Homework 4 Solutions

Total Page:16

File Type:pdf, Size:1020Kb

Homework 4 Solutions Homework 4 Solutions p Problem 5.1.4. LetpR = fm + n 2 j m; n 2 Zg. 2 2 (a) Show that m +pn 2 is a unit in R if and only if m − 2n = ±1. (b) Show that 1 + 2 has infinite order in R×. (c) Show that 1 and −1 are the only units that have finite order in R×. p Proof. (a) Define a map N : R ! Z where N(r) = m2 − 2n2 where r = m + n 2. One can verify that N is multiplicative, i.e. N(rs) = N(r)N(s) for r; s 2 R. Thus if r 2 R× then rs = q for some s 2 R. This implies 2 2 that N(r)N(s) = N(rs) = N(1) = 1 andp hence N(rp);N(s) 2 Zpimplies that m − 2n = N(r) = ±p1. 2 2 2 2 × For the converse observep that (m + n 2)(m +pn 2)(m − n 2) = (m − 2np) = 1, i.e. m + n 2 2 R . (b) Note that 1 + 2 > 1 and therefore (1 + 2)k > 1k = 1. Therefore 1 + 2 has infinite order. (c) Since R is a subring of R and the only elements in R with finite order in R× are ±1 it follows that the only elements in R× with finite order are ±1. Problem 5.1.5. Let R be a subset of an integral domain D. Prove that if R 6= f0g is a ring under the operations of D, then R is a subring of D. Proof. Since R is a ring under the operations of D, to show that R is a subring of D it's required to show that the identity 1R or R is the same as the identity 1D of D. Note that R and D have the same additive identity since 0R +0R = 0R = 0R +0D ) 0R = 0 = 0D. Now observe that 1R(1D −1R) = 1R ·1D −1R ·1R = 1R −1R = 0. Since D is an integral domain this implies that 1R = 0 or 1D − 1R = 0 and hence 1D = 1R since R 6= f0g ) 1R 6= 0. A counter example when D is not an integral domain is given by D = Z6 and R = f[0]6; [2]6; [4]6g as [4]6 is the identity of R while [1]6 is the identity of D. Problem 5.2.2. Let F be a field and let φ : F ! E be a ring homomorphism. Show that φ is either zero or one-to-one. Proof. If E is the zero ring then φ is zero. If E is not the zero ring then if x 2 F is nonzero then x−1 2 F and φ(x) · φ(x−1) = φ(x · x−1) = φ(1) = 1 6= 0. In particular φ(x) 6= 0. Thus ker φ = f0g and φ is one-to-one. Problem 5.2.5. Show that the identity mapping is the only ring homomorphism from Z into Z. Proof. The identity mapping 1Z is clearly a ring homomorphism. Moreover if φ : Z ! Z is a ring homomorphism then φ(n) = n for any n 2 Z since φ(0) = 0; φ(1) = 1 and for any n > 0; φ(n) = φ(1+···+1) = φ(1)+···+φ(1) = 1 + ··· + 1 = n and φ(−n) = −φ(n) = −n, i.e. φ = 1Z. Problem 5.2.21. Let R1;R2;:::;Rn be commutative rings. Complete the proof of Proposition 5.2.8, to show × ∼ × × × that R = R1 ⊕ R2 ⊕ · · · ⊕ Rn is a commutative ring. Then show that R = R1 × R2 × · · · × Rn . Proof. Since the multiplication on each component is associative and commutative it follows that the multiplica- tion on R is associative and commutative. The identity of R is given by (1; 1;:::; 1). Since the distributive law holds on the components it follows that the distributive law holds for R. Thus R is a commutative ring. Since (a1; a2; : : : ; an)(b1; b2; : : : ; bn) = (1; 1;:::; 1) if and only if aibi = 1 for all i. Thus (a1; a2; : : : ; an) 2 × × × × × × R () ai 2 Ri for all i, i.e. R = R1 × R2 × · · · × Rn . Problem 5.2.23. Show that if R is an integral domain with characteristic p > 0, then for all a; b 2 R we must n n n have (a + b)p = ap + bp. Show by induction that we must also have (a + b)p = ap + bp for all positive integers n. n n! Proof. Recall the binomial coefficient ( m ) = (n−m)!m! for 0 ≤ m ≤ n. Note that for p prime p j p! while p p - (p − m)! and p - m! for 0 < m < p. Thus p j ( m ) for 0 < m < n. By the binomial theorem we have X p (a + b)p = ap + bp + ambp−m m 0<m<p Since R has prime characteristic p it follows from the remarks above that (a + b)p = ap + bp. 1 n n n n+1 n Now suppose that (a + b)p = ap + bp for some positive integer n. Since (a + b)p = ((a + b)p )p, by the n+1 n n n+1 n+1 induction hypothesis and the base case it follows that (a + b)p = (ap + bp )p = ap + bp . Hence the induction is complete and the Freshman's dream is proven in this case. Problem 5.3.10. Let P be a prime ideal of the commutative ring R. Prove that if I and J are ideals of R and if I \ J ⊆ P , then either I ⊆ P or J ⊆ P . Proof. Suppose for a contradiction that I 6⊆ P and J 6⊆ P then there exists i 2 InP and j 2 JnP . However ij 2 I \ J since I and J are ideals. Since I \ J ⊆ P this implies that ij 2 P which contradicts P a prime ideal. Therefore I ⊆ P or J ⊆ P . Problem 5.3.12. Recall that an element of a commutative ring is said to be nilpotent if an = 0 for some positive integer n. (a) Show that the set N of all nilpotent elements of a commutative ring forms an ideal of a ring. (b) Show that R=N has no nonzero nilpotent elements. (c) Show that N ⊆ P for each prime ideal P of R. Proof. (a) First N is nonempty as 0 2 N. If a 2 N then an = 0 for some positive integer n and hence if r 2 R then (ra)n = rnan = 0. Now suppose a; b 2 N. then there are positive integers n and m such that an = bm = 0. Consider ajbn+m−j, if j ≥ n then aj = 0 so ajbn+m−j = 0 while if 0 ≤ j < n then bn+m−j = 0 so ajbn+m−j = 0. Hence by the binomial theorem it follows that (a + b)n+m = 0 so a + b 2 N. Thus N is an ideal. (b) Suppose r + N 2 R=N is nilpotent then (r + N)n = rn + N = 0 + N for some positive integer n. Hence rn 2 N implies that (rn)m = 0 for some positive integer m and hence rnm = 0, i.e. r 2 N. Thus r + N = 0 + N, so R=N has no nonzero nilpotent elements. (c) For a given a 2 N, an = 0 2 P for some positive integer n. Since P is a prime ideal it follows that a 2 P and hence N ⊆ P for any prime ideal P . Problem 5.3.18. Let R be a commutative ring with ideals I;J such that I ⊆ J ⊆ R. (a) Show that J=I is an ideal of R=I. (b) Show that the factor ring (R=I)=(J=I) is isomorphic to R=J. (c) Show that J=I is a prime (or maximal) ideal of R=I if and only if J is a prime (or maximal ideal) of R. Proof. (a) If π : R ! R=I is the natural projection then by Proposition 5.3.7 π(J) = J=I is an ideal of R=J. (b) Define f : R=I ! R=J by f(r + I) = r + J. Note that this is well defined since if a + I = b + I then a − b 2 I ⊆ J so a + J = b + J. The map f is clearly a surjective ring homomorphism and ker f = fr + I 2 R=I j r + J = 0 + Jg = fr + I 2 R=I j r 2 Jg = J=I. Thus by the fundamental homomorphism theorem (R=I)=(J=I) =∼ R=J. (c) Note that J is prime if and only if R=J is an integral domain. By part (b) we have R=J =∼ (R=I)=(J=I) and hence J is a prime ideal if and only if J=I is a prime ideal. The ideal J is maximal if and only if R=J =∼ (R=I)=(J=I) is a field if and only if J=I is a maximal ideal. Problem 5.3.19. Determine all prime ideals and maximal ideals of Zn. Proof. Recall that the ideals of Z are given by mZ and Z=mZ is an integral domain if and only if m is prime. Thus the prime ideals of Z are the ideals pZ for p prime and an ideal mZ contains nZ if and only if m j n. By the previous exercise the prime ideals of Z=nZ are pZ=nZ for p a prime factor of n. Note that Z=mZ is a field if and only if m is prime and hence the prime ideals and maximal ideals of Z coincide and hence the maximal and prime ideals of Zn coincide.
