Genetics of Resistance to Reniform Nematode, Rotylenchulus Reniformis Linford and Oliveira, in Cotton, Gossypium Hirsutum L

Total Page:16

File Type:pdf, Size:1020Kb

Genetics of Resistance to Reniform Nematode, Rotylenchulus Reniformis Linford and Oliveira, in Cotton, Gossypium Hirsutum L Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1988 Genetics of Resistance to Reniform Nematode, Rotylenchulus Reniformis Linford and Oliveira, in Cotton, Gossypium Hirsutum L. Noor Muhammad Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Muhammad, Noor, "Genetics of Resistance to Reniform Nematode, Rotylenchulus Reniformis Linford and Oliveira, in Cotton, Gossypium Hirsutum L." (1988). LSU Historical Dissertations and Theses. 4586. https://digitalcommons.lsu.edu/gradschool_disstheses/4586 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS The most advanced technology has been used to photo­ graph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are re­ produced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35mm slide or as a 17" x 23" black and white photographic print for an additional charge. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road Ann Arbor. Ml 48106-1346 USA 313. 761 -4700 800 521-0600 Order Number 8004555 Genetics of resistance to reniform nematode,RotyUnchulus rtniformis Linford and Oliveira, in cotton,Gossypium hirsutum L. Muhammad, Noor, Ph.D. The Louisiana State University and Agricultural and Mechanical Col., 1988 UMI 300 N. Zecb Rd. Ann Arbor. MI 48106 GENETICS OF RESISTANCE TO RENIFORM NEMATODE, ROTYLENCHULUS RENIFORMIS LINFORD AND OLIVEIRA, IN COTTON, GOSSYPIUM HIRSUTUM L. A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agr icultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Agronomy by Noor Muhammad B. Sc. (Hons.), University of Agriculture, Faisalabad, Pakistan, 1972 M. Sc. (Hons.), University of Agriculture, Faisalabad, Pakistan, 1976 August 1988 ACKNOWLEDGEMENTS The author wishes to express his admiration to his major professor, Dr. Jack E. Jones, Professor of Agronomy, Louisiana State University, for his encouragement, advice and dedication. The author expresses sincere thanks to the members of his advisory committee, Dr. Jerry B. Graves, Dr. M. S. Kang, Dr. B. G. Harville, Dr. S. A. Harrison and Dr. E. C. McGawley for their interest and valuable comments. Di. S G. Harville, not only provided the research equipment, but also extended full cooperation during the course of this research. The author gratefully acknowledges the advice, guidance, and encouragement of Dr. E. C . McGawley regarding techniques in inoculat ion and assessing populations of the reniform nematode used in this research. The technical assistance of Ms. K. L. Winchell and Dr. J. P. Beasley Jr. in similar activity is greatly appreciated. Dr. M. S. Kang played a major role in genetic analyses of the data and author gratefully acknowledges his efforts and guidance during the course of this investigation. The author sincerely appreciates the help, cooperation and guidance of Dr. A. M. Saxton in the statistical analysis of the data and wishes to express his gratitude to him. The author is greatly impressed by the enthusiasm, dedication and professional guidance of Dr. S. A. Harrison from the very beginning of this study. The assistance of research associates, Mr. J. I. Dickson, Mr. W. C. Smith and Dr. S. J. Stringer is gratefully acknowledged. The financial assistance by the U. S. Agency for International Development and the opportunity provided by the Government of Pakistan ii is greatly appreciated. The author is grateful to the program manager, Mr. Kevin Schieffer, program specialists, Ms. Julie Ann Iselin and Ms. Zaiga Robins, and staff of the Pakistan Participant Training Program, Washington, D. C. for continuous moral support, and timely payment of tuition fees and allowances. The author expresses his love and appreciation to his mother and late father, Saira and Muhammad Ali, for their patience, prayers, support, and love during his education. He also wishes to thank his elder brothers, sisters, parents-in-law and other relatives for their love, prayers, and support. The author sincerely appreciates the patience and love of his wife, Surria and lovely children, Maimoona, Naveed, Lubna, Aneela and Aisha. Most of all, the author is thankful to the almighty God for his mercy and graciousness. iii LIST OK TABI.ES Tables Page 1 Inoculat ion dates, days for Rotylenchulus reniformis development and air temperature regimmes for three cotton crosses tested for reniform nematode resistance in the greenhouse................................................... 35 2 Mean reniform nematode eggs per root system and eggs per gram of root of the parents and progenies of crosses in Experiment 1 (La. RN 910 x DP 41)..................................... 