Kinematics of the Local Universe

Total Page:16

File Type:pdf, Size:1020Kb

Kinematics of the Local Universe ASTRONOMY & ASTROPHYSICS JUNE I 1998, PAGE 333 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 130, 333–339 (1998) Kinematics of the local universe VII. New 21-cm line measurements of 2112 galaxies?,?? G. Theureau1, L. Bottinelli1,3, N. Coudreau-Durand1, L. Gouguenheim1,3, N. Hallet1, M. Loulergue1, G. Paturel4, and P. Teerikorpi2 1 Observatoire de Paris/Meudon, ARPEGES/CNRS URA1757, F-92195 Meudon Principal Cedex, France 2 Tuorla Observatory, 21500 Piikki¨o, Finland 3 Universit´e Paris-Sud, F-91405 Orsay, France 4 Observatoire de Lyon, F-69561 Saint-Genis Laval Cedex, France Received November 28; accepted December 24, 1997 Abstract. This paper presents 2112 new 21-cm neutral hy- • the completeness of the sample (Paturel et al. 1994) drogen line measurements carried out with the meridian • the homogenization of optical and radio data in con- transit Nan¸cay radiotelescope. Among these data we give nexion with the Lyon-Meudon Extragalactic database also 213 new radial velocities which complement those LEDA (Bottinelli et al. 1990) listed in three previous papers of this series. These new • the effect of disc opaqueness on observed optical B- measurements, together with the HI data collected in band parameters (Bottinelli et al. 1995) LEDA, put to 6 700 the number of galaxies with 21-cm • the dependence of the TF relation on morphological line width, radial velocity, and apparent diameter in the type and mean surface brightness and the improve- so-called KLUN sample. ment of this distance indicator (Theureau et al. 1997a; Theureau 1998) Key words: catalogs — galaxies: distances and redshifts; • the determination of the Hubble constant H0 from TF ISM — radio lines: galaxies B-band and log D25 relations (Theureau et al. 1997b). We present here the result of our Nan¸cay HI-survey, in the period between 1988 and 1996, from a catalogue of 2711 spiral galaxies (from Sa to Sdm). In addition to the 664 previously published (Papers I and II) radial veloci- 1. Introduction ties, we give 213 new velocity measurements, and 21-cm line widths and HI fluxes for 2112 objects of the observed The present paper is the fourth in a series (I: sample, together with their 21-cm line profile, signal to Bottinelli et al. 1992; II: Bottinelli et al. 1993; III: di noise ratio S, and rms noise σ . These new observations Nella et al. 1996) which intends to complement optical ext put to 6700 the number of spiral galaxies contained in our catalogues with new radial velocity, 21-cm line width, and KLUN sample. HI-flux measurements. Our aim was to build a large sam- The Nan¸cay radiotelescope and processing chain are ple of spiral galaxies, complete down to a photometric briefly presented in Sect. 2. The actual detection rate is diameter of 1.6 arcmin, and having unbiased Tully-Fisher discussed in Sect. 3, and the data processing in Sects. 4, distances. First applications of this KLUN programme, 5, and 6. Finally, Sect. 7 presents our conclusions on ob- dedicated to the study of the Kinematics of the Local servational errors and completeness of the HI-sample. UNiverse, started in 1990 (Paturel et al. 1990) and cover several topics of discussion on: Send offprint requests to: [email protected] 2. Observations ? Figure 5 and Appendices A and B for correspond- ing comments are available in electronic form at the The totality of these observations has been carried out http://www.edpsciences.com with the meridian-transit Nan¸cay radiotelescope (France). ?? Table 2 is only available in electronic form at the CDS This instrument is a single dish antenna with a collecting via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via area of 6912 m2 (200 × 34.56) equivalent to that of a 94 http://cdsweb.u-strasbg.fr/Abstract.html m-diameter parabolic dish. The half-power beam width at 334 G. Theureau et al.: Kinematics of the local universe. VII. 21-cm is 3.6 arcmin (EW) × 22 arcmin (NS) (at zero dec- lination). The minimal system temperature at δ =15◦ is about 37 K in both horizontal and vertical polarizations. The spectrometer is a 1024-channel autocorrelator of 6.4 MHz bandwidth. The spacing of the channels corresponds to 2.6 km s−1 at 21 cm with a bank of 512 channels in each polarization. After boxcar smoothing the final resolution is typically 10 km s−1. In the velocity-search mode the 1024 channels are split in four banks of 256 channels leading to a range of 4800 km s−1 (generally from 400 to 5200 km s−1 or from 5200 to 10000 km s−1). The