Recommended publications
  • Arxiv:1709.01426V2 [Math.AC] 22 Feb 2018 N Rilssc S[] 3,[]
    A FRESH LOOK INTO MONOID RINGS AND FORMAL POWER SERIES RINGS ABOLFAZL TARIZADEH Abstract. In this article, the ring of polynomials is studied in a systematic way through the theory of monoid rings. As a con- sequence, this study provides natural and canonical approaches in order to find easy and rigorous proofs and methods for many facts on polynomials and formal power series; some of them as sample are treated in this note. Besides the universal properties of the monoid rings and polynomial rings, a universal property for the formal power series rings is also established. 1. Introduction Formal power series specially polynomials are ubiquitous in all fields of mathematics and widely applied across the sciences and engineering. Hence, in the abstract setting, it is necessary to have a systematic the- ory of polynomials available in hand. In [5, pp. 104-107], the ring of polynomials is introduced very briefly in a systematic way but the de- tails specially the universal property are not investigated. In [4, Chap 3, §5], this ring is also defined in a satisfactory way but the approach is not sufficiently general. Unfortunately, in the remaining standard algebra text books, this ring is introduced in an unsystematic way. Beside some harmful affects of this approach in the learning, another defect which arises is that then it is not possible to prove many results arXiv:1709.01426v2 [math.AC] 22 Feb 2018 specially the universal property of the polynomial rings through this non-canonical way. In this note, we plan to fill all these gaps. This material will help to an interesting reader to obtain a better insight into the polynomials and formal power series.
    [Show full text]
  • Nilpotent Elements Control the Structure of a Module
    Nilpotent elements control the structure of a module David Ssevviiri Department of Mathematics Makerere University, P.O BOX 7062, Kampala Uganda E-mail: [email protected], [email protected] Abstract A relationship between nilpotency and primeness in a module is investigated. Reduced modules are expressed as sums of prime modules. It is shown that presence of nilpotent module elements inhibits a module from possessing good structural properties. A general form is given of an example used in literature to distinguish: 1) completely prime modules from prime modules, 2) classical prime modules from classical completely prime modules, and 3) a module which satisfies the complete radical formula from one which is neither 2-primal nor satisfies the radical formula. Keywords: Semisimple module; Reduced module; Nil module; K¨othe conjecture; Com- pletely prime module; Prime module; and Reduced ring. MSC 2010 Mathematics Subject Classification: 16D70, 16D60, 16S90 1 Introduction Primeness and nilpotency are closely related and well studied notions for rings. We give instances that highlight this relationship. In a commutative ring, the set of all nilpotent elements coincides with the intersection of all its prime ideals - henceforth called the prime radical. A popular class of rings, called 2-primal rings (first defined in [8] and later studied in [23, 26, 27, 28] among others), is defined by requiring that in a not necessarily commutative ring, the set of all nilpotent elements coincides with the prime radical. In an arbitrary ring, Levitzki showed that the set of all strongly nilpotent elements coincides arXiv:1812.04320v1 [math.RA] 11 Dec 2018 with the intersection of all prime ideals, [29, Theorem 2.6].
