Protective Effect of Reversible Cholinesterase Inhibitors (Tacrine, Pyridostigmine) and Eqbuche Against Vx Poisoning and Brain Acetylcholinesterase Inhibition in Rats

Total Page:16

File Type:pdf, Size:1020Kb

Protective Effect of Reversible Cholinesterase Inhibitors (Tacrine, Pyridostigmine) and Eqbuche Against Vx Poisoning and Brain Acetylcholinesterase Inhibition in Rats ORIGINAL ARTICLE PROTECTIVE EFFECT OF REVERSIBLE CHOLINESTERASE INHIBITORS (TACRINE, PYRIDOSTIGMINE) AND EQBUCHE AGAINST VX POISONING AND BRAIN ACETYLCHOLINESTERASE INHIBITION IN RATS Jiří Bajgar University of Defence, Faculty of Military Health Sciences, Hradec Králové, Czech Republic: Department of Toxicology Summary: The protective effect of the reversible cholinesterase inhibitors tacrine and pyridostigmine alone or in combi- nation with different drugs against acetylcholinesterase inhibition in the pontomedullar area and cerebellum of rats caused by VX agent (O-ethyl S-2-diisopropylaminoethyl methyl phosphonothiolate) in vivo (2xLD50) was studied along with sur- vival of animals pretreated with different combinations of the drugs used. The best prophylactic effect was observed in a combination of pyridostigmine with benactyzine, trihexyphenidyle and HI-6. Tacrine alone or in other combinations has had no better prophylactic effect in comparison with these combinations containing pyridostigmine. Equine butyrylcholin- esterase, also protected against VX poisoning very effectively. Key words: Benactyzine; Trihexyphenidyle; HI-6; Tacrine; VX; Rat; Prophylaxis; Acetylcholinesterase; Cerebellum; Pontomedullar area Introduction PAL was introduced into the Czech Army (3, 14). The pre- sence of these two anticholinergics allowed us to increase the Nerve agents are among the most dangereous chemical pyridostigmine dose and to increase its prophylactic efficacy. warfare agents (3, 29, 40, 45). They can be (and have been) Structurally different drugs/inhibitors were also studied. Pe- misused by terrorists (4, 31). Moreover, the whole spec- troianu et al. (34, 37) compared pretreatment with pyrido- trum of these agents of the same basic chemical structure stigmine and tiapride against paraoxon intoxication. The best covers organophosphorus insecticides (OP) – chemicals results were achieved with pyridostigmine pretreatment only. easily available, frequently used over the world and causing Some protective effects against paraoxon were achieved by professional, suicidal or accidental intoxications (4). All pretreatment with ranitidine (35) or metoclopramide (21). these facts underline the necessity to study these agents to From other studies of compounds preferably binding to the achieve better diagnosis, prophylaxis and treatment. AChE anionic site, tacrine, 7-methoxytacrine (7-MEOTA) Sarin, soman, tabun, and VX etc. are the most important and huperzine A were considered and experimentally studied representatives of the nerve agents. Keeping acetylcholin- with respect to prophylaxis against nerve agents in vitro and esterase (AChE, EC 3.1.1.7) – the main target for nerve in vivo (3, 6, 17, 27, 33). agent action – intact is a basic requirement for effective Diminishing the level of OP using enzymes which hyd- prophylaxis. It can be achieved using reversible inhibitors rolyze these agents or enzymes which bind the agents (to which are able to inhibit AChE reverzíbly, and after spon- specific proteins or to antibodies) and thus reducing the taneous recovery of the activity (decarbamylation), normal