the insights gained from answering the latter question support the conclusion that elevated glucose To address this, the evolutionary dynamics of carcinogen- consumption is a necessary component of carcinogenesis. esis have been modeled using several mathematic methods, Specifically we propose that glycolysis is elevated because it including information theory, evolutionary game theory, produces acid, which provides an evolutionary advantage to reaction–diffusion models, and modified cellular automata cancer cells vis-a-vis` normal parenchyma into which they invade. (2–12). Insights from these models combined with modern Key Words: cancer; glucose; metabolism; carcinogenesis; imaging, what we have termed ‘‘imag(in)ing,’’ have demon- acid-base; somatic evolution strated that hypoxia and acidosis develop inevitably in the J Nucl Med 2008; 49:24S–42S microenvironment of premalignant epithelial tumors, such as DOI: 10.2967/jnumed.107.047258 ductal carcinoma in situ (DCIS). This results from aberrant proliferation that carries cells away from their underlying blood supply, which remains on the opposite side of an in- tact basement membrane (BM). -
Novel Long Non-Coding Rnas Are Specific Diagnostic and Prognostic Markers for Prostate Cancer
www.impactjournals.com/oncotarget/ Oncotarget, Vol. 6, No.6 Novel long non-coding RNAs are specific diagnostic and prognostic markers for prostate cancer René Böttcher1,3, A. Marije Hoogland2, Natasja Dits1, Esther I. Verhoef2, Charlotte Kweldam2, Piotr Waranecki1, Chris H. Bangma1, Geert J.L.H. van Leenders2, Guido Jenster1 1Dept. of Urology, Erasmus MC, Rotterdam, The Netherlands 2Dept. of Pathology, Erasmus MC, Rotterdam, The Netherlands 3Dept. of Bioinformatics, Technical University of Applied Sciences Wildau, Wildau, Germany Correspondence to: Guido Jenster, e-mail: [email protected] Keywords: Long non-coding RNA, prostate cancer, in situ hybridization, exon array, biomarkers Received: August 22, 2014 Accepted: December 08, 2014 Published: February 17, 2015 ABSTRACT Current prostate cancer (PCa) biomarkers such as PSA are not optimal in distinguishing cancer from benign prostate diseases and predicting disease outcome. To discover additional biomarkers, we investigated PCa-specific expression of novel unannotated transcripts. Using the unique probe design of Affymetrix Human Exon Arrays, we identified 334 candidates (EPCATs), of which 15 were validated by RT-PCR. Combined into a diagnostic panel, 11 EPCATs classified 80% of PCa samples correctly, while maintaining 100% specificity. High specificity was confirmed by in situ hybridization for EPCAT4R966 and EPCAT2F176 (SChLAP1) on extensive tissue microarrays. Besides being diagnostic, EPCAT2F176 and EPCAT4R966 showed significant association with pT-stage and were present in PIN lesions. We also found EPCAT2F176 and EPCAT2R709 to be associated with development of metastases and PCa-related death, and EPCAT2F176 to be enriched in lymph node metastases. Functional significance of expression of 9 EPCATs was investigated by siRNA transfection, revealing that knockdown of 5 different EPCATs impaired growth of LNCaP and 22RV1 PCa cells. -
Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications
Stem Cell Rev and Rep DOI 10.1007/s12015-016-9662-8 Detailed Characterization of Human Induced Pluripotent Stem Cells Manufactured for Therapeutic Applications Behnam Ahmadian Baghbaderani 1 & Adhikarla Syama2 & Renuka Sivapatham3 & Ying Pei4 & Odity Mukherjee2 & Thomas Fellner1 & Xianmin Zeng3,4 & Mahendra S. Rao5,6 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract We have recently described manufacturing of hu- help determine which set of tests will be most useful in mon- man induced pluripotent stem cells (iPSC) master cell banks itoring the cells and establishing criteria for discarding a line. (MCB) generated by a clinically compliant process using cord blood as a starting material (Baghbaderani et al. in Stem Cell Keywords Induced pluripotent stem cells . Embryonic stem Reports, 5(4), 647–659, 2015). In this manuscript, we de- cells . Manufacturing . cGMP . Consent . Markers scribe the detailed characterization of the two iPSC clones generated using this process, including whole genome se- quencing (WGS), microarray, and comparative genomic hy- Introduction bridization (aCGH) single nucleotide polymorphism (SNP) analysis. We compare their profiles with a proposed calibra- Induced pluripotent stem cells (iPSCs) are akin to embryonic tion material and with a reporter subclone and lines made by a stem cells (ESC) [2] in their developmental potential, but dif- similar process from different donors. We believe that iPSCs fer from ESC in the starting cell used and the requirement of a are likely to be used to make multiple clinical products. We set of proteins to induce pluripotency [3]. Although function- further believe that the lines used as input material will be used ally identical, iPSCs may differ from ESC in subtle ways, at different sites and, given their immortal status, will be used including in their epigenetic profile, exposure to the environ- for many years or even decades. -
The Emergence of Lncrnas in Cancer Biology
Review The Emergence of lncRNAs in Cancer Biology John R. Prensner1,2 and Arul M. Chinnaiyan1–5 AbstAt R c The discovery of numerous noncoding RNA (ncRNA) transcripts in species from yeast to mammals has dramatically altered our understanding of cell biology, especially the biology of diseases such as cancer. In humans, the identification of abundant long ncRNA (lncRNA) >200 bp has catalyzed their characterization as critical components of cancer biology. Recently, roles for lncRNAs as drivers of tumor suppressive and oncogenic functions have appeared in prevalent cancer types, such as breast and prostate cancer. In this review, we highlight the emerging impact of ncRNAs in cancer research, with a particular focus on the mechanisms and functions of lncRNAs. Significance: lncRNAs represent the leading edge of cancer research. Their identity, function, and dysregulation in cancer are only beginning to be understood, and recent data suggest that they may serve as master drivers of carcinogenesis. Increased research on these RNAs will lead to a greater un- derstanding of cancer cell function and may lead to novel clinical applications in oncology. Cancer Discovery; 1(5):391–407. ©2011 AACR. intRoduction transcription reflects true biology or by-products of a leaky transcriptional system. Encompassed within these studies are A central question in biology has been, Which regions of the broad questions of what constitutes a human gene, what the human genome constitute its functional elements: those distinguishes a gene from a region that is simply transcribed, expressed as genes or those serving as regulatory elements? and how we interpret the biologic meaning of transcription.