gain of the antenna has been calibrated according to Fouqu´e et al. 1990; the final HI-fluxes (Table 2) are expressed by using as refer- ence a set of 9 calibrator galaxies regularly observed since 1988 (see Sect. 6). We used the Nan¸cay processing package SIR (Syst`eme Interactif de R´eduction). The processing chain consists of a selection of good observation cycles (one “observation” is a series of on/off observational sequences), the straight- ening of the base-line by a polynomial fit, and the appli- cation of a boxcar smoothing. The maximum of the line is determined by eye as the mean value of the maxima of each profile’s horn after taking into account the medium noise (evaluated in the base-line). The widths, measured at the standard levels 20% and 50% of that maximum, correspond to the “distance” separating the two external points of the profile at these intensity levels. The total list of corrected HI-astrophysical pa- rameters (Table 2), 21-cm line profiles (Fig. 5), and their corresponding comments (Appendix A and B), Fig. 1. detection rate as a function of: a) inclination, b) Type, c) radial velocity, for galaxies of known velocity is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html or via http://www.edpsciences.com. As an example, the first detection rate of 86.3% (In fact, almost 90% if confused page of Table 2 and Fig. 5 are presented at the end of profile due to close companions are taken into account). this paper. In the same way, for the velocity search mode which con- cerned 890 objects (hereafter Sample II), we got 540 new velocities and HI profiles, corresponding to a mean detec- 3. HI detection rate tion rate of 61%. The investigation of the HI line detection rate is of great However, it is important to make a more detailed interest with regard to the HI-completeness of Tully- study: we could suspect, for example, that very inclined Fisher catalogues. In particular, this HI-completeness is objects (edge-on spirals), which have generally a rather required to insure against biases by using the inverse re- wide profile for a low signal to noise ratio, are less eas- lation (log Vm = aM + b; see Ekholm & Teerikorpi 1997), ily detectable than face-on objects. Early type spirals, or the TF-21 relation (MHI = a log Vm + b,whereMHI is which contain less neutral hydrogen gas than late type the HI mass); note that the latter relies exclusively (ex- spirals, are also expected to be less detectable. Finally, cept for the inclination of the objects) upon parameters for galaxies having a known radial velocity, it is interest- derived from the HI profile of a galaxy (Dole & Theureau ing to study the detection rate with increasing redshift. 1997). Figures 1a (resp. 2a), 1b (resp. 2b), and 1c show the detec- Concerning the detection rate, it is pertinent to ex- tion rate (broken line) respectively as a function of incli- amine separately the observations for which the radial ve- nation, morphological type, and radial velocity for Sample locity is known from the literature, and those which first I (resp. Sample II). The histogram on the bottom of each require a radio velocity search. 1821 galaxies of our pro- panel represents the ratio of the number of objects rel- gramme (hereafter Sample I) had already a published ra- ative to the total sample size (samples I or II). For this dial velocity, and 1572 of these have been successfully ob- ratio n/ntot, in Figs. 1a, 1c, and 2a, the scale of the actual served at Nan¸cay. This proportion corresponds to a mean vertical axis must be divided by 10. G. Theureau et al.: Kinematics of the local universe. VII. 335 (Cols. 7 and 9) have been corrected to the optical velocity scale. According to Fouqu´e et al. (1990), the mean mea- surement error is equal to 3 · σ(V20)and2·σ(V20)for the 20% and 50% widths, respectively. We give in column 11 the derived value of the logarithm of the maximum of circular velocity log Vm. It has been calculated as follows. The widths W20 and W50 are first corrected for resolution effect: Wl,R=0 = Wl,R +(0.014 · l − 0.83) for l =20andl= 50 (Bottinelli et al. 1990), and further corrected for internal velocity dispersion: 2 2 2 2 2 2 −Ws /wr −Ws /wr Wc = W + wt (1 − 2e ) − 2W · wt(1 − e ) where wt =2σz·k(l), assuming an isotropic distribu- −1 tion of the non-circular motions σz =12kms and a nearly Gaussian velocity distribution (k(20)=1.96 and k(50)=1.13; Fouqu´e et al. 1990). Corrected W20 and W50 are finally used to calculate log Vm: Fig. 2. detection rate as a function of: a) inclination, b) Type, log V =(2logW +logW )/3 − log(2sinincl).
