CIÊNCIAS DO MAR: Dos Oceanos Do Mundo Ao Nordeste Do Brasil

Total Page:16

File Type:pdf, Size:1020Kb

CIÊNCIAS DO MAR: Dos Oceanos Do Mundo Ao Nordeste Do Brasil | 1 CIÊNCIAS DO MAR: dos oceanos do mundo ao Nordeste do Brasil Volume 1 Oceano, Clima, Ambientes e Conservação Danielle de Lima Viana Jorge Eduardo Lins Oliveira Fábio Hissa Vieira Hazin Marco Antonio Carvalho de Souza Recife, 2021 Via Design Publicações 2 | Ciências do Mar: dos oceanos do mundo ao Nordeste do Brasil Editores Parecer e revisão por pares Luis Henrique Poersch Danielle de Lima Viana Os textos que compõem essa obra foram Universidade Federal do Rio Grande Doutora em Oceanografia na submetidos à avaliação de um Conselho Revisor, Marcelo Roberto Souto de Melo Universidade Federal de Pernambuco bem como revisados por pares, sendo indicados Universidade de São Paulo para publicação. Pesquisadora do Departamento de Pesca Paulo Guilherme Vasconcelos de Oliveira e Aquicultura da Universidade Federal Universidade Federal Rural de Pernambuco Rural de Pernambuco Conselho revisor [email protected] Danielle de Lima Viana Pollyana Christine Gomes Roque Universidade Federal Rural de Pernambuco Universidade Federal Rural de Pernambuco Jorge Eduardo Lins Oliveira David Mendes Roberto Fioravanti Carelli Fontes Doutor em Biologia Marinha na Universidade Federal do Rio Grande do Norte Universidade Estadual Paulista Université Marie et Pierre Curie Ronaldo Olivera Cavalli -Paris 6-França Fábio Hissa Vieira Hazin Universidade Federal Rural de Pernambuco Universidade Federal do Rio Grande Professor Titular do Departamento de Oceanografia e Limnologia da Fabrício Berton Zanchi Sérgio de Magalhães Rezende Universidade Federal do Rio Grande Universidade Federal do Sul da Bahia Centro Nacional de Pesquisa e Conservação do Norte da Biodiversidade Fernando Manuel Raposo Morgado Marinha do Nordeste-CEPENE [email protected] Universidade de Aveiro - Portugal Teodoro Vaske Junior Francisco Sekiguchi Buchmann Universidade Estadual Paulista Julio de Fábio Hissa Vieira Hazin Universidade Estadual Paulista Doutor em em Marine Science and Mesquita Filho Technology/Fisheries Oceanography, na Fúlvio Aurélio de Morais Freire Vanildo Souza de Oliveira Tokyo University of Marine Science and Universidade Federal do Rio Grande do Norte Universidade Federal Rural de Pernambuco Technology George Satander Sá Freire Professor Titular do Departamento de Universidade Federal do Ceará Projeto gráfico e diagramação Pesca e Aquicultura da Universidade Via Design Publicações Federal Rural de Pernambuco Helena Lopes Galasso Université de Montpellier, Ecole Doctorale GAIA [email protected] Foto capa Igor da Mata Oliveira Renato Albuquerque Marco Antonio Carvalho de Souza Universidade Federal de Alagoas Capitão de Fragata da Marinha do Brasil João Paulo Machado Torres Todo o conteúdo científico apresentado Secretaria da Comissão Interministerial Universidade Federal do Rio de Janeiro nos capítulos dessa obra são de exclusiva para os Recursos do Mar-SECIRM responsabilidade dos respectivos autores, Jorge Eduardo Lins Oliveira incluindo as informações referentes aos Coordenador do Programa PROILHAS Universidade Federal do Rio Grande do Norte créditos das fotos e imagens, excetuando-se [email protected] as imagens que abrem os capítulos. Dados Internacionais de Catalogação na Publicação (CIP) (Câmara Brasileira do Livro, SP, Brasil) Ciências do mar : dos oceanos do mundo ao Nordeste do Brasil : oceano, clima, ambientes e conservação / [editores] Danielle de Lima Viana ... [et al.]