43 3 Mean reniform nematode eggs per root system and eggs per gram of root of the parents and progenies of crosses in Experiment 2 (Auburn 612 RNR x DP41)...................................... 44 4 Mean reniform nematode eggs per root system and eggs per gram of root of the parents and progenies of crosses in Experiment 3 (M 019-RNR x DP 41)........................................46 5 Analyses of variance of resistance to reniform nematode as measured by number of eggs per root system and eggs per gram of root of the parents and progenies oi crosses in Experiment 1 (La. RN 910 x DP 41)............................... 48 6 Analyses of variance of resistance to reniform nematode as measured by number of eggs per root system and eggs per gram of root of the parents and progenies of crosses in Experiment 2 (Auburn 612 RNR x DP 41)...........................50 7 Analyses of variance of resistance to reniform nematode as measured by number of eggs per root system and eggs per gram of root of the parents and progenies of crosses in Experiment 3 (M 019-RNR x DP 41)............................ 52 8 Frequency distribution of number of eggs per root system for six populations at Planting 1, Experiment 1 (La. RN 910 x DP 41).............................................................. 54 9 Frequency distribution of number of eggs per root system for six populations at Planting 2, Experiment 1 (La. RN 910 x DP 41)......................................................... 55 10 Frequency distribution of number of eggs per gram of root for six populations at Planting 1, Experiment 1 (La. RN 910 x DP 41)......................................................... 56 Frequency distribution of number of eggs per gram of root for six populations at Planting 2, Experiment 1 (La. RN 910 x DP 41)......................................................... 57 v 12 Frequency distribution of number of eggs per root system for six populations at Planting 1, Experiment 2 (Auburn 612 RNR x DP 41)................................................ 58 13 Frequency distribution of number of eggs per root system for six populations at Planting 2, Experiment 2 (Auburn 612 RNR x DP 41)................................................ 59 14 Frequency distribution of number of eggs per gram of root for six populations at Planting 1, Experiment 2 (Auburn 612 RNR x DP 41)..................................................... 60 15 Frequency distribution of number of eggs per gram of root for six populations at Planting 2, Experiment 2 (Auburn 612 RNR DP 41)................................................ 61 16 Frequency distribution of number of eggs per root system for six populations at Planting 1, Experiment 3 (M 019-RNR x DP 41)........................................................ 62 17 Frequency distribution of number of eggs per root system for six populations at Planting 2, Experiment 3 (M 019-RNR x DP 41)....................................................... 63 18 Frequency distribution of number of eggs per gram of root for six populations at Planting 1, Experiment 3 (M 019-RNR x DP 41 )....................................................... 64 19 Frequency distribution
Recommended publications
  • Fusarium Wilt of Bananas: a Review of Agro-Environmental Factors in the Venezuelan Production System Affecting Its Development
    agronomy Perspective Fusarium Wilt of Bananas: A Review of Agro-Environmental Factors in the Venezuelan Production System Affecting Its Development Barlin O. Olivares 1,*, Juan C. Rey 2 , Deyanira Lobo 2 , Juan A. Navas-Cortés 3 , José A. Gómez 3 and Blanca B. Landa 3,* 1 Programa de Doctorado en Ingeniería Agraria, Alimentaria, Forestal y del Desarrollo Rural Sostenible, Campus Rabanales, Universidad de Córdoba, 14071 Cordoba, Spain 2 Facultad de Agronomía, Universidad Central de Venezuela, Maracay 02105, Venezuela; [email protected] (J.C.R.); [email protected] (D.L.) 3 Instituto de Agricultura Sostenible, Consejo Superior de Investigaciones Científicas, 14004 Cordoba, Spain; [email protected] (J.A.N.-C.); [email protected] (J.A.G.) * Correspondence: [email protected] (B.O.O.); [email protected] (B.B.L.) Abstract: Bananas and plantains (Musa spp.) are among the main staple of millions of people in the world. Among the main Musaceae diseases that may limit its productivity, Fusarium wilt (FW), caused by Fusarium oxysporum f. sp. cubense (Foc), has been threatening the banana industry for many years, with devastating effects on the economy of many tropical countries, becoming the leading cause of changes in the land use on severely affected areas. In this article, an updated, reflective and practical review of the current state of knowledge concerning the main agro-environmental factors Citation: Olivares, B.O.; Rey, J.C.; that may affect disease progression and dissemination of this dangerous pathogen has been carried Lobo, D.; Navas-Cortés, J.A.; Gómez, J.A.; Landa, B.B. Fusarium Wilt of out, focusing on the Venezuelan Musaceae production systems.