    [Show full text]
  • Classifying the Representation Type of Infinitesimal Blocks of Category
    Classifying the Representation Type of Infinitesimal Blocks of Category OS by Kenyon J. Platt (Under the Direction of Brian D. Boe) Abstract Let g be a simple Lie algebra over the field C of complex numbers, with root system Φ relative to a fixed maximal toral subalgebra h. Let S be a subset of the simple roots ∆ of Φ, which determines a standard parabolic subalgebra of g. Fix an integral weight ∗ µ µ ∈ h , with singular set J ⊆ ∆. We determine when an infinitesimal block O(g,S,J) := OS of parabolic category OS is nonzero using the theory of nilpotent orbits. We extend work of Futorny-Nakano-Pollack, Br¨ustle-K¨onig-Mazorchuk, and Boe-Nakano toward classifying the representation type of the nonzero infinitesimal blocks of category OS by considering arbitrary sets S and J, and observe a strong connection between the theory of nilpotent orbits and the representation type of the infinitesimal blocks. We classify certain infinitesimal blocks of category OS including all the semisimple infinitesimal blocks in type An, and all of the infinitesimal blocks for F4 and G2. Index words: Category O; Representation type; Verma modules Classifying the Representation Type of Infinitesimal Blocks of Category OS by Kenyon J. Platt B.A., Utah State University, 1999 M.S., Utah State University, 2001 M.A, The University of Georgia, 2006 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Athens, Georgia 2008 c 2008 Kenyon J. Platt All Rights Reserved Classifying the Representation Type of Infinitesimal Blocks of Category OS by Kenyon J.
    [Show full text]
  • Hyperbolicity of Hermitian Forms Over Biquaternion Algebras
    HYPERBOLICITY OF HERMITIAN FORMS OVER BIQUATERNION ALGEBRAS NIKITA A. KARPENKO Abstract. We show that a non-hyperbolic hermitian form over a biquaternion algebra over a field of characteristic 6= 2 remains non-hyperbolic over a generic splitting field of the algebra. Contents 1. Introduction 1 2. Notation 2 3. Krull-Schmidt principle 3 4. Splitting off a motivic summand 5 5. Rost correspondences 7 6. Motivic decompositions of some isotropic varieties 12 7. Proof of Main Theorem 14 References 16 1. Introduction Throughout this note (besides of x3 and x4) F is a field of characteristic 6= 2. The basic reference for the staff related to involutions on central simple algebras is [12].p The degree deg A of a (finite dimensional) central simple F -algebra A is the integer dimF A; the index ind A of A is the degree of a central division algebra Brauer-equivalent to A. Conjecture 1.1. Let A be a central simple F -algebra endowed with an orthogonal invo- lution σ. If σ becomes hyperbolic over the function field of the Severi-Brauer variety of A, then σ is hyperbolic (over F ). In a stronger version of Conjecture 1.1, each of two words \hyperbolic" is replaced by \isotropic", cf. [10, Conjecture 5.2]. Here is the complete list of indices ind A and coindices coind A = deg A= ind A of A for which Conjecture 1.1 is known (over an arbitrary field of characteristic 6= 2), given in the chronological order: • ind A = 1 | trivial; Date: January 2008. Key words and phrases.
    [Show full text]
  • Notes on Ring Theory
    Notes on Ring Theory by Avinash Sathaye, Professor of Mathematics February 1, 2007 Contents 1 1 Ring axioms and definitions. Definition: Ring We define a ring to be a non empty set R together with two binary operations f,g : R × R ⇒ R such that: 1. R is an abelian group under the operation f. 2. The operation g is associative, i.e. g(g(x, y),z)=g(x, g(y,z)) for all x, y, z ∈ R. 3. The operation g is distributive over f. This means: g(f(x, y),z)=f(g(x, z),g(y,z)) and g(x, f(y,z)) = f(g(x, y),g(x, z)) for all x, y, z ∈ R. Further we define the following natural concepts. 1. Definition: Commutative ring. If the operation g is also commu- tative, then we say that R is a commutative ring. 2. Definition: Ring with identity. If the operation g has a two sided identity then we call it the identity of the ring. If it exists, the ring is said to have an identity. 3. The zero ring. A trivial example of a ring consists of a single element x with both operations trivial. Such a ring leads to pathologies in many of the concepts discussed below and it is prudent to assume that our ring is not such a singleton ring. It is called the “zero ring”, since the unique element is denoted by 0 as per convention below. Warning: We shall always assume that our ring under discussion is not a zero ring.
