Oceanography: High Frequency ..24 Session 1.1: Oceanography: High Frequency..15 Constraining the Mesoscale Field

Total Page:16

File Type:pdf, Size:1020Kb

Oceanography: High Frequency ..24 Session 1.1: Oceanography: High Frequency..15 Constraining the Mesoscale Field 15 Years of Progress in Radar Altimetry Symposium Venice Lido, Italy, 13-18 March 2006 Abstract Book Table of Content (in order of appearance) Session 0: Thematic Keynote Presentations..... 12 Overview of the Improvements Made on the Empirical Altimetry: Past, Present, and Future......................................12 Determination of the Sea State Bias Correction................... 19 Carl Wunsch..................................................................... 12 Sylvie Labroue, Philippe Gaspar, Joël Dorandeu, Françoise Ogor, Mesoscale Eddy Dynamics observed with 15 years of altimetric and Ouan Zan Zanife.......................................................19 data...........................................................................................12 Calibration of ERS-2, TOPEX/Poseidon and Jason-1 Microwave Rosemary Morrow............................................................. 12 Radiometers using GPS and Cold Ocean Brightness How satellites have improved our knowledge of planetary waves Temperatures .......................................................................... 19 Stuart Edwards and Philip Moore ......................................19 in the oceans...........................................................................12 Paolo Cipollini, Peter G. Challenor, David Cromwell, Ian The Altimetric Wet Tropospheric Correction: Progress since the S. Robinson, and Graham D. Quartly............................... 12 ERS-1 mission ........................................................................ 20 The Ebb and Flow of Tidal Science, and the Impact of Satellite Laurence Eymard and Estelle Obligis.................................20 Altimetry...................................................................................13 Session 2: Cryosphere..........................................21 Richard Ray and Gary Egbert .......................................... 13 Satellite radar altimetry over sea ice -from Seasat to CryoSat21 ARGO, the Integrated Approach ............................................13 Seymour Laxon.................................................................21 Dean Roemmich and John Gould.................................... 13 Mass Balances of the Greenland and Antarctic Ice Sheets from Present-day sea level rise: do we understand what we measure? Satellite Radar Altimetry ........................................................ 21 ..................................................................................................13 Jay Zwally, Anita Brenner, Helen Cornejo, and Donghui Yi21 Anny Cazenave, Alix Lombard, Steve Nerem, and Kien DoMinh 13 Combining satellite altimetry (ERS-2 and ENVISAT) with SAR 15 years of wave height data assimilation............................14 interferometry and SPOT photogrammetry for studies of Austfonna Peter Janssen .................................................................. 14 ice cap (Svalbard)................................................................... 22 Marine Geoid/Gravity/Bathymetry .........................................14 Alexei Kouraev(1,2), Benoît Legresy, and Frédérique Rémy 22 David McAdoo .................................................................. 14 Ice Sheet Topography from ERS Radar Altimetry................ 22 The New Vision of the Cryosphere Thanks to 15 Years of Jonathan Bamber .............................................................22 Altimetry Observations...........................................................14 ENVISAT radar altimeter as a sounding radar on the Amery Ice Frédérique Rémy.............................................................. 14 shelf ......................................................................................... 23 Two decades of inland water monitoring using satellite radar Pascal Lacroix, Benoît Legresy, Richard Coleman, and altimetry ...................................................................................14 Frédérique Rémy..............................................................23 Philippa A. Berry................................................................ 14 Session 1.1: Oceanography: High Frequency ..24 Session 1.1: Oceanography: High Frequency..15 Constraining the mesoscale field.......................................... 24 Progress on Dynamics and Thermodynamics in Western Gregg Jacobs, Jay Shriver, Kirk Whitmer, Ole Martin Smedstad, Boundary Currents...................................................................15 and Harley Hurlburt...........................................................24 Kathryn Kelly, LuAnne Thompson, and Suzanne Dickinson15 The Interaction Between the Mesoscale and Gyre-Scale High-resolution statistical analysis of ocean dynamics using Variabilities of the Argentine Basin....................................... 24 ungridded altimeter data and addressing intrinsic difficulties of Lee-Lueng Fu ..................................................................24 realistic oceanographic fields................................................16 Eddies and Mean Flow in the Antarctic Circumpolar Current25 Roman Glazman............................................................... 16 Sarah Gille.........................................................................25 Temporal Changes in Ocean Eddy Transports....................16 Dynamics of the Near-Uniform Basin-Wide Wind-Driven Sea Level Detlef Stammer, Carl Wunsch, and Kyozo Ueyoshi........... 