OP level and inhibition of cholinesterases – AChE and bu- AChE serves as a source of the active enzyme. Pyridostig- tyrylcholinesterase (BuChE, EC 3.1.1.8) (scavenger effect) mine and other carbamates were tested as the most pro- – in the organism can be described as detoxification (11, mising prophylactic drugs (e.g. 3, 14, 16, 33). Pyridostigmine 12, 41, 42). Another approach to prophylaxis is based on was introduced into some armies as a prophylactic antidote using present antidotes, especially reactivators such as HI- against nerve agents. Its prophylactic effect (like the effects 6 and other drugs (3, 5, 15). of other carbamates) is limited by its dose. With a higher New reversible inhibitors of acridine type or naturally dose, a higher efficacy was observed, but the side effects were occurring agents are being studied (3, 5, 32, 33). more expressed too (for a review, see 3, 5, 33). This problem The aim of this present study was to compare the pro- can be solved by adding pyridostigmine antagonizing drugs – phylactic effect of reversible acridine inhibitor – tacrine anticholinergics. The prophylactic combination of pyrido- (1,2,3,4-tetrahydroaminoacridine) and its combinations stigmine with trihexyphenidyle and benactyzine called PAN- with presently used prophylactics and equine butyrylcho- ACTA MEDICA (Hradec Králové) 2008;51(4):223–228 223 linesterase (EqBuChE) against VX in female laboratory ment of Toxicology of the Faculty of Military Health Sciences rats. Due to the high toxicity of VX, the differences in LD50 (Hradec Kralove, Czech Republic) Their purities were ana- values for male and female rats are negligible (3, 15). Si- lyzed using HPLC technique. Benactyzine a trihexypheni- multaneously, the changes in the brain AChE activity fol- dyle were products of Leciva Prague (Czech Republic). lowing in vivo administration of these drugs were studied. Equine BuChE (original activity 20 000 mU/ml) was a kind Two different parts of the brain were used: the cerebellum gift from Dr. Bhupendra Doctor, Walter Reed Army In- – roughly representing AChE activity in the whole brain, stitute of Research, Washington, USA. All other chemicals and the pontomedullar area; AChE activity in this structu- of analytical purity were obtained commercially and used re is considered to be the most sensitive to OP and antido- without further purification. All substances were adminis- tal/prophylactic countermeasures (1, 3, 7, 19). tered i.m. (i.p.) at a volume of 0.1 ml/kg body weight. Material and Methods Animals Female Wistar rats, weighing from 200 to 220 g, were Chemicals purchased from BioTest (Konarovice, Czech Republic). VX (O-ethyl S-2-diisopropylaminoethyl methyl phos- The animals were maintained in an air-conditioned room phonothiolate) was obtained from the Military Technical (22° ± 2 °C and 50 ± 10% relative humidity, with light from Institute of Protection (Brno, Czech Republic). It was of 7 a.m. to 7 p.m.), and were allowed free access to standard minimally 95% purity and stored in glass ampullas (1 ml). chow and tap water. Housing of animals took place in the The solutions of the agents for experiments were prepared Central Vivarium of the Faculty of Military Health Sciences before use. HI-6 and tacrine were synthesized at the Depart- under veterinary control. All the experiments were perfor- med under permission and supervision of the Ethic Com- Tab. 1: Schematic representation of drug administration in mittee of the Faculty of Military Health