    [Show full text]
  • Ring (Mathematics) 1 Ring (Mathematics)
    Ring (mathematics) 1 Ring (mathematics) In mathematics, a ring is an algebraic structure consisting of a set together with two binary operations usually called addition and multiplication, where the set is an abelian group under addition (called the additive group of the ring) and a monoid under multiplication such that multiplication distributes over addition.a[›] In other words the ring axioms require that addition is commutative, addition and multiplication are associative, multiplication distributes over addition, each element in the set has an additive inverse, and there exists an additive identity. One of the most common examples of a ring is the set of integers endowed with its natural operations of addition and multiplication. Certain variations of the definition of a ring are sometimes employed, and these are outlined later in the article. Polynomials, represented here by curves, form a ring under addition The branch of mathematics that studies rings is known and multiplication. as ring theory. Ring theorists study properties common to both familiar mathematical structures such as integers and polynomials, and to the many less well-known mathematical structures that also satisfy the axioms of ring theory. The ubiquity of rings makes them a central organizing principle of contemporary mathematics.[1] Ring theory may be used to understand fundamental physical laws, such as those underlying special relativity and symmetry phenomena in molecular chemistry. The concept of a ring first arose from attempts to prove Fermat's last theorem, starting with Richard Dedekind in the 1880s. After contributions from other fields, mainly number theory, the ring notion was generalized and firmly established during the 1920s by Emmy Noether and Wolfgang Krull.[2] Modern ring theory—a very active mathematical discipline—studies rings in their own right.
    [Show full text]
  • Commutative Algebra
    Commutative Algebra Andrew Kobin Spring 2016 / 2019 Contents Contents Contents 1 Preliminaries 1 1.1 Radicals . .1 1.2 Nakayama's Lemma and Consequences . .4 1.3 Localization . .5 1.4 Transcendence Degree . 10 2 Integral Dependence 14 2.1 Integral Extensions of Rings . 14 2.2 Integrality and Field Extensions . 18 2.3 Integrality, Ideals and Localization . 21 2.4 Normalization . 28 2.5 Valuation Rings . 32 2.6 Dimension and Transcendence Degree . 33 3 Noetherian and Artinian Rings 37 3.1 Ascending and Descending Chains . 37 3.2 Composition Series . 40 3.3 Noetherian Rings . 42 3.4 Primary Decomposition . 46 3.5 Artinian Rings . 53 3.6 Associated Primes . 56 4 Discrete Valuations and Dedekind Domains 60 4.1 Discrete Valuation Rings . 60 4.2 Dedekind Domains . 64 4.3 Fractional and Invertible Ideals . 65 4.4 The Class Group . 70 4.5 Dedekind Domains in Extensions . 72 5 Completion and Filtration 76 5.1 Topological Abelian Groups and Completion . 76 5.2 Inverse Limits . 78 5.3 Topological Rings and Module Filtrations . 82 5.4 Graded Rings and Modules . 84 6 Dimension Theory 89 6.1 Hilbert Functions . 89 6.2 Local Noetherian Rings . 94 6.3 Complete Local Rings . 98 7 Singularities 106 7.1 Derived Functors . 106 7.2 Regular Sequences and the Koszul Complex . 109 7.3 Projective Dimension . 114 i Contents Contents 7.4 Depth and Cohen-Macauley Rings . 118 7.5 Gorenstein Rings . 127 8 Algebraic Geometry 133 8.1 Affine Algebraic Varieties . 133 8.2 Morphisms of Affine Varieties . 142 8.3 Sheaves of Functions .