Recommended publications
  • October 2006
    OCTOBER 2 0 0 6 �������������� http://www.universetoday.com �������������� TAMMY PLOTNER WITH JEFF BARBOUR 283 SUNDAY, OCTOBER 1 In 1897, the world’s largest refractor (40”) debuted at the University of Chica- go’s Yerkes Observatory. Also today in 1958, NASA was established by an act of Congress. More? In 1962, the 300-foot radio telescope of the National Ra- dio Astronomy Observatory (NRAO) went live at Green Bank, West Virginia. It held place as the world’s second largest radio scope until it collapsed in 1988. Tonight let’s visit with an old lunar favorite. Easily seen in binoculars, the hexagonal walled plain of Albategnius ap- pears near the terminator about one-third the way north of the south limb. Look north of Albategnius for even larger and more ancient Hipparchus giving an almost “figure 8” view in binoculars. Between Hipparchus and Albategnius to the east are mid-sized craters Halley and Hind. Note the curious ALBATEGNIUS AND HIPPARCHUS ON THE relationship between impact crater Klein on Albategnius’ southwestern wall and TERMINATOR CREDIT: ROGER WARNER that of crater Horrocks on the northeastern wall of Hipparchus. Now let’s power up and “crater hop”... Just northwest of Hipparchus’ wall are the beginnings of the Sinus Medii area. Look for the deep imprint of Seeliger - named for a Dutch astronomer. Due north of Hipparchus is Rhaeticus, and here’s where things really get interesting. If the terminator has progressed far enough, you might spot tiny Blagg and Bruce to its west, the rough location of the Surveyor 4 and Surveyor 6 landing area.
    [Show full text]
  • Star Clusters in Local Group Galaxies 3
    Massive Stellar Clusters ASP Conference Series, Vol. XX, 2000 A. Lan¸con & C. Boily, eds. Star Clusters in Local Group Galaxies – Impact of Environment on Their Evolution and Survival Eva K. Grebel1,2 1University of Washington, Department of Astronomy, Box 351580, Seattle, WA 98195, USA 2Hubble Fellow Abstract. Star clusters are found in ∼40% of the Local Group galax- ies. Their properties are reviewed. The impact of galaxy environment on the evolution and survival of star clusters is discussed. Possible evi- dence for cluster formation triggered by galaxy interactions, gradients in cluster size, metallicity and stellar content with galactocentric radius and variations as a function of galaxy type are briefly summarized. 1. Introduction Star clusters in Local Group galaxies comprise a wide range of roughly coeval stellar agglomerates ranging from globular clusters to associations, from very metal-poor objects to clusters with solar and higher metallicity, and from ancient populations to embedded young clusters. Three basic types of such clusterings are observed: globular clusters, open clusters, and associations. 1.1. Globular Clusters Globular clusters are centrally concentrated, spherical systems with masses of 4.2 ∼< log M[M⊙] ∼< 6.6 and tidal radii ranging from ∼ 10 to ∼ 100 pc. They are bound, long-lived (∼>10 Gyr) objects whose lifetimes may extend to a Hubble arXiv:astro-ph/9912529v2 30 Dec 1999 time or beyond, though due to various efficient destruction mechanisms the presently observed globulars are likely just a lower limit of the initial number of globular clusters. Globular clusters have been observed in all known types of galaxies, but many of the less massive galaxies do not contain globular clusters.