Sciences, Hradec different groups used in the experiments. The doses are gi- Kralove. ven in the text. Prophylaxis and intoxication Designation Administration The general scheme of prophylaxis and intoxication was of group first second as follows: CONT SAL saline saline Administration of prophylactic agent (in control group CONT TAC tacrine saline saline) – first administration, and 20 min. later, adminis- CONT VX saline VX tration of VX (in control group saline) – second adminis- CONT H HI-6 saline tration. The animals were decapitated and the brains were CONT Tr trasentine saline removed 60 min. after the second administration or after CONT B benactyzine saline death. Groups of 10 animals were used. Designation of CONT PYR pyridostigmine saline groups and drugs administered are summarized in Tab. 1. H-VX HI-6 VX For the doses of drugs used – see below. B-VX benactyzine VX Tr-VX trasentine VX H+Tr-VX HI-6 + trasentine VX Doses of drugs used H+B-VX HI-6 + benactyzine VX The doses and timing of drug administration were used B+Tr-VX benactyzine + trasentine VX on the basis of our previous results with tacrine (2), reacti- vators including HI-6 (3, 15), pyridostigmine, benactyzine TAC-VX (1TAC) tacrine VX TAC+B-VX (2 ) tacrine + benactyzine VX and trihexyphenidyle (3, 23, 24), and EqBuChE (8, 12), TAC respectively. The doses (except VX) represent the doses TAC+H-VX (3TAC) tacrine + HI-6 VX approximately to be used for human prophylaxis (2, 3, 8,15, TAC+B+H-VX (4TAC) tacrine + benactyzine + HI-6 VX 23). They were as follows: TAC+B+Tr-VX(5TAC) tacrine + benactyzine VX + trasentine • Tacrine 10 mg/kg, i.m.; • HI-6 15 mg/kg, i.m.; PYR-VX (1PYR) pyridostigmine VX PYR+B-VX (2PYR) pyridostigmine + benactyzine VX • Benactyzine 9 mg/kg, i.m.; PYR+H-VX (3PYR) pyridostigmine + HI-6 VX • Trihexyphenidyle 6 mg/kg, i.m.; PYR+B+H-VX (4PYR) pyridostigmine + HI-6 VX • Pyridostigmine 1 mg/kg, i.m.; PYR+B+Tr-VX (5PYR) pyridostigmine + benactyzine VX • BuChE 250 mU/kg, i.p.; + trasentine • VX 28 μg/kg, i.m., i.e. 2xLD50 dose; TAC+B+Tr+H-VX (6TAC) tacrine + benactyzine VX • saline 0.1 ml/kg; all doses are related to body weight. + trasentine + HI-6 PYR+B+Tr+H-VX (6PYR) pyridostigmine + benactyzine VX Determination of AChE activity + trasentine + HI-6 After decapitation, the brain parts (pontomedullar area BuChE-VX EqBuChE VX containing i.a. ncl. gigantocellularis /PM/ and cerebellum) 224 were prepared and frozen. After thawing, tissue was homo- TAC). All animals survived in groups with administration genized (1:10, distilled water, Ultra-Turrax homogenizer, of HI-6 and two parasympatholytics or pyridostigmine Janke and Kunkel, Germany) and homogenates were used (CONT H, CONT B, CONT Tr, CONT PYR. Following for enzymatic analysis. saline administration and VX intoxication (CONT VX), all AChE activity was determined using the method of animals died within 20–55 min (Tab. 2). Ellman et al. (13) as described elsewhere (9). Acetylthio- In experimental groups, the mortality was different de- choline was used as a substrate (TRIS-HCl buffer pH 7.6). pending on the administration of prophylactic drugs. Admi- The results were expressed as μkat/g wet weight tissue, nistration of oxime HI-6 alone, benactyzine or trihexyphe- UVIKON 752 (Germany) spectrophotometer was used for nidyle (H-VX; B-VX; Tr-VX) had no high prophylactic effect determination of absorbancy at 412 nm. The activity was – 60 % of the animals in the group died (Tab. 2). Com- also expressed as a relative % of control values.
