Rift-Basin Structure and Its Influence on Sedimentary Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Progressive Deformation of a Zone of Magma Transfer in a Transpressional Regime: the Variscan Me´Rens Shear Zone (Pyrenees, France)
Journal of Structural Geology 30 (2008) 1138–1149 Contents lists available at ScienceDirect Journal of Structural Geology journal homepage: www.elsevier.com/locate/jsg Progressive deformation of a zone of magma transfer in a transpressional regime: The Variscan Me´rens shear zone (Pyrenees, France) Yoann Dene`le, Philippe Olivier*,Ge´rard Gleizes LMTG, Universite´ de Toulouse, CNRS, IRD, OMP, 14 Avenue Edouard Belin, 31400 Toulouse, France article info abstract Article history: The EW-striking Variscan Me´rens shear zone (MSZ), located on the southern border of the Aston dome Received 19 November 2007 (Pyrenees), corresponds to variously mylonitized gneisses and plutonic rocks that are studied using the Received in revised form 30 April 2008 Anisotropy of Magnetic Susceptibility (AMS) technique. The plutonic rocks form EW-striking bands with, Accepted 15 May 2008 from south to north, gabbro-diorites, quartz diorites and granodiorites. The MSZ underwent a mylonitic Available online 28 May 2008 deformation with an intensity progressively increasing from the mafic to the more differentiated rocks. The foliations are EW to NW–SE striking and subvertical. A first set of lineations shows a moderate WNW plunge, with a dextral reverse kinematics. More recent subvertical lineations correspond to an uplift of Keywords: Mylonitic shear zone the northern compartment. To the east, the MSZ was cut by a N120 E-striking late shear band, separating Granite the MSZ from the Que´rigut pluton. The different stages of mylonitization relate to Late Variscan dextral AMS analysis transpression. This regime allowed the ascent of magmas along tension gashes in the middle crust. We Transpression interpret the MSZ as a zone of magma transfer, which fed a pluton now eroded that was similar to the Variscan Que´rigut and Millas plutons located to the east. -
Preliminary Catalog of the Sedimentary Basins of the United States
Preliminary Catalog of the Sedimentary Basins of the United States By James L. Coleman, Jr., and Steven M. Cahan Open-File Report 2012–1111 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Coleman, J.L., Jr., and Cahan, S.M., 2012, Preliminary catalog of the sedimentary basins of the United States: U.S. Geological Survey Open-File Report 2012–1111, 27 p. (plus 4 figures and 1 table available as separate files) Available online at http://pubs.usgs.gov/of/2012/1111/. iii Contents Abstract ...........................................................................................................................................................1 -
Part 3: Normal Faults and Extensional Tectonics
12.113 Structural Geology Part 3: Normal faults and extensional tectonics Fall 2005 Contents 1 Reading assignment 1 2 Growth strata 1 3 Models of extensional faults 2 3.1 Listric faults . 2 3.2 Planar, rotating fault arrays . 2 3.3 Stratigraphic signature of normal faults and extension . 2 3.4 Core complexes . 6 4 Slides 7 1 Reading assignment Read Chapter 5. 2 Growth strata Although not particular to normal faults, relative uplift and subsidence on either side of a surface breaking fault leads to predictable patterns of erosion and sedi mentation. Sediments will fill the available space created by slip on a fault. Not only do the characteristic patterns of stratal thickening or thinning tell you about the 1 Figure 1: Model for a simple, planar fault style of faulting, but by dating the sediments, you can tell the age of the fault (since sediments were deposited during faulting) as well as the slip rates on the fault. 3 Models of extensional faults The simplest model of a normal fault is a planar fault that does not change its dip with depth. Such a fault does not accommodate much extension. (Figure 1) 3.1 Listric faults A listric fault is a fault which shallows with depth. Compared to a simple planar model, such a fault accommodates a considerably greater amount of extension for the same amount of slip. Characteristics of listric faults are that, in order to maintain geometric compatibility, beds in the hanging wall have to rotate and dip towards the fault. Commonly, listric faults involve a number of en echelon faults that sole into a lowangle master detachment. -