16 Fluctuation of the Mediterranean Sea................................... 25 Characterizing the variability of the Eastern North Pacific in Time Ichiro Fukumori, Dimitris Menemenlis, and Tong Lee .........25 and Space................................................................................16 Recent advances on the characterization of mesoscale vortices Robin Tokmakian.............................................................. 16 from altimetric maps ............................................................... 25 Decorrelation scales of high resolution turbulent fluxes at the Jordi Isern-Fontanet, Emilio Garcia-Ladona, Jordi Font, and Antonio Turiel....................................................................25 ocean-surface and a method to fill in gaps in satellite data products ...................................................................................17 Session 5.1: Building the 15-Year Altimetric Anastasia Romanou and William B. Rossow..................... 17 Record/Calibration and validation....................27 Session 5.1: Building the 15-Year Altimetric Lessons Learned for Science Processing............................ 27 Philip Callahan ..................................................................27 Record/Calibration and validation.................... 18 Three Decades of Precision Orbit Determination Progress, 20 Years of Improvements to GEOSAT Altimetry................18 Achievements, Future Challenges and its Vital Contribution to John Lillibridge, Walter H.F. Smith, David Sandwell, Remko Scharroo, Frank Lemoine, and Nikita Zelensky..... 18 Oceanography and Climate Research.................................. 27 Sea state bias – 20 years on..................................................18 Scott Luthcke, David Rowlands, Frank Lemoine, Nikita Zelensky, Brian Beckley, Steve Klosko, and Doug Chinn ..................27 Christine Gommengingerand Meric Srokosz...................... 18 Geographically correlated errors – problem solved? ........... 28 Wolfgang Bosch................................................................28 2 15 years of improvements in ocean altimetry performance: a Anita C. Brenner, John P. DiMarzio, and H. Jay Zwally .....39 review.......................................................................................28 EKE and circulation variability in the Labrador Sea and the North Joël Dorandeu ................................................................. 28 Atlantic subpolar gyre............................................................. 40 Estimating Altimeter Drift from Tide Gauges: Past, Present and Andreas Funk, Peter Brandt, Friedrich Schott, Lars Czeschel, and Future.......................................................................................29 Carsten Eden ...................................................................40 Gary Mitchum.................................................................... 29 Session 4: Hydrology and Land Processes .......41 Session 2: Cryosphere.......................................... 30 Global analysis of multi-mission echoes over the earth’s land Hydrological networks beneath Antarctica: New signals from surface from 15 years of altimeter missions......................... 41 altimetry ...................................................................................30 Monica Dowson and Philippa A.M. Berry ...........................41 Andrew Shepherd and Duncan Wingham........................ 30 Use of Topex-Poseidon and Envisat Dual-Frequency Radar Historical understanding of ice sheet dynamics versus evolution Altimeters Data over Continental Surfaces........................... 41 of topography...........................................................................30 Fabrice Papa, Benoît Legresy, and Frédérique Rémy......41 Frédérique Rémy, Benoît Legrésy, and Laurent Testut... 30 Two decades of land altimetry – achievements and challenges 42 Arctic Ocean geoid, ice thickness and mean sea level – the Philippa A. Berry ................................................................42 ArcGICE project ......................................................................31
Recommended publications
  • Global Sea-Level Budget 1993–Present
    Earth Syst. Sci. Data, 10, 1551–1590, 2018 https://doi.org/10.5194/essd-10-1551-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Global sea-level budget 1993–present WCRP Global Sea Level Budget Group A full list of authors and their affiliations appears at the end of the paper. Correspondence: Anny Cazenave ([email protected]) Received: 13 April 2018 – Discussion started: 15 May 2018 Revised: 31 July 2018 – Accepted: 1 August 2018 – Published: 28 August 2018 Abstract. Global mean sea level is an integral of changes occurring in the climate system in response to un- forced climate variability as well as natural and anthropogenic forcing factors. Its temporal evolution allows changes (e.g., acceleration) to be detected in one or more components. Study of the sea-level budget provides constraints on missing or poorly known contributions, such as the unsurveyed deep ocean or the still uncertain land water component. In the context of the World Climate Research Programme Grand Challenge entitled “Re- gional Sea Level and Coastal Impacts”, an international effort involving the sea-level community worldwide has been recently initiated with the objective of assessing the various datasets used to estimate components of the sea-level budget during the altimetry era (1993 to present). These datasets are based on the combination of a broad range of space-based and in situ observations, model estimates, and algorithms. Evaluating their quality, quantifying uncertainties and identifying sources of discrepancies between component estimates is extremely useful for various applications in climate research.