Recommended publications
  • Anti-Cholinergic Alkaloids As Potential Therapeutic Agents for Alzheimer's Disease
    Indian Journal of Biochemistry & Biophysics Vol. 50, April 2013, pp. 120-125 Anti-cholinergic alkaloids as potential therapeutic agents for Alzheimer’s disease: An in silico approach Huma Naaz, Swati Singh, Veda P Pandey, Priyanka Singh and Upendra N Dwivedi* Bioinformatics Infrastructure Facility, Center of Excellence in Bioinformatics, Department of Biochemistry, University of Lucknow, Lucknow 226 007, India Received 10 September 2012; revised 25 January 2013 Alzheimer’s disease (AD), a progressive neurodegenerative disorder with many cognitive and neuropsychiatric symptoms is biochemically characterized by a significant decrease in the brain neurotransmitter acetylcholine (ACh). Plant-derived metabolites, including alkaloids have been reported to possess neuroprotective properties and are considered to be safe, thus have potential for developing effective therapeutic molecules for neurological disorders, such as AD. Therefore, in the present study, thirteen plant-derived alkaloids, namely pleiocarpine, kopsinine, pleiocarpamine (from Pleiocarpa mutica, family: Annonaceae), oliveroline, noroliveroline, liridonine, isooncodine, polyfothine, darienine (from Polyalthia longifolia, family: Apocynaceae) and eburnamine, eburnamonine, eburnamenine and geissoschizol (from Hunteria zeylanica, family: Apocynaceae) were analyzed for their anti-cholinergic action through docking with acetylcholinesterase (AChE) as target. Among the alkaloids, pleiocarpine showed promising anti-cholinergic potential, while its amino derivative showed about six-fold
    [Show full text]
  • Title 16. Crimes and Offenses Chapter 13. Controlled Substances Article 1
    TITLE 16. CRIMES AND OFFENSES CHAPTER 13. CONTROLLED SUBSTANCES ARTICLE 1. GENERAL PROVISIONS § 16-13-1. Drug related objects (a) As used in this Code section, the term: (1) "Controlled substance" shall have the same meaning as defined in Article 2 of this chapter, relating to controlled substances. For the purposes of this Code section, the term "controlled substance" shall include marijuana as defined by paragraph (16) of Code Section 16-13-21. (2) "Dangerous drug" shall have the same meaning as defined in Article 3 of this chapter, relating to dangerous drugs. (3) "Drug related object" means any machine, instrument, tool, equipment, contrivance, or device which an average person would reasonably conclude is intended to be used for one or more of the following purposes: (A) To introduce into the human body any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (B) To enhance the effect on the human body of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (C) To conceal any quantity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; or (D) To test the strength, effectiveness, or purity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state. (4) "Knowingly" means having general knowledge that a machine, instrument, tool, item of equipment, contrivance, or device is a drug related object or having reasonable grounds to believe that any such object is or may, to an average person, appear to be a drug related object.
    [Show full text]
  • Medical Control of the Glaucomas
    Br J Ophthalmol: first published as 10.1136/bjo.56.3.272 on 1 March 1972. Downloaded from 272 call these cases of malignant glaucoma, using the old term in a new broader sense, or whether we devise a new terminology to describe such phenomena should perhaps await further experimentation. Conclusion Many questions still remain in regard to malignant glaucoma, and it is to be hoped that future observations will gradually elucidate them. Today, however, medical therapy consisting of the concurrent use of mydriatic-cycloplegic drops, carbonic anhydrase inhibitors, and hyperosmotic agents is available, and is proving to be effective in half the cases when continued for 5 days. In addition, the vitreous surgery described above is in our opinion a safe and reliable surgical procedure in cases of malignant glaucoma which are not relieved by medical therapy. COMMENTARY MALIGNANT GLAUCOMA Chandler's anterior chamber deepening procedure with gonioscopy used for diagnosis of the extent of synaechial closure of the angle does not seem to predispose to malignant glaucoma. Even though it is known that there is a predisposition to malignant glaucoma in the fellow eye, this eye should always be treated with a peripheral iridectomy as early as possible after the onset of malignant glaucoma in the opposite eye. No medical treatment of any sort should be given before the peripheral iridectomy, since both miotics and mydriatics may be dangerous before surgerycopyright. is performed. If the fellow eye has been operated upon when the angle has been completely open, then malignant glaucoma has not occurred. However, if angle-closure is present in the fellow eye at the time of surgery, then malignant glaucoma becomes very common.