Chapter 1 -- the Place of Faults in Petroleum Traps
Sorkhabi, R.,and Y. Tsuji, 2005, The place of faults in petroleum traps, in R. Sorkhabi and Y. Tsuji, eds., Faults, fluid flow, and petroleum traps: AAPG Memoir 85, 1 p. 1 – 31. The Place of Faults in Petroleum Traps Rasoul Sorkhabi1 Technology Research Center, Japan National Oil Corporation, Chiba, Japan Yoshihiro Tsuji2 Technology Research Center, Japan National Oil Corporation, Chiba, Japan ‘‘The incompleteness of available data in most geological studies traps some geologists.’’ Orlo E. Childs in Place of tectonic concepts in geological thinking (AAPG Memoir 2, 1963, p. 1) ‘‘Although the precise role of faults has never been systematically defined, much has been written that touches on the subject. One thing is certain: we need not try to avoid them.’’ Frederick G. Clapp in The role of geologic structure in the accu mulation of petroleum (Structure of typical American oil fields II, 1929, p. 686) ABSTRACT ver since Frederick Clapp included fault structures as significant petroleum traps in his landmark paper in 1910, the myriad function of faults in petroleum E migration and accumulation in sedimentary basins has drawn increasing atten- tion. Fault analyses in petroleum traps have grown along two distinct and successive lines of thought: (1) fault closures and (2) fault-rock seals. Through most of the last century, geometric closure of fault traps and reservoir seal juxtaposition by faults were the focus of research and industrial application. These research and applications were made as structural geology developed quantitative methods for geometric and kine- matic analyses of sedimentary basins, and plate tectonics offered a unified tool to correlate faults and basins on the basis of the nature of plate boundaries to produce stress. -
Kinematics of the Northern Walker Lane: an Incipient Transform Fault Along the Pacific–North American Plate Boundary
Kinematics of the northern Walker Lane: An incipient transform fault along the Paci®c±North American plate boundary James E. Faulds Christopher D. Henry Nevada Bureau of Mines and Geology, MS 178, University of Nevada, Reno, Nevada 89557, USA Nicholas H. Hinz ABSTRACT GEOLOGIC SETTING In the western Great Basin of North America, a system of dextral faults accommodates As western North America has evolved 15%±25% of the Paci®c±North American plate motion. The northern Walker Lane in from a convergent to a transform margin in northwest Nevada and northeast California occupies the northern terminus of this system. the past 30 m.y., the northern Walker Lane has This young evolving part of the plate boundary offers insight into how strike-slip fault undergone widespread volcanism and tecto- systems develop and may re¯ect the birth of a transform fault. A belt of overlapping, left- nism. Tertiary volcanic strata include 31±23 stepping dextral faults dominates the northern Walker Lane. Offset segments of a W- Ma ash-¯ow tuffs associated with the south- trending Oligocene paleovalley suggest ;20±30 km of cumulative dextral slip beginning ward-migrating ``ignimbrite ¯are up,'' 22±5 ca. 9±3 Ma. The inferred long-term slip rate of ;2±10 mm/yr is compatible with global Ma calc-alkaline intermediate-composition positioning system observations of the current strain ®eld. We interpret the left-stepping rocks related to the ancestral Cascade arc, and faults as macroscopic Riedel shears developing above a nascent lithospheric-scale trans- 13 Ma to present bimodal rocks linked to Ba- form fault. -
Late Mesozoic Compressional to Extensional Tectonics in The