. -- 1. ed. -- Olinda, PE : Via Design Publicações, 2021. Outros editores : Jorge Eduardo Lins Oliveira, Fábio Hissa Vieira Hazin, Marco Antonio Carvalho de Souza. ISBN 978-65-995372-1-9 1. Aquicultura 2. Ciências 3. Ecologia 4. Mares 5. Oceanos 6. Pesca I. Oliveira, Jorge Eduardo Lins. II. Hazin, Fábio Hissa Vieira. III. Souza, Marco Antonio Carvalho de. 21-70616 CDD-551.46 Índices para catálogo sistemático: 1. Mares e oceanos : Oceanografia 551.46 Aline Graziele Benitez - Bibliotecária - CRB-1/3129 Prefácio 4 8 Salinas: ambientes extremos no Nordeste Apresentação 6 do Brasil 218 A Amazônia Azul: a nova fronteira Brasileira 8 Marcos Rogério CAMARA Delta do Parnaíba: ecologia e 1 Ciências do mar: origem, conceitos e 9 fundamentos 22 conservação 230 Jorge Eduardo LINS OLIVEIRA Cezar A. F. FERNANDES José GARCIA JUNIOR Francisca Edna de Andrade CUNHA Pollyana Christine Gomes ROQUE Danielle de Lima VIANA 10 Ambientes recifais da região Nordeste: um olhar para a influência da atividade humana240 2 Introdução à oceanografia química52 Daniel Brandt GALVÃO Manuel de Jesus FLORES MONTES Sara de Castro LOEBENS Eliete ZANARDI-LAMARDO Daniele VILA-NOVA Gilvan Takeshi YOGUI Daniele Laura Bridi MALLMANN Ananda Marieta Silva TELES 3 Oceanografia física do Atlântico tropical: Beatrice Padovani FERREIRA processos hidrotermodinâmicos 74 11 Mar profundo: registro da história e Carlos Alessandre Domingos LENTINI Marcus André SILVA organismos do Nordeste do Brasil 268 Dóris Regina Aires VELEDA Pollyana Christine Gomes ROQUE Moacyr Cunha de ARAÚJO Filho Alessandra Maria Advíncula PIRES Marcio Machado CINTRA Rômulo Costa Pires FERREIRA Humberto Lázaro Varona GONZÁLEZ Diogo Martins NUNES Carlos Eduardo Peres TEIXEIRA Ralf Tarciso Silva CORDEIRO Leonardo Vieira Bruto da COSTA Jorge Eduardo LINS OLIVEIRA Luís Felipe Ferreira de MENDONÇA Júlia Martins de ARAÚJO 12 Gestão de áreas costeiras e marinhas protegidas no Nordeste do Brasil 298 4 Interações energéticas oceano-atmosfera96 Ilka Branco NUNES David MENDES Natalia Alves BEZERRA Monica Cristina Damião MENDES Carolina Neves SOUZA Marcio Machado CINTRA Diogo Martins NUNES Fábio Hissa Vieira HAZIN 5 Elementos de meteorologia física e fenômenos atmosféricos 118 13 O panorama da arqueologia subaquática Igor DA MATA-OLIVEIRA no Nordeste do Brasil 326 Fabrício Berton ZANCHI Carlos Celestino RIOS E SOUZA Natalia Pereira de CAMPOS Marilia Perazzo Valadares do AMARAL 6 Princípios básicos do sensoriamento remoto e 14 Poluição aquática340 suas aplicações na oceanografia e na pesca150 Maria Christina B. de ARAÚJO Antônio Geraldo FERREIRA Monica Ferreira da COSTA Paulo TRAVASSOS Jacqueline S. SILVA-CAVALCANTI Nilson SANT’ANNA JR 7 Geologia, geodinâmica e a formação dos oceanos 188 Helenice VITAL 4 | Ciências do Mar: dos oceanos do mundo ao Nordeste do Brasil Drausio Veras Drausio PREFÁCIO Ciências do Mar: dos oceanos do mundo ao Nordeste do Brasil | 5 CIÊNCIAS DO MAR: BELEZA DE SABER Significa especial privilégio para o Reitor da Não posso deixar de registrar meu entusiasmo Universidade Federal do Rio Grande do Norte diante da riqueza do conteúdo e da beleza da apresentar um livro como este “Ciências do Mar: obra, tão rica que exigiu uma edição em dois dos oceanos do mundo ao Nordeste do Brasil”. volumes para conforto e deleite do leitor. Por ela é possível comprovar que ciência e beleza, Concebido como material didático para longe de se excluírem, podem e devem convergir pesquisadores e estudantes das áreas das no esforço de difundir conhecimento com Ciências Biológicas, Engenharia de Pesca e de inspiração. Aquicultura, Ecologia, Oceanografia e Geologia, dentre outras, reflete um notável esforço É o que comprova este manual com seguras acadêmico, ao reunir mais de 50 pesquisadores orientações para iniciar uma bela viagem de 17 universidades e institutos de pesquisa. científica. Para torná-lo realidade, houve decisivo apoio Natal, julho de 2021. do Programa de Pesquisas Científicas nas Ilhas Oceânicas (PROILHAS), por meio da integração SECIRM – UFRN – FUNPEC. José Daniel Diniz Melo Reitor da Universidade Federal do Rio Grande do Norte O resultado é esse: dois belos volumes disponibilizando informações preciosas da realidade da região Nordeste do Brasil, advindas de pesquisadores que atuam na área das Ciências do Mar, incluindo o Programa de Pesquisas Científicas no Arquipélago de São Pedro e São Paulo (PROARQUIPELAGO), coordenado pela SECIRM / MARINHA DO BRASIL. 