Fault zone architecture and its scaling laws: where does the damage zone start and stop? A. TORABI1*, T. S. S. ELLINGSEN1,2, M. U. JOHANNESSEN1,2, B. ALAEI3, A. ROTEVATN2 & D. CHIARELLA4 1NORCE Norwegian Research Centre, Nygaardsgaten 112, 5008 Bergen, Norway 2Department of Earth Science, University of Bergen, PO Box 7800, 5020 Bergen, Norway 3Earth Science Analytics AS, Professor Olav Hanssens vei 7A, 4021 Stavanger, Norway 4Department of Earth Sciences, Royal Holloway, University of London, Egham Hill, Egham TW20 0EX, UK AT, 0000-0001-5685-808X; AR, 0000-0002-8413-3294; DC, 0000-0003-2482-0081 *Correspondence:
[email protected] Abstract: Damage zones of different fault types are investigated in siliciclastics (Utah, USA), carbonates (Majella Mountain, Italy) and metamorphic rocks (western Norway). The study was conducted taking measure- ments of deformation features such as fractures and deformation bands on multiple 1D scanlines along fault walls. The resulting datasets are used to plot the frequency distribution of deformation features and to constrain the geometrical width of the damage zone for the studied faults. The damage-zone width of a single fault is con- strained by identifying the changes in the slope of cumulative plots made on the frequency data. The cumulative plot further shows high deformation frequency by a steep slope (inner damage zone) and less deformation as a gentle slope (outer damage zone). Statistical distributions of displacement and damage-zone width and their relationship are improved, and show two-slope power-law distributions with a break point at c. 100 m displace- ment. Bleached sandstones in the studied siliciclastic rocks of Utah are associated with a higher frequency of deformation bands and a wider damage zone compared to the unbleached zone of similar lithology.