Mapping GUIs to Auditory Interfaces Elizabeth D. Mynatt and W. Keith Edwards Graphics, Visualization, and Usability Center College of Computing Georgia Institute of Technology Atlanta, GA 3032-0280
[email protected],
[email protected] ABSTRACT little trouble accessing standard ASCII terminals. The line- This paper describes work to provide mappings between X- oriented textual output displayed on the screen was stored in based graphical interfaces and auditory interfaces. In our the computer’s framebuffer. An access program could sim- system, dubbed Mercator, this mapping is transparent to ply copy the contents of the framebuffer to a speech synthe- applications. The primary motivation for this work is to sizer, a Braille terminal or a Braille printer. Conversely, the provide accessibility to graphical applications for users who contents of the framebuffer for a graphical interface are sim- are blind or visually impaired. We describe the design of an ple pixel values. To provide access to GUIs, it is necessary to auditory interface which simulates many of the features of intercept application output before it reaches the screen. This graphical interfaces. We then describe the architecture we intercepted application output becomes the basis for an off- have built to model and transform graphical interfaces. screen model of the application interface.The information in Finally, we conclude with some indications of future the off-screen model is then used to create alternative, acces- research for improving our translation mechanisms and for sible interfaces. creating an auditory “desktop” environment. The goal of this work, called the Mercator1 Project, is to pro- KEYWORDS: Auditory interfaces, GUIs, X, visual impair- vide transparent access to X Windows applications for com- ment, multimodal interfaces.