    [Show full text]
  • Population Variability of Rotylenchulus Reniformis in Cotton Agroecosystems Megan Leach Clemson University, [email protected]
    Clemson University TigerPrints All Dissertations Dissertations 12-2010 Population Variability of Rotylenchulus reniformis in Cotton Agroecosystems Megan Leach Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Plant Pathology Commons Recommended Citation Leach, Megan, "Population Variability of Rotylenchulus reniformis in Cotton Agroecosystems" (2010). All Dissertations. 669. https://tigerprints.clemson.edu/all_dissertations/669 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. POPULATION VARIABILITY OF ROTYLENCHULUS RENIFORMIS IN COTTON AGROECOSYSTEMS A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Plant and Environmental Sciences by Megan Marie Leach December 2010 Accepted by: Dr. Paula Agudelo, Committee Chair Dr. Halina Knap Dr. John Mueller Dr. Amy Lawton-Rauh Dr. Emerson Shipe i ABSTRACT Rotylenchulus reniformis, reniform nematode, is a highly variable species and an economically important pest in many cotton fields across the southeast. Rotation to resistant or poor host crops is a prescribed method for management of reniform nematode. An increase in the incidence and prevalence of the nematode in the United States has been reported over the
    [Show full text]
  • Diseases of Trees in the Great Plains
    United States Department of Agriculture Diseases of Trees in the Great Plains Forest Rocky Mountain General Technical Service Research Station Report RMRS-GTR-335 November 2016 Bergdahl, Aaron D.; Hill, Alison, tech. coords. 2016. Diseases of trees in the Great Plains. Gen. Tech. Rep. RMRS-GTR-335. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 229 p. Abstract Hosts, distribution, symptoms and signs, disease cycle, and management strategies are described for 84 hardwood and 32 conifer diseases in 56 chapters. Color illustrations are provided to aid in accurate diagnosis. A glossary of technical terms and indexes to hosts and pathogens also are included. Keywords: Tree diseases, forest pathology, Great Plains, forest and tree health, windbreaks. Cover photos by: James A. Walla (top left), Laurie J. Stepanek (top right), David Leatherman (middle left), Aaron D. Bergdahl (middle right), James T. Blodgett (bottom left) and Laurie J. Stepanek (bottom right). To learn more about RMRS publications or search our online titles: www.fs.fed.us/rm/publications www.treesearch.fs.fed.us/ Background This technical report provides a guide to assist arborists, landowners, woody plant pest management specialists, foresters, and plant pathologists in the diagnosis and control of tree diseases encountered in the Great Plains. It contains 56 chapters on tree diseases prepared by 27 authors, and emphasizes disease situations as observed in the 10 states of the Great Plains: Colorado, Kansas, Montana, Nebraska, New Mexico, North Dakota, Oklahoma, South Dakota, Texas, and Wyoming. The need for an updated tree disease guide for the Great Plains has been recog- nized for some time and an account of the history of this publication is provided here.
    [Show full text]
  • Dutch Elm Disease
    DUTCH ELM DISEASE WHAT IS THE THREAT: Dutch Elm disease (DED) is a fungal vascular wilt disease primarily vectored by the elm bark beetle but previously affected trees often infect adjacent tree through root grafts. This disease is fatal if not treated preventively. WHERE IS THE THREAT: The most susceptible elms are English, American and winged elms while Siberian and Chinese elms are considered resistant. Older cities in the mid-west and north-eastern US were once over-planted with these stately trees until the 1970’s when many succumbed to this Early wilt symptoms disease. SYMPTOMS: Infection begins after full leaf out in the spring and appears as faded leaves still attached to twigs. This rapid collapse of tissue is due to death of new xylem cells and loss of water and nutrients. Olive discoloration of new wood appears as ‘streaking’ along the grain when twigs are sampled. Entire branches will wilt throughout the upper canopy within 4-6 weeks and unchecked will lead to tree mortality. Note: squirrel damage can look similar but is identified by the stripped, shredded bark at the base of limbs. WHAT TO DO ABOUT IT: Cut stems showing staining Elms treated preventively with a systemic fungicide such as Propizol® have the best chance for success. However, trees with 15% symptoms or less can still be treated but use the high rate. Wait until all leaves are fully formed prior to treatment and follow the dilution rates for the best distribution. Root grafts between trees within 30 feet of one another should be disrupted by trenching where practical.