6 | Ciências do Mar: dos oceanos do mundo ao Nordeste do Brasil APRESENTAÇÃO Após a realização de várias conferências e para o Desenvolvimento Sustentável", a ser fóruns internacionais realizados na busca de implementada no período de 2021 a 2030. se alcançar o Desenvolvimento Sustentável, foi implementado em 2005 pela ONU, o Plano O Brasil, com sua extensa área marítima, Internacional denominado “Década da Educação denominada Amazônia Azul, que equivale a 67% para o Desenvolvimento Sustentável - EDS" (2005 de todo o território terrestre e que desempenha a 2014). Este Plano tinha como objetivo maior o um papel fundamental no desenvolvimento desenvolvimento da educação como vetor para do país, por ser a principal via de transporte a promoção de valores, atitudes, capacidades e marítimo, por seus recursos naturais, sua imensa comportamentos, tendo o combate à degradação biodiversidade e suas riquezas minerais, se insere ambiental como um dos seus principais alvos. na Agenda 2030 por meio do X Plano Setorial Concluída a EDS em 2014 sem que resultados para os Recursos do Mar (X PSRM), desenvolvido significativos tenham sido alcançados e no no âmbito da Comissão Interministerial para intuito de dar continuidade às ações já iniciadas, os Recursos do Mar (CIRM), cuja aprovação a ONU estabeleceu em 2015, a “Agenda para o foi publicada no Decreto nº 10.544, de 16 de Desenvolvimento Sustentável”, na qual estão novembro de 2020. O referido Plano tem como previstos 17 Objetivos de Desenvolvimento propósito sistematizar as atividades de pesquisa Sustentável (ODS), que devem ser alcançados por para atender à demanda de informações todos os países até 2030. sobre os recursos naturais e energéticos das Águas Jurisdicionais
Recommended publications
  • The Decadal Mean Ocean Circulation and Sverdrup Balance
    Journal of Marine Research, 69, 417–434, 2011 The decadal mean ocean circulation and Sverdrup balance by Carl Wunsch1 ABSTRACT Elementary Sverdrup balance is tested in the context of the time-average of a 16-year duration time-varying ocean circulation estimate employing the great majority of global-scale data available between 1992 and 2007. The time-average circulation exhibits all of the conventional major features as depicted both through its absolute surface topography and vertically integrated transport stream function. Important small-scale features of the time average only become apparent, however, in the time-average vertical velocity, whether near the surface or in the abyss. In testing Sverdrup balance, the requirement is made that there should be a mid-water column depth where the magnitude of the vertical velocity is less than 10−8 m/s (about 0.3 m/year displacement). The requirement is not met in the Southern Ocean or high northern latitudes. Over much of the subtropical and lower latitude ocean, Sverdrup balance appears to provide a quantitatively useful estimate of the meridional transport (about 40% of the oceanic area). Application to computing the zonal component, by integration from the eastern boundary is, however, precluded in many places by failure of the local balances close to the coasts. Failure of Sverdrup balance at high northern latitudes is consistent with the expected much longer time to achieve dynamic equilibrium there, and the action of other forces, and has important consequences for ongoing ocean monitoring efforts. 1. Introduction The very elegant and powerful theories of the time-mean ocean circulation, treated as a laminar flow, remain of intense interest, despite the widespread recognition that the oceanic kinetic energy is dominated by the time variability.