    [Show full text]
  • SISP-4 a Metadata Convention for Processed Acoustic Data from Active Acoustic Systems
    SERIES OF ICES SURVEY PROTOCOLS SISP 4-TG-ACMETA NOVEMBER 2016 A metadata convention for processed acoustic data from active acoustic systems Version 1.10 ICES WGFAST Topic Group, TG-AcMeta International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer H. C. Andersens Boulevard 44–46 DK-1553 Copenhagen V Denmark Telephone (+45) 33 38 67 00 Telefax (+45) 33 93 42 15 www.ices.dk [email protected] Recommended format for purposes of citation: ICES. 2016. A metadata convention for processed acoustic data from active acoustic systems. Series of ICES Survey Protocols SISP 4-TG-AcMeta. 48 pp. https://doi.org/10.17895/ices.pub.7434 The material in this report may be reused for non-commercial purposes using the rec- ommended citation. ICES may only grant usage rights of information, data, images, graphs, etc. of which it has ownership. For other third-party material cited in this re- port, you must contact the original copyright holder for permission. For citation of da- tasets or use of data to be included in other databases, please refer to the latest ICES data policy on the ICES website. All extracts must be acknowledged. For other repro- duction requests please contact the General Secretary. This document is the product of an Expert Group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the view of the Council. https://doi.org/10.17895/ices.pub.7434 ISBN 978-87-7482-191-5 ISSN 2304-6252 © 2016 International Council for the Exploration of the Sea Background and Terms of reference The ICES Working Group on Fisheries Acoustics, Science and Technology (WGFAST) meeting in 2010, San Diego USA recommended the formation of a Topic Group that will bring together a group of expert acousticians to develop standardized metadata protocols for active acoustic systems.
    [Show full text]
  • The Decadal Mean Ocean Circulation and Sverdrup Balance
    Journal of Marine Research, 69, 417–434, 2011 The decadal mean ocean circulation and Sverdrup balance by Carl Wunsch1 ABSTRACT Elementary Sverdrup balance is tested in the context of the time-average of a 16-year duration time-varying ocean circulation estimate employing the great majority of global-scale data available between 1992 and 2007. The time-average circulation exhibits all of the conventional major features as depicted both through its absolute surface topography and vertically integrated transport stream function. Important small-scale features of the time average only become apparent, however, in the time-average vertical velocity, whether near the surface or in the abyss. In testing Sverdrup balance, the requirement is made that there should be a mid-water column depth where the magnitude of the vertical velocity is less than 10−8 m/s (about 0.3 m/year displacement). The requirement is not met in the Southern Ocean or high northern latitudes. Over much of the subtropical and lower latitude ocean, Sverdrup balance appears to provide a quantitatively useful estimate of the meridional transport (about 40% of the oceanic area). Application to computing the zonal component, by integration from the eastern boundary is, however, precluded in many places by failure of the local balances close to the coasts. Failure of Sverdrup balance at high northern latitudes is consistent with the expected much longer time to achieve dynamic equilibrium there, and the action of other forces, and has important consequences for ongoing ocean monitoring efforts. 1. Introduction The very elegant and powerful theories of the time-mean ocean circulation, treated as a laminar flow, remain of intense interest, despite the widespread recognition that the oceanic kinetic energy is dominated by the time variability.