Late Mesozoic compressional to extensional tectonics in the Yiwulüshan massif, NE China and its bearing on the evolution of the Yinshan-Yanshan orogenic belt: Part I: Structural analyses and geochronological constraints Wei Lin, Michel Faure, Yan Chen, Wenbin Ji, Fei Wang, Lin Wu, Nicolas Charles, Jun Wang, Qingchen Wang To cite this version: Wei Lin, Michel Faure, Yan Chen, Wenbin Ji, Fei Wang, et al.. Late Mesozoic compressional to extensional tectonics in the Yiwulüshan massif, NE China and its bearing on the evolution of the Yinshan-Yanshan orogenic belt: Part I: Structural analyses and geochronological constraints. Gond- wana Research, Elsevier, 2013, 23 (1), pp.54-77. 10.1016/j.gr.2012.02.013. insu-00681290 HAL Id: insu-00681290 https://hal-insu.archives-ouvertes.fr/insu-00681290 Submitted on 21 Aug 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Late Mesozoic compressional to extensional tectonics in the Yiwulüshan massif, NE China and its bearing on the evolution of the Yinshan–Yanshan orogenic belt: Part I: Structural analyses and geochronological constraints Wei Lina Michel Faureb Yan Chenb Wenbin Jia Fei Wanga Lin Wua Nicolas Charlesb Jun Wanga Qingchen Wanga a State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, P.O. -
Modeling Subsurface Flow in Sedimentary Basins by CRAIG M
129 Geologische Rundschau 78/1 I 129-154 I Stuttgart 1989 Modeling subsurface flow in sedimentary basins By CRAIG M. BETHKE, Urbana*) With 16 figures Zusammenfassung raines qui se manifestent dans les bassins sedimentaires, et qui resultent du relief topographique, de la convection, de la Grundwasserbewegungen in sedimentaren Becken, die compaction des sediments, de la decharge due l'erosio? et von dem topographischen Relief, konvektionsbedingtem a de la combinaison de ces divers facteurs. Dans ces modeles, Auftrieb, Sedimentkompaktion, isostatischen Ausgleichsbe on peut prendre en con~ideration les effets d~s tr:'nsferts d,e wegungen in Folge von Erosion und v~n ~mbinati~n~n chaleur et de matieres dlssoutes lors de la migration du pe dieser Kriifte gesteuert werden, konnen mit Hilfe quanutattv trole et ceux de I'interaction chimique de I'eau avec les modellierender Techniken beschrieben werden. In diesen roches. Toutefois la precision des previsions que I'on peut en Modellen kann man die Auswirkungen des Transports von deduire est limitee par la difficulte d'estimer I'echelle regia Warme und gel osten Stoffen, Petroleum-Migration und die a nale les proprietes hydrologiques des sediments, de reconsti chemische Interaktion zwischen Wasser und dem grund tuer les conditions anciennes, et de connaitre de quelle wasserleitenden Gestein beriicksichtigen. maniere les processus physiques et chimiques interferent Die Genauigkeit der Modell-Voraussagen ist allerdings a I'echelle des temps geologiques. La modelisation des bassins begrenzt wegen der Schwierigkeit, hydrologische Ei progressera dans la mesure ou la recherche hydrogeologique genschaften von Sedimenten in einem regionalen Rahmen ser mieux integree acelles d'autres disciplines telles que la se vorauszusagen, dem Schatzen vergangener Bedingungen und dimentologie, la mecanique des roches et la geochimie. -
Subseismic Deformation in the Vaza-Barris Transfer Zone in the Cretaceous Recôncavo-Tucano-Jatobá Rift System, NE Brazil T
Journal of Structural Geology 117 (2018) 81–95 Contents lists available at ScienceDirect Journal of Structural Geology journal homepage: www.elsevier.com/locate/jsg Subseismic deformation in the Vaza-Barris Transfer Zone in the Cretaceous Recôncavo-Tucano-Jatobá rift system, NE Brazil T ∗ Cleber Peralta Gomes Jr.a, Haakon Fossenb, , Renato Paes de Almeidaa, Bruno Salmonia a Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, Cidade Universitária, CEP 05508-080, São Paulo, SP, Brazil b Museum of Natural History/Department of Earth Science, University of Bergen, Allégaten 41, N-5007, Bergen, Norway ARTICLE INFO ABSTRACT Keywords: We investigate the subseismic structural expression of the major Vaza-Barris Transfer Zone in the Early Subseismic structures Cretaceous Tucano rift basin, NE Brazil based on field observations. Subseismic structures in the Tucano rift fill