    [Show full text]
  • (Potential) Vorticity: the Swirling Motion of Geophysical Fluids
    (Potential) vorticity: the swirling motion of geophysical fluids Vortices occur abundantly in both atmosphere and oceans and on all scales. The leaves, chasing each other in autumn, are driven by vortices. The wake of boats and brides form strings of vortices in the water. On the global scale we all know the rotating nature of tropical cyclones and depressions in the atmosphere, and the gyres constituting the large-scale wind driven ocean circulation. To understand the role of vortices in geophysical fluids, vorticity and, in particular, potential vorticity are key quantities of the flow. In a 3D flow, vorticity is a 3D vector field with as complicated dynamics as the flow itself. In this lecture, we focus on 2D flow, so that vorticity reduces to a scalar field. More importantly, after including Earth rotation a fairly simple equation for planar geostrophic fluids arises which can explain many characteristics of the atmosphere and ocean circulation. In the lecture, we first will derive the vorticity equation and discuss the various terms. Next, we define the various vorticity related quantities: relative, planetary, absolute and potential vorticity. Using the shallow water equations, we derive the potential vorticity equation. In the final part of the lecture we discuss several applications of this equation of geophysical vortices and geophysical flow. The preparation material includes - Lecture slides - Chapter 12 of Stewart (http://www.colorado.edu/oclab/sites/default/files/attached- files/stewart_textbook.pdf), of which only sections 12.1-12.3 are discussed today. Willem Jan van de Berg Chapter 12 Vorticity in the Ocean Most of the fluid flows with which we are familiar, from bathtubs to swimming pools, are not rotating, or they are rotating so slowly that rotation is not im- portant except maybe at the drain of a bathtub as water is let out.
    [Show full text]
  • Arxiv:1809.01376V1 [Astro-Ph.EP] 5 Sep 2018
    Draft version March 9, 2021 Typeset using LATEX preprint2 style in AASTeX61 IDEALIZED WIND-DRIVEN OCEAN CIRCULATIONS ON EXOPLANETS Weiwen Ji,1 Ru Chen,2 and Jun Yang1 1Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, 100871, Beijing, China 2University of California, 92521, Los Angeles, USA ABSTRACT Motivated by the important role of the ocean in the Earth climate system, here we investigate possible scenarios of ocean circulations on exoplanets using a one-layer shallow water ocean model. Specifically, we investigate how planetary rotation rate, wind stress, fluid eddy viscosity and land structure (a closed basin vs. a reentrant channel) influence the pattern and strength of wind-driven ocean circulations. The meridional variation of the Coriolis force, arising from planetary rotation and the spheric shape of the planets, induces the western intensification of ocean circulations. Our simulations confirm that in a closed basin, changes of other factors contribute to only enhancing or weakening the ocean circulations (e.g., as wind stress decreases or fluid eddy viscosity increases, the ocean circulations weaken, and vice versa). In a reentrant channel, just as the Southern Ocean region on the Earth, the ocean pattern is characterized by zonal flows. In the quasi-linear case, the sensitivity of ocean circulations characteristics to these parameters is also interpreted using simple analytical models. This study is the preliminary step for exploring the possible ocean circulations on exoplanets, future work with multi-layer ocean models and fully coupled ocean-atmosphere models are required for studying exoplanetary climates. Keywords: astrobiology | planets and satellites: oceans | planets and satellites: terrestrial planets arXiv:1809.01376v1 [astro-ph.EP] 5 Sep 2018 Corresponding author: Jun Yang [email protected] 2 Ji, Chen and Yang 1.