    [Show full text]
  • (Potential) Vorticity: the Swirling Motion of Geophysical Fluids
    (Potential) vorticity: the swirling motion of geophysical fluids Vortices occur abundantly in both atmosphere and oceans and on all scales. The leaves, chasing each other in autumn, are driven by vortices. The wake of boats and brides form strings of vortices in the water. On the global scale we all know the rotating nature of tropical cyclones and depressions in the atmosphere, and the gyres constituting the large-scale wind driven ocean circulation. To understand the role of vortices in geophysical fluids, vorticity and, in particular, potential vorticity are key quantities of the flow. In a 3D flow, vorticity is a 3D vector field with as complicated dynamics as the flow itself. In this lecture, we focus on 2D flow, so that vorticity reduces to a scalar field. More importantly, after including Earth rotation a fairly simple equation for planar geostrophic fluids arises which can explain many characteristics of the atmosphere and ocean circulation. In the lecture, we first will derive the vorticity equation and discuss the various terms. Next, we define the various vorticity related quantities: relative, planetary, absolute and potential vorticity. Using the shallow water equations, we derive the potential vorticity equation. In the final part of the lecture we discuss several applications of this equation of geophysical vortices and geophysical flow. The preparation material includes - Lecture slides - Chapter 12 of Stewart (http://www.colorado.edu/oclab/sites/default/files/attached- files/stewart_textbook.pdf), of which only sections 12.1-12.3 are discussed today. Willem Jan van de Berg Chapter 12 Vorticity in the Ocean Most of the fluid flows with which we are familiar, from bathtubs to swimming pools, are not rotating, or they are rotating so slowly that rotation is not im- portant except maybe at the drain of a bathtub as water is let out.
    [Show full text]
  • SEASAT Geoid Anomalies and the Macquarie Ridge Complex Larry Ruff *
    Physics of the Earth and Planetary Interiors, 38 (1985) 59-69 59 Elsevier Science Publishers B.V., Amsterdam - Printed in The Netherlands SEASAT geoid anomalies and the Macquarie Ridge complex Larry Ruff * Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109 (U.S.A.) Anny Cazenave CNES-GRGS, 18Ave. Edouard Belin, Toulouse, 31055 (France) (Received August 10, 1984; revision accepted September 5, 1984) Ruff, L. and Cazenave, A., 1985. SEASAT geoid anomalies and the Macquarie Ridge complex. Phys. Earth Planet. Inter., 38: 59-69. The seismically active Macquarie Ridge complex forms the Pacific-India plate boundary between New Zealand and the Pacific-Antarctic spreading center. The Late Cenozoic deformation of New Zealand and focal mechanisms of recent large earthquakes in the Macquarie Ridge complex appear consistent with the current plate tectonic models. These models predict a combination of strike-slip and convergent motion in the northern Macquarie Ridge, and strike-slip motion in the southern part. The Hjort trench is the southernmost expression of the Macquarie Ridge complex. Regional considerations of the magnetic lineations imply that some oceanic crust may have been consumed at the Hjort trench. Although this arcuate trench seems inconsistent with the predicted strike-slip setting, a deep trough also occurs in the Romanche fracture zone. Geoid anomalies observed over spreading ridges, subduction zones, and fracture zones are different. Therefore, geoid anomalies may be diagnostic of plate boundary type. We use SEASAT data to examine the Maequarie Ridge complex and find that the geoid anomalies for the northern Hjort trench region are different from the geoid anomalies for the Romanche trough.