Deformation bands encompass cataclastic deformation bands, deformation band clusters and deformation band faults. In general, Rift transfer zone these subseismic structures indicate a ∼120° extension direction and document oblique extension across the N-S Tucano basin Tucano Rift, consistent with the movement direction inferred from plate-scale reconstructions. The transfer zone itself is dominated by a large population of NE-SW trending deformation band structures that developed into deformation band faults making a high angle to the transfer zone. The deformation band faults are quite evenly distributed along the transfer zone, which we attribute to extension related to its arcuate cross-sectional shape with flanks dipping toward the rift margins. Additional subordinate structures, many of which are oriented parallel to the transfer zone, show strike-slip dominated motion, and indicate that the finite strain field in the transfer zone involves a component of NNW-SSE shortening in addition to the main extension along the transfer zone. -
From Orogeny to Rifting: When and How Does Rifting Begin? Insights from the Norwegian ‘Reactivation Phase’
EGU21-469 https://doi.org/10.5194/egusphere-egu21-469 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. From orogeny to rifting: when and how does rifting begin? Insights from the Norwegian ‘reactivation phase’. Gwenn Peron-Pinvidic1,2, Per Terje Osmundsen2, Loic Fourel1, and Susanne Buiter3 1NGU - Geological Survey of Norway, 7040 Trondheim, Norway 2NTNU - Norwegian University of Science and Technology, 7491 Trondheim, Norway 3Tectonics and Geodynamics, RWTH Aachen University, 52064 Aachen, Germany Following the Wilson Cycle theory, most rifts and rifted margins around the world developed on former orogenic suture zones (Wilson, 1966). This implies that the pre-rift lithospheric configuration is heterogeneous in most cases. However, for convenience and lack of robust information, most models envisage the onset of rifting based on a homogeneously layered lithosphere (e.g. Lavier and Manatschal, 2006). In the last decade this has seen a change, thanks to the increased academic access to high-resolution, deeply imaging seismic datasets, and numerous studies have focused on the impact of inheritance on the architecture of rifts and rifted margins. The pre-rift tectonic history has often been shown as strongly influencing the subsequent rift phases (e.g. the North Sea case - Phillips et al., 2016). In the case of rifts developing on former orogens, one important question relates to the distinction between extensional structures formed during the orogenic collapse and the ones related to the proper onset of rifting. The collapse deformation is generally associated with polarity reversal along orogenic thrusts, ductile to brittle deformation and important crustal thinning with exhumation of deeply buried rocks (Andersen et al., 1994; Fossen, 2000). -
Foreland-Forearc Collisional Granitoid and Mafic Magmatism Caused By
Foreland-forearc collisional granitoid and ma®c magmatism caused by lower-plate lithospheric slab breakoff: The Acadian of Maine, and other orogens A. Schoonmaker Department of Geology, University of Vermont, Burlington, Vermont 05405, USA W.S.F. Kidd Earth and Atmospheric Sciences, University at Albany, Albany, New York 12222, USA D.C. Bradley U.S. Geological Survey, 4200 University Drive, Anchorage, Alaska 99508, USA ABSTRACT canic belt. This model (Fig. 1) was elaborated on in Bradley et al. During collisional convergence, failure in extension of the lith- (1996), Robinson et al. (1998), Bradley and Tucker (2002), and Begeal osphere of the lower plate due to slab pull will reduce the thickness et al. (2004). Similarly, Sacks and Secor (1990) suggested lithospheric or completely remove lower-plate lithosphere and cause decom- necking to explain early granitic magmatism in the lower plate of the pression melting of the asthenospheric mantle; magmas from this southern Appalachian system during the Alleghenian orogeny. These source may subsequently provide enough