    [Show full text]
  • View the Energy Map of Trinidad and Tobago, 2017 Edition
    Trinidad and Tobago LNG export destinations 2015 (million m3 of LNG) Trinidad and Tobago deepwater area for development 60°W 59°W 58°W Trinidad and Tobago territorial waters ENERGY MAP OF TRINIDAD AND TOBAGO 1000 2000 m m 2017 edition GRENADA BARBADOS Trinidad and Tobago 2000m LNG to Europe A tlantic Ocean 2.91 million m3 LNG A TLANTIC Caribbean 2000m 20 Produced by Petroleum Economist, in association with 00 O CEAN EUROPE Sea m Trinidad and Tobago 2000m LNG to North America NORTH AMERICA Trinidad and Tobago 5.69 million m3 LNG LNG to Asia 3 GO TTDAA 30 TTDAA 31 TTDAA 32 BA 1.02 million m LNG TO Trinidad and Tobago OPEN OPEN OPEN 12°N LNG to MENA 3 1.90 million m LNG ASIA Trinidad and Tobago CARIBBEAN TRINIDAD AND TOBAGO 2000m LNG to Caribbean Atlantic LNG Company profile Company Profile Company profile Company Profile 3 Established by the Government of Trinidad and Tobago in August 1975, The National Gas Company of Trinidad and Tobago Limited (NGC) is an BHP Billiton is a leading global resources company with a Petroleum Business that includes exploration, development, production and marketing Shell has been in Trinidad and Tobago for over 100 years and has played a major role in the development of its oil and gas industry. Petroleum Company of Trinidad and Tobago Limited (Petrotrin) is an integrated Oil and Gas Company engaged in the full range of petroleum 3.84 million m LNG internationally investment-graded company that is strategically positioned in the midstream of the natural gas value chain.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Evaluation of the National Guideline Clearinghouse (NGC)
    Final Report Evaluation of AHRQ’s National Guideline Clearinghouse™ (NGC) Agency for Healthcare Research and Quality August 31, 2011 AFYA, Inc. 8101 Sandy Spring Road, Third Floor Laurel, MD 20707 Final Contract Report: NGC Evaluation Final Submitted: 9/29/2011 Final Contract Report Evaluation of AHRQ’s National Guideline Clearinghouse™ (NGC) Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov Prepared by: AFYA, Inc. Analytical and Technical Support Division 8101 Sandy Spring Road, Third Floor Laurel, MD 20707 Authors: Michelle Bieber-Tregear AFYA, Inc. Jenice James AFYA, Inc. Debra Dekker AFYA, Inc. Craig Dearfield AFYA, Inc. Jaclyn Marshall Lewin Group Jacob Epstein Lewin Group Carol Simon Lewin Group Financial Declarations None of the authors has any affiliations or financial involvement that conflict with the material presented in this report. Policy Statement This report was prepared by AFYA, Inc. and The Lewin Group under Contract No. 4203; Order No. 3, entitled “Evaluation of the National Guideline Clearinghouse™ (NGC),” with the Department of Health and Human Services’ Agency for Healthcare Research and Quality. Table of Contents List of Figures............................................................................................................................ 5 List of Tables ............................................................................................................................. 6 AHRQ Contract No. 4203;
    [Show full text]
  • The Seyfert Galaxy Population
    FIELD GALAXIES MARKARIAN GALAXIES OPTICALLY SELECTED^ QUASARS (LOCAL! KVKRT MF.rRS A/1 INI S-mf—8648 THE SEYFERT GALAXY POPULATION a radio survey; luminosity functions; related objects THE SEYFERT GALAXY POPULATION a radio survey; luminosity functions; related objects proefschrift ter verkrijging van de graad van Doctor in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit te Leiden, op gezag van de Rector Magnificus Dr. AAH. Kassenaar, hoogleraar in de Faculteit der Geneeskunde, volgens besluit van het College van Dekanen te verdedigen op maandag 14 juni 1982 te klokke 14.15 uur door Evert Johan Alexander Meurs geboren te Amsterdam in 1950 Sterrewacht Leiden 1982 Beugelsdijk Leiden B.V. r Promotor: Prof. Dr. H. van der Laan Referenten: Prof. Dr. H.C. van de Hulst Dr. A.G. de Bruyn Voor mijn noeder, in herinnering, en voor Wouter TABLE OF CONTENTS CHAPTER I INTRODUCTION AND SYNOPSIS page 1. Seyfert galaxies 2. Contents of this thesis CHAPTER II OPTICAL POSITIONS OF SEYFERT GALAXIES 15 1. Introduction 2. Accurate Optical Positions of Seyfert Galaxies A.S.Wilson and E.J.A. Meurs, 1978, As iron.As trophys. Suppl.Ser. 33_,407 3. Further measurements CHAPTER III A RADIO SURVEY OF SEYFERT GALAXIES 25 1. A 1415 MHz Survey of Seyfert and Related Galaxies-II E.J.A. Meurs and A.S. Wilson, 1981, Astron.Astrophys. Suppl.Ser. 45,99 2. A 14)5 MHz Survey of Seyfert and Related Galaxies-III (In collaboration with A.S. Wilson.) CHAPTER IV LUMINOSITY FUNCTIONS OF SEYFERT GALAXIES 57 1. Introduction 2. Observational data 3. The optical luminosity function of Seyfert galaxies 4.