    [Show full text]
  • 5994392 Tion of Application No. 67375.734 Eb3-1685, PEN. T
    USOO5994392A United States Patent (19) 11 Patent Number: 5,994,392 Shashoua (45) Date of Patent: Nov.30, 1999 54 ANTIPSYCHOTIC PRODRUGS COMPRISING 5,120,760 6/1992 Horrobin ................................. 514/458 AN ANTIPSYCHOTICAGENT COUPLED TO 5,141,958 8/1992 Crozier-Willi et al. ................ 514/558 AN UNSATURATED FATTY ACID 5,216,023 6/1993 Literati et al. .......................... 514/538 5,246,726 9/1993 Horrobin et al. ....................... 424/646 5,516,800 5/1996 Horrobin et al. ....................... 514/560 75 Inventor: Victor E. Shashoua, Brookline, Mass. 5,580,556 12/1996 Horrobin ................................ 424/85.4 73 Assignee: Neuromedica, Inc., Conshohocken, Pa. FOREIGN PATENT DOCUMENTS 30009 6/1981 European Pat. Off.. 21 Appl. No.: 08/462,820 009 1694 10/1983 European Pat. Off.. 22 Filed: Jun. 5, 1995 09 1694 10/1983 European Pat. Off.. 91694 10/1983 European Pat. Off.. Related U.S. Application Data 59-025327 2/1984 Japan. 1153629 6/1989 Japan. 63 Continuation of application No. 08/080,675, Jun. 21, 1993, 1203331 8/1989 Japan. abandoned, which is a continuation of application No. 07/952,191, Sep. 28, 1992, abandoned, which is a continu- (List continued on next page.) ation of application No. 07/577,329, Sep. 4, 1990, aban doned, which is a continuation-in-part of application No. OTHER PUBLICATIONS 07/535,812,tion of application Jun. 11, No. 1990, 67,375.734 abandoned, Eb3-1685, which is a continu-PEN. T. Higuchi et al. 66 Prodrugs as Noye Drug Delivery Sys 4,933,324, which is a continuation-in-part of application No.
    [Show full text]
  • Pharmacokinetics and Pharmacology of Drugs Used in Children
    Drug and Fluid Th erapy SECTION II Pharmacokinetics and Pharmacology of Drugs Used CHAPTER 6 in Children Charles J. Coté, Jerrold Lerman, Robert M. Ward, Ralph A. Lugo, and Nishan Goudsouzian Drug Distribution Propofol Protein Binding Ketamine Body Composition Etomidate Metabolism and Excretion Muscle Relaxants Hepatic Blood Flow Succinylcholine Renal Excretion Intermediate-Acting Nondepolarizing Relaxants Pharmacokinetic Principles and Calculations Atracurium First-Order Kinetics Cisatracurium Half-Life Vecuronium First-Order Single-Compartment Kinetics Rocuronium First-Order Multiple-Compartment Kinetics Clinical Implications When Using Short- and Zero-Order Kinetics Intermediate-Acting Relaxants Apparent Volume of Distribution Long-Acting Nondepolarizing Relaxants Repetitive Dosing and Drug Accumulation Pancuronium Steady State Antagonism of Muscle Relaxants Loading Dose General Principles Central Nervous System Effects Suggamadex The Drug Approval Process, the Package Insert, and Relaxants in Special Situations Drug Labeling Opioids Inhalation Anesthetic Agents Morphine Physicochemical Properties Meperidine Pharmacokinetics of Inhaled Anesthetics Hydromorphone Pharmacodynamics of Inhaled Anesthetics Oxycodone Clinical Effects Methadone Nitrous Oxide Fentanyl Environmental Impact Alfentanil Oxygen Sufentanil Intravenous Anesthetic Agents Remifentanil Barbiturates Butorphanol and Nalbuphine 89 A Practice of Anesthesia for Infants and Children Codeine Antiemetics Tramadol Metoclopramide Nonsteroidal Anti-infl ammatory Agents 5-Hydroxytryptamine
    [Show full text]
  • (19) 11 Patent Number: 6165500
    USOO6165500A United States Patent (19) 11 Patent Number: 6,165,500 Cevc (45) Date of Patent: *Dec. 26, 2000 54 PREPARATION FOR THE APPLICATION OF WO 88/07362 10/1988 WIPO. AGENTS IN MINI-DROPLETS OTHER PUBLICATIONS 75 Inventor: Gregor Cevc, Heimstetten, Germany V.M. Knepp et al., “Controlled Drug Release from a Novel Liposomal Delivery System. II. Transdermal Delivery Char 73 Assignee: Idea AG, Munich, Germany acteristics” on Journal of Controlled Release 12(1990) Mar., No. 1, Amsterdam, NL, pp. 25–30. (Exhibit A). * Notice: This patent issued on a continued pros- C.E. Price, “A Review of the Factors Influencing the Pen ecution application filed under 37 CFR etration of Pesticides Through Plant Leaves” on I.C.I. Ltd., 1.53(d), and is subject to the twenty year Plant Protection Division, Jealott's Hill Research Station, patent term provisions of 35 U.S.C. Bracknell, Berkshire RG12 6EY, U.K., pp. 237-252. 