    [Show full text]
  • Nilpotent Ideals in Polynomial and Power Series Rings 1609
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 5, May 2010, Pages 1607–1619 S 0002-9939(10)10252-4 Article electronically published on January 13, 2010 NILPOTENT IDEALS IN POLYNOMIAL AND POWER SERIES RINGS VICTOR CAMILLO, CHAN YONG HONG, NAM KYUN KIM, YANG LEE, AND PACE P. NIELSEN (Communicated by Birge Huisgen-Zimmermann) Abstract. Given a ring R and polynomials f(x),g(x) ∈ R[x] satisfying f(x)Rg(x) = 0, we prove that the ideal generated by products of the coef- ficients of f(x)andg(x) is nilpotent. This result is generalized, and many well known facts, along with new ones, concerning nilpotent polynomials and power series are obtained. We also classify which of the standard nilpotence properties on ideals pass to polynomial rings or from ideals in polynomial rings to ideals of coefficients in base rings. In particular, we prove that if I ≤ R[x]is aleftT -nilpotent ideal, then the ideal formed by the coefficients of polynomials in I is also left T -nilpotent. 1. Introduction Throughout this paper, all rings are associative rings with 1. It is well known that a polynomial f(x) over a commutative ring is nilpotent if and only if each coefficient of f(x) is nilpotent. But this result is not true in general for noncommutative rings. For example, let R = Mn(k), the n × n full matrix ring over some ring k =0. 2 Consider the polynomial f(x)=e12 +(e11 − e22)x − e21x ,wheretheeij’s are 2 the matrix units. In this case f(x) = 0, but e11 − e22 is not nilpotent.
    [Show full text]
  • Problem 1. an Element a of a Ring R Is Called Nilpotent If a M = 0 for Some M > 0. A) Prove That in a Commutative Ring R
    Problem 1. An element a of a ring R is called nilpotent if am = 0 for some m> 0. a) Prove that in a commutative ring R the set N of all nilpotent elements of R is an ideal. This ideal is called the nilradical of R. Prove that 0 is the only nilpotent element of R/N. b) Let R be a commutative ring and let a1, ..., an R be nilpotent. Set I for the ∈ ideal < a1, ..., an > generated by a1, ..., an. Prove that there is a positive integer N N such that x1x2...xN = 0 for any x1, ..., xN in I (i.e. that I = 0). c) Prove that the set of all nilpotent elements in the ring M2(R) is not an ideal. d) Prove that if p is a prime and m > 0 then every element of Z/pmZ is either nilpotent or invertible. e) Find the nilradical of Z/36Z (by correspondence theorem, it is equal to nZ/36Z for some n). Solution:a) Suppose that a, b N and r R. Thus an = 0 and bm = 0 for ∈ ∈ some positive integers m, n. By the Newton’s binomial formula we have m+n m + n (a b)m+n = ai( b)m+n−i. (1) − i − i=0 X Note that, for every i 1, 2, ..., m+n , either i n or m+n i m and therefore ∈{ } ≥ − ≥ either ai =0or( b)m+n−i = 0. It follows that every summand in the sum (1) is 0, − so (a b)m+n = 0. Thus a b N.