    [Show full text]
  • My Finest NGC Album
    My Finest NGC Album A detailed record of my journey through The Royal Astronomical Society of Canada’s Finest NGC list Name: ______________________________ Centre or Home Location: ______________________________ The New General Catalogue or NGC contains 7,840 entries and forms the core of most people's " life list" of observing targets. The NGC was originally published in 1888 by J.L.E. Dreyer and therefore predated photographic astronomy. The Finest NGC list, compiled by Alan Dyer complements the Messier List, as there is no overlap. The list features many fine deep-sky treasures as well as a few somewhat more challenging objects. Once you have observed all of the objects on this list, application forms can be found on the RASC website at www.rasc.ca. The FNGC certificate has been awarded since 1995. Here is an overview of the Finest NGC Observing List Finest NGC Objects Number Notes Open Clusters 12 Including the famous Double Cluster in Perseus, NGC 7789 in Cassiopeia, and NGC 6633 in Ophiuchus. Globular Clusters 2 NGC 5466 in Bootes and NGC 6712 in Scutum. Diffuse Nebulae 14 Includes the great Veil Nebula as well as the North America and Rosette nebulae. Planetary Nebulae 24 Includes many fine PN's like the Ghost of Jupiter, the Cat's Eye, the Blinking Planetary, the Helix, the Blue Snowball, and the Clown Face nebulae. Galaxies 58 Includes the amazing NGC 4565 in Coma Berenices, NGC 253 in Sculptor, and NGC 5907 in Draco. Total 110 The Finest NGC list can be started during any season. Why Record Your Observations? Recording observations is important for two reasons.
    [Show full text]
  • Gear-Flex Coupling
    RATHI TRANSPOWER PVT. LTD. PUNE - INDIA PRODUCT MANUAL GEAR-FLEX COUPLING TYPE – LFG/LHG R-PM-G-01/02-01/14 Page 1 INDEX CONTENTS PAGE • Standard Features 3 • At a Glance 3 • Gear-flex Family 4 • Std. Material of Construction 4 • Ratings for Standard couplings 5 • Weight & M.I. for standard couplings 6 • Customized Gear-flex Specials 7 • Half Flex Couplings with Floating Shafts 7 • Spacer Couplings 8 • Reversed Hub Combinations 8 • Lubricants 9 • Requirements of API-671 9 • Selection of Size of Coupling 10 • Typical Service Factors 11-13 • Std. Tolerances for Finish Bore & Keyway 14 • Applications 14 • Gear-flex couplings equivalent to Competitor’s couplings 15-18 R-PM-G-01/02-01/14 Page 2 GEAR-FLEX COUPLING STANDARD FEATURES OF GEAR-FLEX COUPLING ♦ Less backlash. ♦ High power to weight ratio. ♦ Compact assembly. ♦ Accommodates angular, parallel & axial misalignments. ♦ Generally used up to 120°C. Can be used for higher temperatures by using proper grade of oil or grease. ♦ Can be dynamically balanced to the required grade as per ISO-1940. AT A GLANCE SIZES Full Flexible Type LFG - 100 to 119 (20 sizes) Half Flexible Type LHG - 100 to 110 (11 sizes) RATING RANGE TYPE LFG - 5.9 kW to 17454 kW @ 100 rpm TYPE LHG- 5.9 kW to 963 kW @ 100 rpm TORQUE RANGE TYPE LFG - 559 Nm to 1666744 Nm TYPE LHG- 559 Nm to 91922 Nm BORE RANGE TYPE LFG - 13 mm. to 710 mm. TYPE LHG- 13 mm. to 260 mm. ANGULAR MISALIGNMENT - 1.5° per gear mesh Maximum COMPLIANCE WITH API-671 SPECIFICATIONS, IF REQD.