154(a)(2). (Exhibit B). K. Karzel and R.K. Liedtke, “Mechanismen Transkutaner This patent is Subject to a terminal dis- Resorption” on Grandlagen/Basics, pp. 1487–1491. (Exhibit claimer. C). Michael Mezei, “Liposomes as a Skin Drug Delivery Sys 21 Appl. No.: 07/844,664 tem” 1985 Elsevier Science Publishers B.V. (Biomedical Division), pp 345-358. (Exhibit E). 22 Filed: Apr. 8, 1992 Adrienn Gesztes and Michael Mazei, “Topical Anesthesia of 30 Foreign Application Priority Data the Skin by Liposome-Encapsulated Tetracaine” on Anesth Analg 1988; 67: pp 1079–81. (Exhibit F). Aug. 24, 1990 DE) Germany ............................... 40 26834 Harish M. Patel, "Liposomes as a Controlled-Release Sys Aug.
    [Show full text]
  • Pharmaceuticals As Environmental Contaminants
    PharmaceuticalsPharmaceuticals asas EnvironmentalEnvironmental Contaminants:Contaminants: anan OverviewOverview ofof thethe ScienceScience Christian G. Daughton, Ph.D. Chief, Environmental Chemistry Branch Environmental Sciences Division National Exposure Research Laboratory Office of Research and Development Environmental Protection Agency Las Vegas, Nevada 89119 [email protected] Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Why and how do drugs contaminate the environment? What might it all mean? How do we prevent it? Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada This talk presents only a cursory overview of some of the many science issues surrounding the topic of pharmaceuticals as environmental contaminants Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada A Clarification We sometimes loosely (but incorrectly) refer to drugs, medicines, medications, or pharmaceuticals as being the substances that contaminant the environment. The actual environmental contaminants, however, are the active pharmaceutical ingredients – APIs. These terms are all often used interchangeably Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Office of Research and Development Available: http://www.epa.gov/nerlesd1/chemistry/pharma/image/drawing.pdfNational
    [Show full text]
  • In-Vitro Evaluation of Selected Egyptian Traditional Herbal Medicines for Treatment of Alzheimer Disease
    Ali et al. BMC Complementary and Alternative Medicine 2013, 13:121 http://www.biomedcentral.com/1472-6882/13/121 RESEARCH ARTICLE Open Access In-vitro evaluation of selected Egyptian traditional herbal medicines for treatment of alzheimer disease Shereen K Ali1, Ahmed R Hamed1,2, Maha M Soltan1,2,UsamaMHegazy3, Esameldin E Elgorashi4, Ibrahim A El-Garf5 and Ahmed A Hussein6* Abstract Background: Egyptians recognized the healing power of herbs and used them in their medicinal formulations. Nowadays, “Attarin” drug shops and the public use mainly the Unani medicinal system for treatment of their health problems including improvement of memory and old age related diseases. Numerous medicinal plants have been described in old literature of Arabic traditional medicine for treatment of Alzheimer’s disease (AD) (or to strengthen memory). Methods: In this study, some of these plants were evaluated against three different preliminary bioassays related to AD to explore the possible way of their bio-interaction. Twenty three selected plants were extracted with methanol and screened in vitro against acetylcholinesterase (AChE) and cycloxygenase-1 (COX-1) enzymes. In addition, anti-oxidant activity using DPPH was determined. Results: Of the tested plant extracts; Adhatoda vasica and Peganum harmala showed inhibitory effect on AChE at IC50 294 μg/ml and 68 μg/ml respectively. Moreover, A. vasica interacted reversibly with the enzyme while P. harmala showed irreversible inhibition. Ferula assafoetida (IC50 3.2 μg/ml), Syzygium aromaticum (34.9 μg/ml) and Zingiber officinalis (33.6 μg/ml) showed activity against COX-1 enzyme. Potent radical scavenging activity was demonstrated by three plant extracts Terminalia chebula (EC50 2.2 μg/ml), T.