    [Show full text]
  • Verticillium Wilt of Trees and Shrubs
    Dr. Sharon M. Douglas Department of Plant Pathology and Ecology The Connecticut Agricultural Experiment Station 123 Huntington Street, P. O. Box 1106 New Haven, CT 06504 Phone: (203) 974-8601 Fax: (203) 974-8502 Founded in 1875 Email: [email protected] Putting science to work for society Website: www.ct.gov/caes VERTICILLIUM WILT OF ORNAMENTAL TREES AND SHRUBS Verticillium wilt is a common disease of a wide variety of ornamental trees and shrubs throughout the United States and Connecticut. Maple, smoke-tree, elm, redbud, viburnum, and lilac are among the more important hosts of this disease. Japanese maples appear to be particularly susceptible and often collapse shortly after the disease is detected. Plants weakened by root damage from drought, waterlogged soils, de-icing salts, and other environmental stresses are thought to be more prone to infection. Figure 1. Japanese maple with acute symptoms of Verticillium wilt. Verticillium wilt is caused by two closely related soilborne fungi, Verticillium dahliae They also develop a variety of symptoms and V. albo-atrum. Isolates of these fungi that include wilting, curling, browning, and vary in host range, pathogenicity, and drying of leaves. These leaves usually do virulence. Verticillium species are found not drop from the plant. In other cases, worldwide in cultivated soils. The most leaves develop a scorched appearance, show common species associated with early fall coloration, and drop prematurely Verticillium wilt of woody ornamentals in (Figure 2). Connecticut is V. dahliae. Plants with acute infections start with SYMPTOMS AND DISEASE symptoms on individual branches or in one DEVELOPMENT: portion of the canopy.
    [Show full text]
  • STUDY on HOST RANGE of RENIFORM NEMATODE (Rotylenchulus Reniformis LINFORD & OLIVEIRA)1)
    26Indonesian Journal of Agriculture 3(1), 2010: 26-31 B. Marwoto STUDY ON HOST RANGE OF RENIFORM NEMATODE 1) (Rotylenchulus reniformis LINFORD & OLIVEIRA) B. Marwoto Indonesian Ornamental Plants Research Institute, Jalan Raya Ciherang, Segunung, Pacet, Cianjur 43253, West Java PO Box 8 Sindanglaya, Phone: (0263) 512607, 516684, Facs.: (0263) 512607, Email: [email protected], [email protected] ABSTRACT due to R. reniformis reach 30% of the total crop production. These yield losses can increase up to 80-100% when the Rotylenchulus reniformis is an important semi-endoparasitic nematodes interact with other pathogens such as bacteria, nematode that attacks different kinds of horticultural crops in fungi, and viruses under a conducive environmental Indonesia. This nematode can be found in lowland and highland condition (Robinson et al. 1997). Intensity of R. reniformis of Indonesia. The most reliable control measures of the nematode were through the application of crop rotation, environmental attack in tropical regions is generally higher than that in sanitation, and eradication of the alternative host plants. This subtropical regions. High temperatures in the tropics requires testing the status of the host plant species of R. reniformis. coupled with the availability of continuous host plants at An experiment was conducted in April 2002 to January 2003 in any time cause life cycle period of the nematode becomes the glasshouse and laboratory of the Indonesian Ornamental shorter, so that in the a year period there is an overlapping Plants Research Institute, Cianjur, West Java (1100 m above sea nematode generation. In the same period, population level, asl.). The experiment was arranged in a completely randomized design with five replications.