    [Show full text]
  • Geophysical Fluid Dynamics, Nonautonomous Dynamical Systems, and the Climate Sciences
    Geophysical Fluid Dynamics, Nonautonomous Dynamical Systems, and the Climate Sciences Michael Ghil and Eric Simonnet Abstract This contribution introduces the dynamics of shallow and rotating flows that characterizes large-scale motions of the atmosphere and oceans. It then focuses on an important aspect of climate dynamics on interannual and interdecadal scales, namely the wind-driven ocean circulation. Studying the variability of this circulation and slow changes therein is treated as an application of the theory of nonautonomous dynamical systems. The contribution concludes by discussing the relevance of these mathematical concepts and methods for the highly topical issues of climate change and climate sensitivity. Michael Ghil Ecole Normale Superieure´ and PSL Research University, Paris, FRANCE, and University of California, Los Angeles, USA, e-mail: [email protected] Eric Simonnet Institut de Physique de Nice, CNRS & Universite´ Coteˆ d’Azur, Nice Sophia-Antipolis, FRANCE, e-mail: [email protected] 1 Chapter 1 Effects of Rotation The first two chapters of this contribution are dedicated to an introductory review of the effects of rotation and shallowness om large-scale planetary flows. The theory of such flows is commonly designated as geophysical fluid dynamics (GFD), and it applies to both atmospheric and oceanic flows, on Earth as well as on other planets. GFD is now covered, at various levels and to various extents, by several books [36, 60, 72, 107, 120, 134, 164]. The virtue, if any, of this presentation is its brevity and, hopefully, clarity. It fol- lows most closely, and updates, Chapters 1 and 2 in [60]. The intended audience in- cludes the increasing number of mathematicians, physicists and statisticians that are becoming interested in the climate sciences, as well as climate scientists from less traditional areas — such as ecology, glaciology, hydrology, and remote sensing — who wish to acquaint themselves with the large-scale dynamics of the atmosphere and oceans.
    [Show full text]
  • Evaluation of Subtropical North Atlantic Ocean Circulation in CMIP5 Models Against the Observational Array at 26.5°N and Its Changes Under Continued Warming
    1DECEMBER 2018 B E A D L I N G E T A L . 9697 Evaluation of Subtropical North Atlantic Ocean Circulation in CMIP5 Models against the Observational Array at 26.5°N and Its Changes under Continued Warming R. L. BEADLING,J.L.RUSSELL,R.J.STOUFFER, AND P. J. GOODMAN Department of Geosciences, The University of Arizona, Tucson, Arizona (Manuscript received 12 December 2017, in final form 16 September 2018) ABSTRACT Observationally based metrics derived from the Rapid Climate Change (RAPID) array are used to assess the large-scale ocean circulation in the subtropical North Atlantic simulated in a suite of fully coupled climate models that contributed to phase 5 of the Coupled Model Intercomparison Project (CMIP5). The modeled circulation at 26.58N is decomposed into four components similar to those RAPID observes to estimate the Atlantic meridional overturning circulation (AMOC): the northward-flowing western boundary current (WBC), the southward transport in the upper midocean, the near-surface Ekman transport, and the south- ward deep ocean transport. The decadal-mean AMOC and the transports associated with its flow are captured well by CMIP5 models at the start of the twenty-first century. By the end of the century, under representative concentration pathway 8.5 (RCP8.5), averaged across models, the northward transport of waters in the upper 2 WBC is projected to weaken by 7.6 Sv (1 Sv [ 106 m3 s 1; 221%). This reduced northward flow is a combined result of a reduction in the subtropical gyre return flow in the upper ocean (22.9 Sv; 212%) and a weakened net southward transport in the deep ocean (24.4 Sv; 228%) corresponding to the weakened AMOC.