    [Show full text]
  • Dementia Summary
    Agency for Healthcare Research and Quality Evidence Report/Technology Assessment Number 97 Pharmacological Treatment of Dementia Summary Introduction 1. Does pharmacotherapy for dementia syndromes improve cognitive symptoms and The focus of this review is the pharmacological outcomes? treatment of dementia. Pharmacotherapy is often 2. Does pharmacotherapy delay cognitive the central intervention used to improve deterioration or delay disease onset of symptoms or delay the progression of dementia dementia syndromes? syndromes. The available agents vary with respect 3. Are certain drugs, including alternative to their therapeutic actions, and are supported by medicines (non-pharmaceutical), more varying levels of evidence for efficacy. This report effective than others? is a systematic evaluation of the evidence for 4. Do certain patient populations benefit more pharmacological interventions for the treatment from pharmacotherapy than others? of dementia in the domains of cognition, global 5. What is the evidence base for the treatment function, behavior/mood, quality of life/activities of ischemic vascular dementia (VaD)? of daily living (ADL) and caregiver burden. This review considers different types of Many medications have been studied in dementia populations (not just Alzheimer’s dementia patients. These agents can be classified Disease [AD]) in subjects from both community into three broad categories: and institutional settings. The studies eligible in 1. Cholinergic neurotransmitter modifying this systematic review were restricted to parallel agents, such as acetylcholinesterase inhibitors. RCTs of high methodological quality. 2. Non-cholinergic neurotransmitters/ neuropeptide modifying agents. Methods 3. Other pharmacological agents. A team of content specialists was assembled Although only five agents have been approved from both international and local experts.
    [Show full text]
  • Exploring Structure-Activity Relationship in Tacrine-Squaramide Derivatives As Potent Cholinesterase Inhibitors
    biomolecules Article Exploring Structure-Activity Relationship in Tacrine-Squaramide Derivatives as Potent Cholinesterase Inhibitors 1,2, 1,2,3, 1,2 1,2 Barbora Svobodova y, Eva Mezeiova y, Vendula Hepnarova , Martina Hrabinova , Lubica Muckova 1,2 , Tereza Kobrlova 1 , Daniel Jun 1,2 , Ondrej Soukup 1,2, María Luisa Jimeno 4, José Marco-Contelles 3,* and Jan Korabecny 1,2,* 1 Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Trebesska 1575, 500 01 Hradec Kralove, Czech Republic 2 Biomedical Research Centre, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic 3 Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry, Juan de la Cierva 3, 28006-Madrid, Spain 4 Centro de Química Orgánica “Lora-Tamayo” (CSIC), C/Juan de la Cierva 3, 28006-Madrid, Spain * Correspondence: [email protected] (J.M.-C.); [email protected] (J.K.); Tel.: +34-91-2587554 (J.M.-C.); +420-495-833-447 (J.K.) These authors contributed equally to this paper. y Received: 2 August 2019; Accepted: 17 August 2019; Published: 19 August 2019 Abstract: Tacrine was the first drug to be approved for Alzheimer’s disease (AD) treatment, acting as a cholinesterase inhibitor. The neuropathological hallmarks of AD are amyloid-rich senile plaques, neurofibrillary tangles, and neuronal degeneration. The portfolio of currently approved drugs for AD includes acetylcholinesterase inhibitors (AChEIs) and N-methyl-d-aspartate (NMDA) receptor antagonist. Squaric acid is a versatile structural scaffold capable to be easily transformed into amide-bearing compounds that feature both hydrogen bond donor and acceptor groups with the possibility to create multiple interactions with complementary sites.
