Effects of Secondary Metabolites from the Tropical Brazilian Brown Alga Dictyota Menstrualis on the Amphipod Parhyale Hawaiensis

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Secondary Metabolites from the Tropical Brazilian Brown Alga Dictyota Menstrualis on the Amphipod Parhyale Hawaiensis MARINE ECOLOGY PROGRESS SERIES Vol. 205: 95–100, 2000 Published October 19 Mar Ecol Prog Ser Effects of secondary metabolites from the tropical Brazilian brown alga Dictyota menstrualis on the amphipod Parhyale hawaiensis Renato C. Pereira1,*, Diana N. Cavalcanti1, 2, Valéria L. Teixeira1 1Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense (UFF) CP 100.644, CEP 24001-970, Rio de Janeiro, Brazil 2Pós-Graduação em Química Orgânica, Instituto de Química, UFF 24020-150, Niterói, Rio de Janeiro, Brazil ABSTRACT: Diterpene metabolites produced by Dictyota species are known to inhibit feeding by several herbivorous species. We present the first evidence of feeding-deterrence of dictyotacean metabolites of an unusual compound belonging to a dichotomane diterpene skeleton type. Through experimental assay, we provide evidence of feeding-deterrent properties of lipid-soluble extracts of the Brazilian brown alga D. menstrualis (Hoyt) Schnetter, Hörnig & Weber-Peukert against the amphipod Parhyale hawaiensis Dana. Bioassay fractionation of this extract revealed the deterrent activity to be due to the diterpenoid (6R)-6-hydroxydichotoma-3,14-diene-1,17-dial, which was found to be the second most abundant metabolite (~0.2% dry mass) in D. menstrualis. In contrast to other studies, the major diterpenoid pachydictyol A, present as 0.4% (dry mass) in D. menstrualis, showed no anti-feeding properties. Our results suggest that chemical defense of Dictyota species may vary according to geographic region, thus explaining the presence of a metabolite other than pachydictyol A which functions as the anti-feedant metabolite in D. menstrualis from the Brazilian littoral zone. KEY WORDS: Amphipod · Chemical defense · Dictyota menstrualis · Herbivory · Parhyale hawai- ensis · Diterpenes Resale or republication not permitted without written consent of the publisher INTRODUCTION In the Phaeophyceae of both tropical and warm- temperate marine regions, Dictyota species have been Several chemical studies have indicated that sea- extensively studied and are known to produce sec- weeds produce hundreds of secondary metabolites, ondary metabolites, many of which are broad- including terpenoids (major sesqui- and diterpenes), spectrum feeding deterrents against herbivores. This acetogenins, amino acid-derived compounds, unusual broad-spectrum action is effected by the well-studied fatty acids, polyphenols (= ‘phlorotannins’) and meta- family of structurally similar dictyol diterpenes, includ- bolites produced through mixed biosynthesis that have ing pachydictyol A, dictyol E, dictyol B, dictyol B terpenoid and phenol portions (Faulkner 1998). Sev- acetate, and dictyol H, which have been shown to be eral seaweeds produce large numbers and types of active anti-feedant metabolites in ecological assays secondary metabolites capable of inhibiting herbivory (see Pereira et al. 1994 for Parhyale hawaiensis and or which exhibit a wide action against other adverse Hay & Steinberg 1992 for review about remaining her- agents in the marine environment (Hay & Steinberg bivore species). Natural concentrations of pachydictyol 1992, Paul 1992). A, found in some species of Dictyota, can inhibit her- bivory by tropical parrotfish species, by the temperate fishes Lagodon rhomboides Linnaeus and Diplobus *E-mail: [email protected] holbrooki Bean, and by the sea urchin Diadema antil- © Inter-Research 2000 96 Mar Ecol Prog Ser 205: 95–100, 2000 larum Philippi. On the other hand, this same metabo- Peukert, a common subtidal species, were collected at lite does not inhibit feeding by the sea urchin Arbacia Enseada do Forno (22° 45’ S, 41° 52’ W), Armação de punctulata (Lamarck) Phillipi, the cosmopolitan poly- Búzios (State of Rio de Janeiro, Brazil), during October chaete Platynereis dumerilii Audouin and M. Edwards, 1996, in shallow water at a depth of 2.0 to 5.0 m by or the amphipod Parhyale hawaiensis Dana, and has snorkeling. This region is characterized by high wave further been shown to increase feeding in the amphi- energy and by the presence of the seaweeds Dictyota pod Ampithoe longimana Smith. Dictyol E reduces spp., Sargassum cymosum C. Agardh and S. furcatum herbivory in L. rhomboides, D. holbrooki and Arbacia Kützing (Yoneshigue 1985). In the upper littoral, the punctulata, but is not an effective defense against coralline red algae Amphiroa spp. and Jania adherens Ampithoe longimana and Platynereis dumerilii. Finally, Lamouroux and the green alga Codium spongiosum pachydictyol A, dictyol B, and dictyol H significantly Harvey also characterize this region, where the sea- inhibit herbivory in the rabbitfish Siganus doliatus urchins Echinometra lucunter Linnaeus and Paracen- Cuvier. All these metabolites, collectively referred to trotus gaimardii Blainville (Blainville, 1825) are the as dictyols, represent the only structural class of the major invertebrate species (Yoneshigue 1985, Sabino prenylated guaiane diterpenes. & Villaça 1999) The amphipod Parhyale