    [Show full text]
  • Sea Level Change 13SM Supplementary Material
    Sea Level Change 13SM Supplementary Material Coordinating Lead Authors: John A. Church (Australia), Peter U. Clark (USA) Lead Authors: Anny Cazenave (France), Jonathan M. Gregory (UK), Svetlana Jevrejeva (UK), Anders Levermann (Germany), Mark A. Merrifield (USA), Glenn A. Milne (Canada), R. Steven Nerem (USA), Patrick D. Nunn (Australia), Antony J. Payne (UK), W. Tad Pfeffer (USA), Detlef Stammer (Germany), Alakkat S. Unnikrishnan (India) Contributing Authors: David Bahr (USA), Jason E. Box (Denmark/USA), David H. Bromwich (USA), Mark Carson (Germany), William Collins (UK), Xavier Fettweis (Belgium), Piers Forster (UK), Alex Gardner (USA), W. Roland Gehrels (UK), Rianne Giesen (Netherlands), Peter J. Gleckler (USA), Peter Good (UK), Rune Grand Graversen (Sweden), Ralf Greve (Japan), Stephen Griffies (USA), Edward Hanna (UK), Mark Hemer (Australia), Regine Hock (USA), Simon J. Holgate (UK), John Hunter (Australia), Philippe Huybrechts (Belgium), Gregory Johnson (USA), Ian Joughin (USA), Georg Kaser (Austria), Caroline Katsman (Netherlands), Leonard Konikow (USA), Gerhard Krinner (France), Anne Le Brocq (UK), Jan Lenaerts (Netherlands), Stefan Ligtenberg (Netherlands), Christopher M. Little (USA), Ben Marzeion (Austria), Kathleen L. McInnes (Australia), Sebastian H. Mernild (USA), Didier Monselesan (Australia), Ruth Mottram (Denmark), Tavi Murray (UK), Gunnar Myhre (Norway), J.P. Nicholas (USA), Faezeh Nick (Norway), Mahé Perrette (Germany), David Pollard (USA), Valentina Radić (Canada), Jamie Rae (UK), Markku Rummukainen (Sweden), Christian Schoof (Canada), Aimée Slangen (Australia/Netherlands), Jan H. van Angelen (Netherlands), Willem Jan van de Berg (Netherlands), Michiel van den Broeke (Netherlands), Miren Vizcaíno (Netherlands), Yoshihide Wada (Netherlands), Neil J. White (Australia), Ricarda Winkelmann (Germany), Jianjun Yin (USA), Masakazu Yoshimori (Japan), Kirsten Zickfeld (Canada) Review Editors: Jean Jouzel (France), Roderik van de Wal (Netherlands), Philip L.
    [Show full text]
  • Arxiv:1809.01376V1 [Astro-Ph.EP] 5 Sep 2018
    Draft version March 9, 2021 Typeset using LATEX preprint2 style in AASTeX61 IDEALIZED WIND-DRIVEN OCEAN CIRCULATIONS ON EXOPLANETS Weiwen Ji,1 Ru Chen,2 and Jun Yang1 1Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, 100871, Beijing, China 2University of California, 92521, Los Angeles, USA ABSTRACT Motivated by the important role of the ocean in the Earth climate system, here we investigate possible scenarios of ocean circulations on exoplanets using a one-layer shallow water ocean model. Specifically, we investigate how planetary rotation rate, wind stress, fluid eddy viscosity and land structure (a closed basin vs. a reentrant channel) influence the pattern and strength of wind-driven ocean circulations. The meridional variation of the Coriolis force, arising from planetary rotation and the spheric shape of the planets, induces the western intensification of ocean circulations. Our simulations confirm that in a closed basin, changes of other factors contribute to only enhancing or weakening the ocean circulations (e.g., as wind stress decreases or fluid eddy viscosity increases, the ocean circulations weaken, and vice versa). In a reentrant channel, just as the Southern Ocean region on the Earth, the ocean pattern is characterized by zonal flows. In the quasi-linear case, the sensitivity of ocean circulations characteristics to these parameters is also interpreted using simple analytical models. This study is the preliminary step for exploring the possible ocean circulations on exoplanets, future work with multi-layer ocean models and fully coupled ocean-atmosphere models are required for studying exoplanetary climates. Keywords: astrobiology | planets and satellites: oceans | planets and satellites: terrestrial planets arXiv:1809.01376v1 [astro-ph.EP] 5 Sep 2018 Corresponding author: Jun Yang [email protected] 2 Ji, Chen and Yang 1.