    [Show full text]
  • Evaluation of Catenaria Anguillulae and Its Potential Use As a Biological Control Agent Of
    Evaluation of Catenaria anguillulae and its potential use as a biological control agent of Meloidogyne incognita, Heterodera glycines, and Rotylenchulus reniformis by David Robert Dyer A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama December 16, 2017 Copyright © 2017 David R. Dyer Approved by Dr. Kathy Lawrence, Chair, Professor of Entomology and Plant Pathology Dr. Jeffrey Coleman, Assistant Professor of Entomology and Plant Pathology Dr. Yucheng Feng, Professor of Crop, Soil and Environmental Science Dr. Edward Sikora, Extension Specialist Professor of Entomology and Plant Pathology Abstract The overall objectives of this study are 1) to isolate Catenaria sp. from nematode samples, grow them in pure culture, and determine the best culture media and incubation temperatures; 2) identify species of Catenaria found through morphological and molecular techniques; 3) test pathogenicity of Catenaria sp. on Rotylenchulus reniformis, Meloidogyne incognita, and Heterodera glycines in vitro to determine biological control potential; 4) evaluate biological control potential of isolated Catenaria sp. in greenhouse, microplot, and field settings. Catenaria sp. was isolated from R. reniformis and H. glycines and increased on 0.4% beef extract agar (BEA) plates. Sequencing of the internal transcribed spacer (ITS1) and ITS4 regions of Catenaria sp. DNA indicated that isolates of Catenaria sp. obtained from both H. glycines and R. reniformis shared a 95% identity with C. anguillulae. Growth tests were conducted on five different medium and BEA was the only media tested that supported growth of C. anguillulae. Six incubation temperatures ranging from 10-40°C indicated that C.
    [Show full text]
  • Interactions of Rotylenchulus Reniformis and Meloidogyne Incognita on Sweet Potato
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1982 Interactions of Rotylenchulus Reniformis and Meloidogyne Incognita on Sweet Potato. Ronald James Thomas Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Thomas, Ronald James, "Interactions of Rotylenchulus Reniformis and Meloidogyne Incognita on Sweet Potato." (1982). LSU Historical Dissertations and Theses. 3774. https://digitalcommons.lsu.edu/gradschool_disstheses/3774 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1. The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)” . If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed.
    [Show full text]
  • Towards Management of Musa Nematodes in Asia and the Pacific
    The mission of the International Network for the Improvement of Banana and Plantain (INIBAP) is to sustainably increase the productivity of banana and plantain grown on smallholdings for domestic consumption and for local and export markets. The programme has four specific objectives: To organize and coordinate a global research effort on banana and plantain, aimed at the development, evaluation and dissemination of improved banana cultivars and at the conservation and use of Musa diversity. To promote and strengthen collaboration and partnerships in banana-related activities at the national, regional and global levels. To strengthen the ability of NARS to conduct research and development activities on bananas and plantains. To coordinate, facilitate and support the production, collection and exchange of information and documentation related to banana and plantain. INIBAP is a network of the International Plant Genetic Resources Institute (IPGRI), a Future Harvest center. The International Plant Genetic Resources Institute (IPGRI) is an independent international scientific organization that seeks to advance the conservation and use of plant genetic diversity for the well-being of present and future generations. It is one of the 16 Future Harvest Centres supported by the Consultative Group on International Agricultural Research (CGIAR), an association of public and private members who support efforts to mobilize cutting-edge science to reduce hunger and proverty, improve human nutrition and health, and protect the environment. IPGRI has its headquarters in Maccarese, near Rome, Italy, with offices in more than 20 other countries worldwide. The Institute operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources Support Programme and (3) the International Network for the Improvement of Banana and Plantain (INIBAP).
    [Show full text]
  • Reniform Nematode in Louisiana Rotylenchulus Reniformis Linford & Oliveira
    Reniform Nematode in Louisiana Rotylenchulus reniformis Linford & Oliveira During the past two decades, the reniform nema- tode (Rotylenchulus reniformis) has emerged as one of the most important nematode species of plant crops in Louisiana. It attacks a wide range of plant types and is particularly damaging to crops such as cotton, sweet potato, soybeans and many vegetables. This nematode was first reported in Louisiana in the 1940s. Because it was thought to be present in only a few thousand acres in the early 1960s, this pest likely is an invasive species that was introduced into our state in the early part of the 20th century. It spread rapidly throughout the state and was esti- mated to occur in 500,000 acres based on survey work conducted during 1994 and 1995. Most likely, reniform nematode originated in a tropical area. It has the unique ability to survive Fig. 1. A swollen female of the reniform nematode projecting for long periods in very dry soil, much like what is from a cotton root. encountered in many tropical areas. Some tropical areas don’t have summer and winter; instead they have only wet and dry periods. This ability to survive in dried soil for extended periods also could account for the quick spread throughout the state. Anything that could move infested soil, such as farm equipment, birds, flooding or even dust, can contribute to the spread of this nematode. The other characteristic that indicates reniform nematode comes from a trop- ical climate is that it cannot withstand cold climates. Northern Arkansas, southern Tennessee and eastern Virginia seem to be as far north as this nematode can successfully survive.