    [Show full text]
  • Seasonal to Interannual Variations of the Western Boundary Current of The
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111, C04013, doi:10.1029/2005JC003080, 2006 Seasonal to interannual variations of the western boundary current of the subarctic North Pacific by a combination of the altimeter and tide gauge sea levels Osamu Isoguchi1 and Hiroshi Kawamura1 Received 31 May 2005; revised 30 November 2005; accepted 20 January 2006; published 28 April 2006. [1] Seasonal to interannual variations of the East Kamchatka Current (EKC) and the Oyashio are examined by focusing on their barotropic response to wind forcing by a combined use of altimeter-derived and tide gauge sea levels. An empirical orthogonal function (EOF) analysis is performed on the 9-year altimeter sea level maps with thermosteric signals removed. A second EOF (EOF2) shows a spin-up and spin-down of the subarctic gyres, and its temporal variation is almost accounted for by the time- dependent Sverdrup balance. Tide gauge sea levels at Petropavlovsk-Kamchatsky (PK) agree with EOF2 and the Sverdrup transports in terms of not only the seasonal variation but also its year-to-year variability in winter when the subarctic gyre is spun up most. We also detect two types of EKC/Oyashio variations from the altimeter data: drifting velocities of sea level disturbances and geostrophic velocity anomalies. These two EKC/ Oyashio temporal variations are also accounted for by the Sverdrup balance and agree with the PK sea levels and EOF2. The results imply that the PK sea levels can be a good representative of the subarctic gyre and EKC/Oyashio variations. On the basis of this relation, interannual variations during winter are discussed.
    [Show full text]
  • 0 Ekman Transport and Ekman Pumping in a Typical Ocean Basin
    Lecture 8 Lecture 1 Wind-driven gyres Ekman transport and Ekman pumping in a typical ocean basin. VEk wEk > 0 VEk wEk < 0 VEk 1 8.1 Vorticity and circulation The vorticity of a parcel is a measure of its spin about its axis. Imagine a closed contour encircling an dl ocean eddy. We define the circulation around the contour as u By convention, an anticlockwise circulation is defined as positive. e.g. for a cylindrically symmetric eddy, the circulation around a r streamline at radius r is: u e.g. consider a rectangular path in a fluid whose velocity varies spatially. The circulation is: Note that C depends on the size of the path. It is therefore useful to define the vorticity (ξ) as the circulation per unit area: Where flow fields are continuous: 2 Vorticity is directly related to the horizontal shear of a flow field: × × y x 8.2 Kelvin’s Circulation Theorem In the absence of viscosity and density variations, the circulation is conserved following a fluid parcel. This means we can think of vortex tubes: e.g. smoke rings are advected by the flow, conserving their circulation. 3 Divergence of the flow in a direction parallel to the axis of spin leads to an increase in the vorticity: ξfinal h0 hfinal ξ0 Stretching → vorticity increase The bath plug vortex - water columns are stretched as they exit through the plug hole, increasing their vorticity! Does this have anything to do with which hemisphere you are in?! 4 8.3 Absolute vorticity The planet’s rotation also introduces local spin.
    [Show full text]
  • A Global Analysis of Sverdrup Balance Using Absolute Geostrophic Velocities from Argo
    APRIL 2014 G R A Y A N D R I S E R 1213 A Global Analysis of Sverdrup Balance Using Absolute Geostrophic Velocities from Argo ALISON R. GRAY AND STEPHEN C. RISER School of Oceanography, University of Washington, Seattle, Washington (Manuscript received 16 October 2012, in final form 7 January 2014) ABSTRACT Using observations from the Argo array of profiling floats, the large-scale circulation of the upper 2000 decibars (db) of the global ocean is computed for the period from December 2004 to November 2010. The geostrophic velocity relative to a reference level of 900 db is estimated from temperature and salinity profiles, and the absolute geostrophic velocity at the reference level is estimated from the trajectory data provided by the floats. Combining the two gives the absolute geostrophic velocity on 29 pressure surfaces spanning the upper 2000 db of the global ocean. These velocities, together with satellite observations of wind stress, are then used to evaluate Sverdrup balance, the simple canonical theory relating meridional geostrophic transport to wind forcing. Observed transports agree well with predictions based on the wind field over large areas, primarily in the tropics and subtropics. Elsewhere, especially at higher latitudes and in boundary regions, Sverdrup balance does not accurately describe meridional geostrophic transports, possibly due to the in- creased importance of the barotropic flow, nonlinear dynamics, and topographic influence. Thus, while it provides an effective framework for understanding the zero-order wind-driven circulation in much of the global ocean, Sverdrup balance should not be regarded as axiomatic. 1. Introduction and the sheer magnitude of the world’s oceans.