    [Show full text]
  • Evaluation of Coastal Sea Level Offshore Hong Kong from Jason-2 Altimetry
    remote sensing Article Evaluation of Coastal Sea Level Offshore Hong Kong from Jason-2 Altimetry Xi-Yu Xu 1,2,3,*, Florence Birol 2 and Anny Cazenave 2,4 1 The CAS Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China 2 Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS), Observatoire Midi-Pyrénées, 31400 Toulouse, France; fl[email protected] (F.B.); [email protected] (A.C.) 3 State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100094, China 4 International Space Science Institute, 3102 Bern, Switzerland * Correspondence: [email protected]; Tel.: +86-10-6255-0409 Received: 23 November 2017; Accepted: 6 February 2018; Published: 12 February 2018 Abstract: As altimeter satellites approach coastal areas, the number of valid sea surface height measurements decrease dramatically because of land contamination. In recent years, different methodologies have been developed to recover data within 10–20 km from the coast. These include computation of geophysical corrections adapted to the coastal zone and retracking of raw radar echoes. In this paper, we combine for the first time coastal geophysical corrections and retracking along a Jason-2 satellite pass that crosses the coast near the Hong-Kong tide gauge. Six years and a half of data are analyzed, from July 2008 to December 2014 (orbital cycles 1–238). Different retrackers are considered, including the ALES retracker and the different retrackers of the PISTACH products. For each retracker, we evaluate the quality of the recovered sea surface height by comparing with data from the Hong Kong tide gauge (located 10 km away).
    [Show full text]
  • Following Your Invitation 14Th January 2010 to Seadatanet To
    SeaDataNet Common Data Index (CDI) metadata model for Marine and Oceanographic Datasets November 2014 Document type: Standard Current status: Proposal Submitted by: Dick M.A. Schaap Technical Coordinator SeaDataNet MARIS The Netherlands Enrico Boldrini CNR-IIA Italy Stefano Nativi CNR-IIA Italy Michele Fichaut Coordinator SeaDataNet IFREMER France Title: SeaDataNet Common Data Index (CDI) metadata model for Marine and Oceanographic Datasets Scope: Proposal to acknowledge SeaDataNet Common Data Index (CDI) metadata profile of ISO 19115 as a standard metadata model for the documentation of Marine and Oceanographic Datasets. In particular, the proposal aims to promote CDI as a regional (i.e. European) standard. SeaDataNet CDI has been drafted and published as a metadata community profile of ISO 19115 by SeaDataNet, the leading infrastructure in Europe for marine & ocean data management. Its wide implementation, both by data centres within SeaDataNet and by external organizations makes it also a de-facto standard in the Europe region. The acknowledgement of SeaDataNet CDI as a standard data model by IODE/JCOMM will further favour interoperability and data management in the Marine and Oceanographic community. Envisaged publication type: The proposal target audience includes all the European bodies, programs, and projects that manage and exchange marine and oceanographic data. Besides, the proposed document informs all the international community dealing with marine and oceanographic data about the SeaDataNet CDI metadata model. Purpose and Justification: Provide details based wherever practicable. 1. Describe the specific aims and reason for this Proposal, with particular emphasis on the aspects of standardization covered, the problems it is expected to solve or the difficulties it is intended to overcome.