    [Show full text]
  • A Classical Morphological Analysis of Galaxies in the Spitzer Survey Of
    Accepted for publication in the Astrophysical Journal Supplement Series A Preprint typeset using LTEX style emulateapj v. 03/07/07 A CLASSICAL MORPHOLOGICAL ANALYSIS OF GALAXIES IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G) Ronald J. Buta1, Kartik Sheth2, E. Athanassoula3, A. Bosma3, Johan H. Knapen4,5, Eija Laurikainen6,7, Heikki Salo6, Debra Elmegreen8, Luis C. Ho9,10,11, Dennis Zaritsky12, Helene Courtois13,14, Joannah L. Hinz12, Juan-Carlos Munoz-Mateos˜ 2,15, Taehyun Kim2,15,16, Michael W. Regan17, Dimitri A. Gadotti15, Armando Gil de Paz18, Jarkko Laine6, Kar´ın Menendez-Delmestre´ 19, Sebastien´ Comeron´ 6,7, Santiago Erroz Ferrer4,5, Mark Seibert20, Trisha Mizusawa2,21, Benne Holwerda22, Barry F. Madore20 Accepted for publication in the Astrophysical Journal Supplement Series ABSTRACT The Spitzer Survey of Stellar Structure in Galaxies (S4G) is the largest available database of deep, homogeneous middle-infrared (mid-IR) images of galaxies of all types. The survey, which includes 2352 nearby galaxies, reveals galaxy morphology only minimally affected by interstellar extinction. This paper presents an atlas and classifications of S4G galaxies in the Comprehensive de Vaucouleurs revised Hubble-Sandage (CVRHS) system. The CVRHS system follows the precepts of classical de Vaucouleurs (1959) morphology, modified to include recognition of other features such as inner, outer, and nuclear lenses, nuclear rings, bars, and disks, spheroidal galaxies, X patterns and box/peanut structures, OLR subclass outer rings and pseudorings, bar ansae and barlenses, parallel sequence late-types, thick disks, and embedded disks in 3D early-type systems. We show that our CVRHS classifications are internally consistent, and that nearly half of the S4G sample consists of extreme late-type systems (mostly bulgeless, pure disk galaxies) in the range Scd-Im.
    [Show full text]
  • Download This Article in PDF Format
    A&A 625, A50 (2019) Astronomy https://doi.org/10.1051/0004-6361/201834941 & c ESO 2019 Astrophysics Single metal-poor ultra compact dwarf galaxy at one kiloparsec distance from the low-mass elliptical galaxy FCC 47?,?? Katja Fahrion1, Iskren Georgiev2, Michael Hilker1, Mariya Lyubenova1, Glenn van de Ven3, Mayte Alfaro-Cuello2, Enrico M. Corsini4,5, Marc Sarzi6,7, Richard M. McDermid8, and Tim de Zeeuw9,10 1 European Southern Observatory, Karl Schwarzschild Straße 2, 85748 Garching bei München, Germany e-mail: [email protected] 2 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany 3 Department of Astrophysics, University of Vienna, Türkenschanzstrasse 17, 1180 Wien, Austria 4 Dipartimento di Fisica e Astronomia “G. Galilei”, Universitá di Padova, Vicolo dell’Osservatorio 3, 35122 Padova, Italy 5 INAF-Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padova, Italy 6 Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, UK 7 Centre for Astrophysics Research, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK 8 Department of Physics and Astronomy, Macquarie University, North Ryde, NSW 2109, Australia 9 Sterrewacht Leiden, Leiden University, Postbus 9513, 2300, RA Leiden, The Netherlands 10 Max-Planck-Institut für extraterrestrische Physik, Gießenbachstraße 1, 85748 Garching bei München, Germany Received 21 December 2018 / Accepted 1 April 2019 ABSTRACT Context. Photometric surveys of galaxy clusters have revealed a large number of ultra compact dwarfs (UCDs) around predominantly massive elliptical galaxies. Their origin is still debated as some UCDs are considered to be the remnant nuclei of stripped dwarf galaxies while others seem to mark the high-mass end of the star cluster population.