    [Show full text]
  • View Is Primarily on Addressing the Issues of Non-Permanently Charged Reactivators and the Development of Treatments for Aged Ache
    Design, Synthesis, and Evaluation of Therapeutics for the Treatment of Organophosphorus Poisoning by Nerve Agents and Pesticides Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Andrew Joseph Franjesevic Graduate Program in Chemistry The Ohio State University 2019 Dissertation Committee Professor Christopher M. Hadad, Advisor Professor Thomas J. Magliery Professor David Nagib Professor Jonathan R. Parquette Copyrighted by Andrew Joseph Franjesevic 2019 2 Abstract Organophosphorus (OP) compounds, both pesticides and nerve agents, are some of the most lethal compounds known to man. Although highly regulated for both military and agricultural use in Western societies, these compounds have been implicated in hundreds of thousands of deaths annually, whether by accidental or intentional exposure through agricultural or terrorist uses. OP compounds inhibit the function of the enzyme acetylcholinesterase (AChE), and AChE is responsible for the hydrolysis of the neurotransmitter acetylcholine (ACh), and it is extremely well evolved for the task. Inhibition of AChE rapidly leads to accumulation of ACh in the synaptic junctions, resulting in a cholinergic crisis which, without intervention, leads to death. Approximately 70-80 years of research in the development, treatment, and understanding of OP compounds has resulted in only a handful of effective (and approved) therapeutics for the treatment of OP exposure. The search for more effective therapeutics is limited by at least three major problems: (1) there are no broad scope reactivators of OP-inhibited AChE; (2) current therapeutics are permanently positively charged and cannot cross the blood-brain barrier efficiently; and (3) current therapeutics are ineffective at treating the aged, or dealkylated, form of AChE that forms following inhibition of of AChE by various OPs.
    [Show full text]
  • Effects of Cholinesterase Inhibitors Tacrine and Galantamine in Pentilentetrazole Induced Cognitive Dysfunction in Mice
    SMU Medical Journal ISSN : 2349 – 1604 (Volume – 4, No. 1, January 2017) Research Article Indexed in SIS (USA), ASI (Germany), I2OR & i-Scholar (India), SJIF (Morocco) and Cosmos Foundation (Germany) databases. Impact Factor: 3.835 (SJIF) Effects of Cholinesterase Inhibitors Tacrine and Galantamine in Pentilentetrazole induced Cognitive Dysfunction in Mice Darinka Dimitrova*1,2, Damianka Getova2, Vanja Nalbantova3, Gergana Durleva3, Zlatilina Dimitrova3 1Department of Pharmacology and Clinical Pharmacology, Faculty of Medicine, Medical University Plovdiv, Bulgaria 2Technological Center for Emergency Medicine, Laboratory of Neuropsychopharmacology 3Pharmacy Students, Department of Pharmacology and Drug Toxicology, Faculty of Pharmacy, Medical University Plovdiv, Bulgaria *Corresponding author Manuscript received : 29.11.2016 Manuscript accepted: 20.12.2016 Abstract The aim was to study the effects of tacrine and galantamine on learning and memory processes in pentilentetrazole-induced model of cognitive dysfunction in mice. Thirty-two male albino mice divided into four groups were treated as follows: Group 1: saline (controls); Group 2: saline+pentilentetrazole (PTZ) (model group); Group 3: tacrine+PTZ; Group 4: galantamine+PTZ. The effects of tacrine and galantamine were studied in automatic set-up for active learning with negative reinforcement “Shuttle-box” (Ugo Basile, Italy). The following parameters were recorded: number of conditioned stimulus responses (avoidances), number of unconditioned stimulus responses (escapes) and number of inter-trial crossings. The comparison between groups was made by Instat computer program using analysis of variance (ANOVA for repeated measurements). The pentilentetrazole (PTZ) significantly decreased 1 SMU Medical Journal, Volume – 4, No. – 1, January, 2017 the number of conditioned and unconditioned stimulus responses and exploratory activity in mice.
    [Show full text]