    [Show full text]
  • Interactive Comment on “Impacts of UV Radiation on Plankton Community Metabolism Along the Humboldt Current System” by N
    Biogeosciences Discuss., 8, C2596–C2611, 2011 Biogeosciences www.biogeosciences-discuss.net/8/C2596/2011/ Discussions © Author(s) 2011. This work is distributed under the Creative Commons Attribute 3.0 License. Interactive comment on “Impacts of UV radiation on plankton community metabolism along the Humboldt Current System” by N. Godoy et al. Anonymous Referee #3 Received and published: 23 August 2011 Review Impacts of UV radiation on plankton community metabolism along the Hum- boldt Current System by N. Godoy, A. Canepa, S. Lasternas, E. Mayol, S. RuÄsz-´ Halpern, S. AgustÄs,´ J. C. Castilla, and C. M. Duarte. Biogeosciences Discuss., 8, 5827–5848, 2011 General Comment This article reports experimental estimates of community metabolism assessed at 8 stations in the eastern south Pacific conducted during the Humboldt-2009 cruise on board RV Hesperides from 5 to 15 March 2009. An experimental evaluation of the ef- fect of UVB radiation on community metabolism is conducted. From few experiments the authors claim that UVB radiation suppressed net community production, result- ing in a dominance of heterotrophic communities in surface waters, compared to the C2596 prevalence of autotrophic communities inferred when materials, excluding UVB radia- tion, are used for incubation. They also claim that their results show that UVB radiation, which has increased greatly in the study area, may have suppressed net community production of the plankton communities, possibly driving plankton communities in the Southwest Pacific towards CO2 sources. The evidence provided in the manuscript is not sufficient to support the conclusions. The sampling is clearly too limited, both spatially and temporally, to extrapolate their results to the Humboldt Current System.
    [Show full text]
  • Geophysical Fluid Dynamics, Nonautonomous Dynamical Systems, and the Climate Sciences
    Geophysical Fluid Dynamics, Nonautonomous Dynamical Systems, and the Climate Sciences Michael Ghil and Eric Simonnet Abstract This contribution introduces the dynamics of shallow and rotating flows that characterizes large-scale motions of the atmosphere and oceans. It then focuses on an important aspect of climate dynamics on interannual and interdecadal scales, namely the wind-driven ocean circulation. Studying the variability of this circulation and slow changes therein is treated as an application of the theory of nonautonomous dynamical systems. The contribution concludes by discussing the relevance of these mathematical concepts and methods for the highly topical issues of climate change and climate sensitivity. Michael Ghil Ecole Normale Superieure´ and PSL Research University, Paris, FRANCE, and University of California, Los Angeles, USA, e-mail: [email protected] Eric Simonnet Institut de Physique de Nice, CNRS & Universite´ Coteˆ d’Azur, Nice Sophia-Antipolis, FRANCE, e-mail: [email protected] 1 Chapter 1 Effects of Rotation The first two chapters of this contribution are dedicated to an introductory review of the effects of rotation and shallowness om large-scale planetary flows. The theory of such flows is commonly designated as geophysical fluid dynamics (GFD), and it applies to both atmospheric and oceanic flows, on Earth as well as on other planets. GFD is now covered, at various levels and to various extents, by several books [36, 60, 72, 107, 120, 134, 164]. The virtue, if any, of this presentation is its brevity and, hopefully, clarity. It fol- lows most closely, and updates, Chapters 1 and 2 in [60]. The intended audience in- cludes the increasing number of mathematicians, physicists and statisticians that are becoming interested in the climate sciences, as well as climate scientists from less traditional areas — such as ecology, glaciology, hydrology, and remote sensing — who wish to acquaint themselves with the large-scale dynamics of the atmosphere and oceans.
    [Show full text]
  • Action Progress Report #1
    Project Information Project full title EuroSea: Improving and Integrating European Ocean Observing and Forecasting Systems for Sustainable use of the Oceans Project acronym EuroSea Grant agreement number 862626 Project start date and duration 1 November 2019, 50 months Project website https://www.eurosea.eu Deliverable information Deliverable number D9.1 Deliverable title Action Progress Report #1 Description EuroSea summary progress report for the external advisory boards Dec 2020 Work Package number 9 Work Package title Project Coordination, Management and strategic ocean observing alliance Lead beneficiary GEOMAR Lead authors Nicole Köstner, Toste Tanhua Contributors All work package leaders and task leaders Due date 31.12.2020 Submission date 22.12.2020 Comments This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 862626. https://doi.org/10.3289/eurosea_d9.1 Action Progress Report #1 Reporting period: 1 Nov 2019 – 31 Dec 2020 https://doi.org/10.3289/eurosea_d9.1 Table of contents 1. Introduction to EuroSea ............................................................................................................................ 1 2. Summary of progress ................................................................................................................................. 2 3. Work package progress reports ................................................................................................................ 7 3.1. WP1 - Governance and
    [Show full text]