    [Show full text]
  • DSO List V2 Current
    7000 DSO List (sorted by name) 7000 DSO List (sorted by name) - from SAC 7.7 database NAME OTHER TYPE CON MAG S.B. SIZE RA DEC U2K Class ns bs Dist SAC NOTES M 1 NGC 1952 SN Rem TAU 8.4 11 8' 05 34.5 +22 01 135 6.3k Crab Nebula; filaments;pulsar 16m;3C144 M 2 NGC 7089 Glob CL AQR 6.5 11 11.7' 21 33.5 -00 49 255 II 36k Lord Rosse-Dark area near core;* mags 13... M 3 NGC 5272 Glob CL CVN 6.3 11 18.6' 13 42.2 +28 23 110 VI 31k Lord Rosse-sev dark marks within 5' of center M 4 NGC 6121 Glob CL SCO 5.4 12 26.3' 16 23.6 -26 32 336 IX 7k Look for central bar structure M 5 NGC 5904 Glob CL SER 5.7 11 19.9' 15 18.6 +02 05 244 V 23k st mags 11...;superb cluster M 6 NGC 6405 Opn CL SCO 4.2 10 20' 17 40.3 -32 15 377 III 2 p 80 6.2 2k Butterfly cluster;51 members to 10.5 mag incl var* BM Sco M 7 NGC 6475 Opn CL SCO 3.3 12 80' 17 53.9 -34 48 377 II 2 r 80 5.6 1k 80 members to 10th mag; Ptolemy's cluster M 8 NGC 6523 CL+Neb SGR 5 13 45' 18 03.7 -24 23 339 E 6.5k Lagoon Nebula;NGC 6530 invl;dark lane crosses M 9 NGC 6333 Glob CL OPH 7.9 11 5.5' 17 19.2 -18 31 337 VIII 26k Dark neb B64 prominent to west M 10 NGC 6254 Glob CL OPH 6.6 12 12.2' 16 57.1 -04 06 247 VII 13k Lord Rosse reported dark lane in cluster M 11 NGC 6705 Opn CL SCT 5.8 9 14' 18 51.1 -06 16 295 I 2 r 500 8 6k 500 stars to 14th mag;Wild duck cluster M 12 NGC 6218 Glob CL OPH 6.1 12 14.5' 16 47.2 -01 57 246 IX 18k Somewhat loose structure M 13 NGC 6205 Glob CL HER 5.8 12 23.2' 16 41.7 +36 28 114 V 22k Hercules cluster;Messier said nebula, no stars M 14 NGC 6402 Glob CL OPH 7.6 12 6.7' 17 37.6 -03 15 248 VIII 27k Many vF stars 14..
    [Show full text]
  • 4.5 Meter Pedestal Mountesa
    earth stations 4.5 Meter Pedestal Mount ESA Like all ASC Signal earth station antennas, the 4.5 Meter Earth Station Antenna provides high gain and exceptional pattern characteristics. This antenna systemis designed to addressthe stringent requirements of both the television broadcast industry and telecommunications network operators who demand unsurpassed flexibility and electrical performance in high-quality, cost-effective, and reliable packages. & The electrical performance and exceptional versatility provides the ability to configure the antenna in C , X- and Ku bands with the - - v proper selection of feed and combiner systems. That versatility is provided at the time of initial purchase, as well as in the future, as h your satellite communication requirements evolve. This antenna system is used worldwide in broadcast applications and Features high density data, voice and communications networks. The ASC • Self-aligning main reflector requires no field alignment Signal 4.5 meter earth station antenna features a computer-optimized prime focus optics system and close-tolerance manufacturing • Prime focus feed system optics and fully shaped parabolic techniques. - main reflector provide excellent pattern characteristics This combination provides extremely accurate surface contour 3 year warranty on all structural components resulting in exceptionally high gain and closely controlled pattern • characteristics. ASC Signal earth station antennas provide maximum • C, X, Ku Band Capabilities durability with minimal maintenance. Communicalions tV Power lihlustnes asc signal division 1 PBESA45MPED. F All designs, specifications, and availabilities of products and services presented in this bulletin are subject to change without notice. (1016A) QSCSignal © 2016 CPI ASC Signal Division earth stations 4.5 Meter Pedestal Mount ESA Design Standards Mechanical Performances The 4.5m Antenna mechanical general specifications and performances are Reflector Aluminum painted with highly diffusive white listed in below table.
    [Show full text]