heat for substantial par- models propose detachment of sections of the underthrust lower plate tial melting of crustal rocks under or beyond the toe of the colli- during the early orogenic stages of the subduction of a passive margin, sional accretionary system. In central Maine, United States, this rather than later, as proposed by Bird (1978) for the Himalaya, when type of magmatism is ®rst apparent in the Early Devonian West signi®cant lithospheric thickening and overthrusting has occurred. Branch Volcanics and equivalent ma®c volcanics, in the slightly younger voluminous ma®c/silicic magmatic event of the Moxie ACADIAN OF CENTRAL MAINEÐGEOLOGY OF THE Gabbro±Katahdin batholith and related ignimbrite volcanism, and CHESUNCOOK DOME in other Early Devonian granitic plutons. -
Cenozoic Thermal, Mechanical and Tectonic Evolution of the Rio Grande Rift
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 91, NO. B6, PAGES 6263-6276, MAY 10, 1986 Cenozoic Thermal, Mechanical and Tectonic Evolution of the Rio Grande Rift PAUL MORGAN1 Departmentof Geosciences,Purdue University,West Lafayette, Indiana WILLIAM R. SEAGER Departmentof Earth Sciences,New Mexico State University,Las Cruces MATTHEW P. GOLOMBEK Jet PropulsionLaboratory, CaliforniaInstitute of Technology,Pasadena Careful documentationof the Cenozoicgeologic history of the Rio Grande rift in New Mexico reveals a complexsequence of events.At least two phasesof extensionhave been identified.An early phase of extensionbegan in the mid-Oligocene(about 30 Ma) and may have continuedto the early Miocene (about 18 Ma). This phaseof extensionwas characterizedby local high-strainextension events (locally, 50-100%,regionally, 30-50%), low-anglefaulting, and the developmentof broad, relativelyshallow basins, all indicatingan approximatelyNE-SW •-25ø extensiondirection, consistent with the regionalstress field at that time.Extension events were not synchronousduring early phase extension and were often temporally and spatiallyassociated with major magmatism.A late phaseof extensionoccurred primarily in the late Miocene(10-5 Ma) with minor extensioncontinuing to the present.It was characterizedby apparently synchronous,high-angle faulting givinglarge verticalstrains with relativelyminor lateral strain (5-20%) whichproduced the moderuRio Granderift morphology.Extension direction was approximatelyE-W, consistentwith the contemporaryregional stress field. Late phasegraben or half-grabenbasins cut and often obscureearly phasebroad basins.Early phase extensionalstyle and basin formation indicate a ductilelithosphere, and this extensionoccurred during the climax of Paleogenemagmatic activity in this zone.Late phaseextensional style indicates a more brittle lithosphere,and this extensionfollowed a middle Miocenelull in volcanism.Regional uplift of about1 km appearsto haveaccompanied late phase extension, andrelatively minor volcanism has continued to thepresent. -
Use of Sedimentary Megasequences to Re-Create Pre-Flood Geography
The Proceedings of the International Conference on Creationism Volume 8 Print Reference: Pages 351-372 Article 27 2018 Use of Sedimentary Megasequences to Re-create Pre-Flood Geography Timothy L. Clarey Institute for Creation Research Davis J. Werner Institute for Creation Research Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings Part of the Geology Commons, and the Stratigraphy Commons DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Clarey, T.L., and D.J. Werner. 2018. Use of sedimentary megasequences to re-create pre-Flood geography. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 351–372. Pittsburgh, Pennsylvania: Creation Science Fellowship. Clarey, T.L., and D.J. Werner. 2018. Use of sedimentary megasequences to re-create pre-Flood geography. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 351–372. Pittsburgh, Pennsylvania: Creation Science Fellowship. USE OF SEDIMENTARY MEGASEQUENCES TO RE-CREATE PRE-FLOOD GEOGRAPHY Timothy L. Clarey, Institute for Creation Research, 1806 Royal Lane, Dallas, TX 75229 USA, [email protected] Davis J.