    [Show full text]
  • Semisimple Cyclic Elements in Semisimple Lie Algebras
    Semisimple cyclic elements in semisimple Lie algebras A. G. Elashvili1 , M. Jibladze1 , and V. G. Kac2 1 Razmadze Mathematical Institute, TSU, Tbilisi 0186, Georgia 2 Department of Mathematics, MIT, Cambridge MA 02139, USA Abstract This paper is a continuation of the theory of cyclic elements in semisimple Lie algebras, developed by Elashvili, Kac and Vinberg. Its main result is the classification of semisimple cyclic elements in semisimple Lie algebras. The importance of this classification stems from the fact that each such element gives rise to an integrable hierarchy of Hamiltonian PDE of Drinfeld-Sokolov type. 1 Introduction Let g be a semisimple finite-dimensional Lie algebra over an algebraically closed field F of characteristic 0 and let e be a non-zero nilpotent element of g. By the Morozov- Jacobson theorem, the element e can be included in an sl(2)-triple s = fe; h; fg (unique, up to conjugacy [Ko]), so that [e; f] = h,[h; e] = 2e,[h; f] = −2f. Then the eigenspace decomposition of g with respect to ad h is a Z-grading of g: d M (1.1) g = gj; where g±d 6= 0. j=−d The positive integer d is called the depth of the nilpotent element e. An element of g of the form e + F , where F is a non-zero element of g−d, is called a cyclic element, associated to e. In [Ko] Kostant proved that any cyclic element, associated to a principal (= regular) nilpotent element e, is regular semisimple, and in [Sp] Springer proved that any cyclic element, associated to a subregular nilpotent element of a simple exceptional Lie algebra, is regular semisimple as well, and, moreover, found two more distinguished nilpotent elements in E8 with the same property.
    [Show full text]
  • Are Octonions Necessary to the Standard Model?
    Vigier IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 1251 (2019) 012044 doi:10.1088/1742-6596/1251/1/012044 Are octonions necessary to the Standard Model? Peter Rowlands, Sydney Rowlands Physics Department, University of Liverpool, Oliver Lodge Laboratory, Oxford St, Liverpool. L69 7ZE, UK [email protected] Abstract. There have been a number of claims, going back to the 1970s, that the Standard Model of particle physics, based on fermions and antifermions, might be derived from an octonion algebra. The emergence of SU(3), SU(2) and U(1) groups in octonion-based structures is suggestive of the symmetries of the Standard Model, but octonions themselves are an unsatisfactory model for physical application because they are antiassociative and consequently not a group. Instead, the ‘octonion’ models have to be based on adjoint algebras, such as left- or right-multiplied octonions, which can be seen to have group-like properties. The most promising of these candidates is the complexified left-multiplied octonion algebra, because it reduces, in effect, to Cl(6), which has been identified by one of us (PR) in a number of previous publications as the basic structure for the entire foundation of physics, as well as the algebra required for the Standard Model and the Dirac equation. Though this algebra has long been shown by PR as equivalent to using a complexified left-multiplied or ‘broken’ octonion, it doesn’t need to be derived in this way, as its real origins are in the respective real, complex, quaternion and complexified quaternion algebras of the fundamental parameters of mass, time, charge and space.
    [Show full text]
  • Chapter 10 an Introduction to Rings
    Chapter 10 An Introduction to Rings 10.1 Definitions and Examples Recall that a group is a set together with a single binary operation, which together satisfy a few modest properties. Loosely speaking, a ring is a set together with two binary oper- ations (called addition and multiplication) that are related via a distributive property. Definition 10.1. A ring R is a set together with two binary operations + and (called addition and multiplication, respectively) satisfying the following: · (i) (R,+) is an abelian group. (ii) is associative: (a b) c = a (b c) for all a,b,c R. · · · · · 2 (iii) The distributive property holds: a (b + c)=(a b)+(a c) and (a + b) c =(a c)+(b c) · · · · · · for all a,b,c R. 2 Remark 10.2. We make a couple comments about notation. (a) We often write ab in place a b. · (b) The additive inverse of the ring element a R is denoted a. 2 − Theorem 10.3. Let R be a ring. Then for all a,b R: 2 1. 0a = a0=0 2. ( a)b = a( b)= (ab) − − − 3. ( a)( b)=ab − − Definition 10.4. A ring R is called commutative if multiplication is commutative. Definition 10.5. A ring R is said to have an identity (or called a ring with 1) if there is an element 1 R such that 1a = a1=a for all a R. 2 2 Exercise 10.6. Justify that Z is a commutative ring with 1 under the usual operations of addition and multiplication. Which elements have multiplicative inverses in Z? CHAPTER 10.
    [Show full text]