    [Show full text]
  • Management of Tomato Diseases Caused by Fusarium Oxysporum
    Crop Protection 73 (2015) 78e92 Contents lists available at ScienceDirect Crop Protection journal homepage: www.elsevier.com/locate/cropro Management of tomato diseases caused by Fusarium oxysporum R.J. McGovern a, b, * a Chiang Mai University, Department of Entomology and Plant Pathology, Chiang Mai 50200, Thailand b NBD Research Co., Ltd., 91/2 Rathburana Rd., Lampang 52000, Thailand article info abstract Article history: Fusarium wilt (FW) and Fusarium crown and root rot (FCRR) of tomato (Solanum lycopersicum) caused by Received 12 November 2014 Fusarium oxysporum f. sp. lycopersici and F. oxysporum f. sp. radicis-lycopersici, respectively, continue to Received in revised form present major challenges for production of this important crop world-wide. Intensive research has led to 21 February 2015 an increased understanding of these diseases and their management. Recent research on the manage- Accepted 23 February 2015 ment of FW and FCRR has focused on diverse individual strategies and their integration including host Available online 12 March 2015 resistance, and chemical, biological and physical control. © 2015 Elsevier Ltd. All rights reserved. Keywords: Fusarium oxysporum f. sp. lycopersici F. oxysporum f. sp. radicis-lycopersici Fusarium wilt Fusarium crown and root rot Solanum lycopersicum Integrated disease management Host resistance Biological control Methyl bromide alternatives 1. Background production. Losses from FW can be very high given susceptible host- virulent pathogen combinations (Walker,1971); yield losses of up to Fusarium oxysporum represents a species complex that includes 45% were recently reported in India (Ramyabharathi et al., 2012). many important plant and human pathogens and toxigenic micro- Losses from FCRR in greenhouse tomato have been estimated at up organisms (Nelson et al., 1981; Laurence et al., 2014).
    [Show full text]
  • Review on Disease Management Practice of Tomato Wilt Caused
    atholog P y & nt a M Worku and Sahe, J Plant Pathol Microbiol 2018, 9:11 l i P c f r o o b DOI: 10.4172/2157-7471.1000460 l i Journal of a o l n o r g u y o J ISSN: 2157-7471 Plant Pathology & Microbiology Review ArticleArticle OpenOpen Access Access Review on Disease Management Practice of Tomato Wilt Caused Fusarium oxysporum in Case of Ethiopia Melese Worku1* and Samul Sahe2 1Faculty of Agriculture and Environmental Sciences, Debre Tabor University, Debre Tabor, Ethiopia 2Faculty of Natural and Computational Science, University of Gondar, Gondar, Ethiopia Abstract Tomato (Lycopersicon esculentum) is the world’s largest growing vegetable crop. Many diseases and disorders affect tomatoes during its growing season. F. oxysporum is fungus pathogen widespread soil-borne plant pathogen. This plant pathogenic affects the tomato (Solanum lycopersicum). The recommend that farmer should be used resistant tomato cultivar and recommend fungicide spraying was best control and it were the most effective in reducing diseases’ incidence and increase the yield of tomato. Keywords: Fusarium oxysporum; Tomato; Fungicide Literature Review Introduction Tomato vegetable/fruit Tomato (Lycopersicon esculentum Mill.) belongs to the family Tomato belongs to a large family of plants called the Solanaceae Solanaceae. It is one of the world’s major vegetables with a total which contains many important food crops tomato [10]. Tomato was area and production of 4.4 million ha and 115 million metric tons, originated in South America Andes. The cultivated form first taken to respectively [1]. As it is a relatively short duration crop and gives a Europe by Spanish in the 16th century and from there introduced into high yield, it is economically attractive and the area under cultivation southern and eastern Asia, Africa and the Middle East and distributed is increasing daily.
    [Show full text]