    [Show full text]
  • Oceanography: High Frequency ..24 Session 1.1: Oceanography: High Frequency..15 Constraining the Mesoscale Field
    15 Years of Progress in Radar Altimetry Symposium Venice Lido, Italy, 13-18 March 2006 Abstract Book Table of Content (in order of appearance) Session 0: Thematic Keynote Presentations..... 12 Overview of the Improvements Made on the Empirical Altimetry: Past, Present, and Future......................................12 Determination of the Sea State Bias Correction................... 19 Carl Wunsch..................................................................... 12 Sylvie Labroue, Philippe Gaspar, Joël Dorandeu, Françoise Ogor, Mesoscale Eddy Dynamics observed with 15 years of altimetric and Ouan Zan Zanife.......................................................19 data...........................................................................................12 Calibration of ERS-2, TOPEX/Poseidon and Jason-1 Microwave Rosemary Morrow............................................................. 12 Radiometers using GPS and Cold Ocean Brightness How satellites have improved our knowledge of planetary waves Temperatures .......................................................................... 19 Stuart Edwards and Philip Moore ......................................19 in the oceans...........................................................................12 Paolo Cipollini, Peter G. Challenor, David Cromwell, Ian The Altimetric Wet Tropospheric Correction: Progress since the S. Robinson, and Graham D. Quartly............................... 12 ERS-1 mission ........................................................................ 20 The
    [Show full text]
  • CORRESPONDENCE Comments on ''A Global Analysis of Sverdrup Balance Using Absolute Geostrophic Velocities from Argo''
    1446 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 45 CORRESPONDENCE Comments on ‘‘A Global Analysis of Sverdrup Balance Using Absolute Geostrophic Velocities from Argo’’ ALEXANDER POLONSKY Marine Hydrophysical Institute, Sevastopol, Ukraine (Manuscript received 26 June 2014, in final form 2 December 2014) The paper ‘‘A Global Analysis of Sverdrup Balance large-scale currents in the World Ocean. I am not ab- Using Absolute Geostrophic Velocities from Argo’’ is solutely sure that all his arguments are axiomatic. devoted to extended analysis of the correctness of classic However, I believe that they should be taken into ac- Sverdrup balance for steady meridional circulation in count when Sverdrup balance and large-scale oceanic dy- the World Ocean using absolute geostrophic velocities namics were analyzed in section 5 (Results and assessed from Argo and wind stress obtained from the discussion) of Gray and Riser (2014). satellite scatterometer (QuikSCAT). The authors tried Gray and Riser (2014) considered h as a function of x to give a comprehensive discussion of the problem. I was and y and mentioned the possibility of an absence of especially satisfied that they confirmed the robustness of such a no motion surface. At the same time they the classic theory for extended regions of the World neglected a priori the additional term in the integral Ocean and I would like to add the following comments vortex equation. This term arises if one defines Wh, Uh, to the authors’ results. and Vh. It seems to me it was worth discussing this First of all the application of classic Sverdrup theory problem in detail. For example, the authors could assess for the description of large-scale circulation in the real the magnitude of Wh 5 Uh›h/›x 1 Vh›h/›y when they World Ocean was a matter of long-term debates.
