Gamified 3D Orthopaedic Rehabilitation Using Low Cost and Portable Inertial Sensors
Total Page:16
File Type:pdf, Size:1020Kb
Gamified 3D Orthopaedic Rehabilitation Using Low Cost and Portable Inertial Sensors Grigorios Kontadakis A thesis submitted in fulfillment of the requirements for the degree of Master of Science in Electrical and Computer Engineering. School of Electrical and Computer Engineering Laboratory of Distributed Multimedia Information Systems and Applications – TUC/MUSIC CHANIA 2018 Abstract Abstract This work introduces an innovative gamified rehabilitation platform comprising of a mobile game and a custom sensor placed on the knee, intended for patients that have undergone Total Knee Replacement surgery, in collaboration with the General Hospital in Chania. The application uses a single custom-made, light, portable and low-cost sensor node consisting of an Inertial Measurement Unit (IMU) attached on a lower limb in order to capture its orientation in space in real-time, while the patient is completing a physiotherapy protocol. An IMU measures and reports a body's specific force (accelerometer), angular rate (gyroscope), and sometimes the magnetic field surrounding the body (magnetometer). IMUs provide the leading technology used in wearable devices and are employed in this thesis as they meet the main design constraints of this framework, maximizing portability and minimizing cost. Previous work indicates that when multiple IMUs are employed, satisfactory rehabilitation exercise classification accuracy results are achieved based on three, two and one IMUs. Such results drive the further investigation of the challenging classification problem using just a single IMU in this thesis, enhancing maximum portability compared to multiple IMU systems, in conjunction with sufficiently high success rates of movement detection. Our goal is to reduce the need for the physical presence of a physiotherapist by aiding the efficient performance of exercise sessions at any location and increase patient engagement during physiotherapy by motivating the user to participate in a game using the current ultra-portable framework of just a single IMU sensor and an Android device. The proposed sensor node attached on the lower limb provides input to the gamified experience displayed on an Android mobile device, offering feedback to the patient in relation to whether the performed exercises were accurately conducted. A classification algorithm is proposed that automatically classifies an exercise in real-time as correct or incorrect, according to physiotherapists’ set criteria. Initial testing of the system is conducted in the Chania’s General Hospital Orthopaedic Clinic, Greece, in collaboration with Orthopaedic Surgeons and Physiotherapists. This testing indicates that patient engagement is enhanced in most cases. 2 Declaration Declaration The work in this thesis is original and no portion of the work referred to here has been submitted in support of an application for another degree or qualification of this or any other university or institution of learning. Signed: Date: Kontadakis Grigorios 3 Acknowledgements Acknowledgements This study was performed at the Technical University of Crete in collaboration with the Orthopaedic Clinic Department of Chania General Hospital. The current project wouldn’t be possible without the formal authorization of the hospital to work with physiotherapists, orthopaedics and Total Knee Replacement (TKR) patients and the voluntary consent of TKR patients themselves to contribute to this study. 4 Publications Publications Kontadakis, G., Chasiouras, D., Proimaki, D., Halkiadakis, M., Fyntikaki, M. and Mania, K. (accepted 2018). Gamified Platform for Rehabilitation after Total Knee Replacement Surgery Employing Low Cost and Portable Inertial Measurement Sensor Node. Multimedia Tools and Applications, Springer. Kontadakis, G., Chasiouras, D., Proimaki, D. and Mania, K. (2017). Gamified 3D Orthopaedic Rehabilitation Using Low Cost and Portable Inertial Sensors. In Proc. IEEE Virtual Worlds and Games for Serious Applications 2017 (VS-Games), pp. 165-168. SELECTED AS ONE OF BEST PAPERS. Kontadakis, G., Chasiouras, D., Proimaki, D. and Mania, K. (2006). Gamified 3D Orthopaedic Rehabilitation Using Low Cost and Portable Inertial Sensors. Poster, CGI 2016, in co-operation with ACM and Eurographics. Kontadakis, G., Chasiouras, D., Proimaki, D. (2015). Design of Augmented Reality 3D Rehabilitation Application using an Inertial Measurement Unit. In Proc. of SFHMMY 8. 5 Table of Contents Table of Contents Abstract ................................................................................................................ 2 Declaration ........................................................................................................... 3 Acknowledgements ............................................................................................... 4 Publications .......................................................................................................... 5 Table of Contents .................................................................................................. 6 List of Figures ........................................................................................................ 9 List of Tables ....................................................................................................... 12 1 Chapter 1 – Introduction ............................................................................... 13 1.1 Contribution .................................................................................................................... 14 1.2 Thesis Outline ................................................................................................................. 15 2 Chapter 2 – Existing Work & Background ...................................................... 17 2.1 Medical Background........................................................................................................ 17 2.1.1 Knee Anatomy & Reduced Functionality Causes .............................................................. 17 2.1.2 TKR .................................................................................................................................... 19 2.1.3 Rehabilitation Exercises for TKR ....................................................................................... 20 2.2 Existing Technologies for Limb Motion Tracking ............................................................. 21 2.2.1 Optical Systems ................................................................................................................ 21 2.2.2 Exo-skeletons .................................................................................................................... 21 2.2.3 Electrogoniometers .......................................................................................................... 22 2.2.4 Magnetic Systems ............................................................................................................. 22 2.2.5 Inertial Measurement Units ............................................................................................. 23 2.3 Related Works & Applications ......................................................................................... 24 2.3.1 Rehabilitation Projects ..................................................................................................... 24 2.3.2 IMU Example Applications ................................................................................................ 26 2.4 IMU Functionality ........................................................................................................... 29 2.4.1 MPU-9150 Overview......................................................................................................... 29 2.4.2 MPU-9150 Product Specification ...................................................................................... 30 2.4.3 MPU-9150 Register Map .................................................................................................. 31 2.5 IMU Filtering Methods .................................................................................................... 33 2.5.1 Complementary Filter ....................................................................................................... 33 2.5.2 Kalman Filter ..................................................................................................................... 34 2.5.3 Madgwick Filter ................................................................................................................ 34 6 Table of Contents 2.5.4 Derivation of Kalman Filter Parameters ........................................................................... 35 2.6 Embedding the IMU ........................................................................................................ 38 2.6.1 Single-board Computer vs Microcontroller ...................................................................... 38 2.6.2 Raspberry Pi Overview ...................................................................................................... 39 2.6.3 Configuring Raspberry Pi as a Microcontroller ................................................................. 40 3 Chapter 3 – Overview of IDE & Development Tools ....................................... 43 3.1 Game Development ........................................................................................................ 43 3.2 Game Engine Systems ..................................................................................................... 45 3.2.1 Unreal