    [Show full text]
  • Fluid Dynamics of the Atmosphere and Oceans
    Fluid Dynamics of the Atmosphere and Oceans John Thuburn University of Exeter Introduction This module Fluid Dynamics of the Atmosphere and Oceans comprises 33 hours of lectures and examples classes. Outline of course content The equations of motion in a rotating frame; some conservation properties; circulation theorem; vorticity equation; potential vorticity equation. Hierarchies of approximate governing equations; balance and filtering. Shallow water equations: circulation and potential vorticity; energy and angular mo- mentum; gravity and Rossby waves; geostrophic balance; geostrophic adjustment; Rossby radius; quasigeostrophic shallow water equations; quasigeostrophic potential vorticity; Rossby waves; Kelvin waves. Boussinesq approximation; gravity waves in three dimensions; mountain waves; non- linear effects; eddy fluxes. Shallow atmosphere hydrostatic primitive equations, in different coordinate systems; conservation properties; Rossby and gravity waves. Quasigeostrophic theory in three dimensions: ageostrophic equations; quasigeostrophic potential vorticity equation; omega equation; free Rossby waves; Forced Rossby waves and the Charney Drazin theorem; eddy fluxes; surface waves on a potential temperature gradient; the Eady model of baroclinic instability. The planetary boundary layer; the Ekman spiral; Ekman pumping; Sverdrup balance. 1 1 Governing equations in vector form Du 1 + 2Ω u = p Φ; (1) Dt × −ρ∇ − ∇ ∂ρ + (ρu) = 0; (2) ∂t ∇ · DT p c + u = 0. (3) v Dt ρ∇ · 2 Governing equations in spherical polar coordi- nates Du uv tan φ uw 1 ∂p + 2Ωv sin φ + 2Ωw cos φ + = 0 (4) Dt − r r − ρr cos φ ∂λ Dv u2 tan φ vw 1 ∂p + + + 2Ωu sin φ + = 0 (5) Dt r r ρr ∂φ Dw u2 + v2 1 ∂p 2Ωu cos φ + g + = 0 (6) Dt − r − ρ ∂r ∂ρ + (ρu) = 0 (7) ∂t ∇ · DT p c + u = 0 (8) v Dt ρ∇ · where D ∂ u ∂ v ∂ ∂ + + + w (9) Dt ≡ ∂t r cos φ ∂λ r ∂φ ∂r 1 ∂u ∂(v cos φ) 1 ∂(r2w) u + + (10) ∇ · ≡ r cos φ ∂λ ∂φ r2 ∂r 2 3 Hierarchies of approximate equation sets (Quasi-)hydrostatic: Neglect Dw/Dt term.
    [Show full text]
  • On the Validity of the Sverdrup Balance in the Atlantic NECC
    ARTICLE IN PRESS Deep-Sea Research I 52 (2005) 179–188 www.elsevier.com/locate/dsr A note on the validity ofthe Sverdrup balance in the Atlantic North Equatorial Countercurrent Ariane Verdya,Ã, Markus Jochumb aMIT / WHOI Joint Program in Oceanography, Massachusetts Institute of Technology, Cambridge MA 02139, USA bDepartment of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge MA 02139, USA Received 9 September 2003; received in revised form 10 May 2004; accepted 18 May 2004 Abstract An ocean general circulation model ofthe tropical Atlantic Ocean is used to study the vertically integrated vorticity equation for the annual mean flow in the Atlantic North Equatorial Countercurrent (NECC). It is found that the nonlinear terms play an important role in the vorticity budget, in the western part ofthe basin. Sverdrup balance does not hold in the region ofthe North Brazil Current retroflection, where advection ofrelative vorticity by the mean flow and by the eddies is important. In the eastern part ofthe basin, these nonlinearities are negligible and the flow appears to be in Sverdrup balance. In the model, the cut-off location occurs at 32W: The results suggest that in the western part ofthe basin, observations relying on hydrographic data neglect two important contributions to the vorticity balance: advection ofplanetary vorticity by the deep meridional flow and advection ofrelative vorticity. r 2004 Elsevier Ltd. All rights reserved. Keywords: Equatorial oceanography; Tropical Atlantic; Sverdrup balance; Vorticity 1. Introduction 1997) and it is a major path for the warm water return flow ofthe global meridional overturning The Atlantic North Equatorial Countercurrent circulation (Fratantoni et al., 2000; Jochum and (NECC) is one ofthe major Atlantic currents and Malanotte-Rizzoli, 2001).
    [Show full text]