hawaiensis Besides the inherent variation in action against her- Dana is a common invertebrate species, usually found bivores, the presence of seaweed secondary metabo- with Sargassum spp., and has been used in previous lites may vary between tropical (more) and temperate studies of seaweed chemical defenses in Brazil (e.g. (less) seas, or may exhibit some other type of biogeo- Pereira et al. 1994, Pereira & Yoneshigue-Valentin graphic variation. For example, based on a common 1999). This amphipod is also found in other macroalgal biogenetic precursor, diterpene metabolites found in species (e.g. Ulva spp.), but is not closely related to D. Dictyota species belong to 3 different ‘chemical menstrualis. groups’ which are unequally distributed in the oceans Secondary metabolite extraction. A known weight (Teixeira & Kelecom 1987b). In the Atlantic Ocean, of fresh seaweed tissue (1416 g) was fully extracted 61% of the diterpenes found in Dictyota species pos- with CH2Cl2-MeOH (2:1). Evaporation of the solvent sess a dolastane (e.g. amijiol) or secodolastane (e.g. under reduced pressure yielded a brownish residue isolinearol) skeleton. In contrast, xeniane (e.g. dictyo- (22 g, 5.6% dry wt of the alga), which was subse- dial) skeletal compounds are more common in the quently partitioned between n-hexane, MeOH and Pacific Ocean, and prenylated guaiane (e.g. pachydic- CHCl3-H2O. The partitions resulted in 3 fractions of tyol A) skeletons have a more cosmopolitan distribu- different polarities (16.23, 4.03 and 1.46 g, respec- tion. Finally, within-species variance in secondary tively) which were tested in feeding assays. The metabolite production among different populations of hexane fraction (16.23 g, 4.17% dry wt of the alga) the same species appears to be considerable for some exhibited maximum anti-feedant activity compared to species of seaweeds (Paul & Fenical 1987, Paul & van the other 2 fractions, and was used in subsequent frac- Alstyne 1988) and invertebrates (Sammarco & Coll tionation. Rapid filtration on silica gel with n-hexane, 1992). CH2Cl2, EtOAc, and MeOH yielded 4 fractions which In this study, we assessed the chemical defenses of were then used in feeding assays. The compounds that Dictyota menstrualis against herbivory by the amphi- eluted with n-hexane (3.06 g) and CH2Cl2 (3.42 g) were pod Parhyale hawaiensis. A preliminary study of the major deterrents against herbivory by the amphipod crude extract of D. menstrualis from Brazilian littoral Parhyale hawaiensis. The compounds that eluted with zones indicated that the secondary metabolites present the CH2Cl2 fraction were further purified by silica-gel in this species acted as anti-feedant metabolites against column chromatography (with an eluent of n-hexane, crab and amphipod herbivores (Pereira et al. 2000). In CHCL3, EtOAc, and MEOH,) which yielded 7 addi- contrast, natural concentrations of the well-known tional fractions. Compounds that eluted with the n- pachydictyol A, also found in this species from the hexane fraction contained crude pachydictyol A Brazilian coast, were not deterrent to the same amphi- (250 mg), which was further purified by silica-gel col- pod species (Pereira et al. 1994). Here we determine umn chromatography (eluent: gradient of CHCL3 in what metabolite is responsible for the chemical defense EtOAc) giving pure pachydictyol A (152 mg). The frac- activity previously observed in this algal species. tion which eluted in CHCl3-EtOAc (9:1) gave crude dichotomane diterpene (545 mg). This fraction was purified by successive preparative TLC eluted with MATERIALS AND METHODS EtOAc in CHCl3 (1:4), giving pure dichotomane diter- pene (60 mg). The natural products were identified by Collection site and organisms. Specimens of Dic- comparison of UV, IR, mass, 1H-NMR (300MHz, 13 tyota menstrualis (Hoyt), Schnetter, Höring & Weber- CDCl3) and C-NMR (75 MHz, CDCl3) with spectral Pereira et al.: Secondary metabolites of Dictyota menstrualis 97 data and with previously published data (Blount et al. mated by comparing the number of squares consumed 1982). in both experimental and control foods. New speci- Chemical deterrence assays. The anti-feedant prop- mens of amphipods were used in each assay (with erty of all extracts, partitions, fractions, and pure com- crude extract, fractions and pure compound). pounds from Dictyota menstrualis were verified by Statistical analysis. Because paired-samples do not including natural concentrations of these components exhibit a normal distribution, the significance
Recommended publications
  • Diversity of Brown Macroalgae in Kupang Bay Waters and Alginate Content Potential and Its Phytochemistry Yuliana Salosso, Yudiana Jasmanindar
    Diversity of brown macroalgae in Kupang Bay waters and alginate content potential and its phytochemistry Yuliana Salosso, Yudiana Jasmanindar Faculty of Marine and Fisheries, Nusa Cendana University, Kupang, Jl Adisucipto, Penfui Kupang, Nusa Tenggara Timur, Indonesia. Corresponding author: Y. Salosso, [email protected] Abstract. This study was aimed at knowing the diversity, alginate content, and phytochemical content of brown macro algae found in Kupang Bay waters. Macroalgal sampling was carried out at the lowest tide in Paradiso beach, Kelapa Lima, Pasir Panjang, Bolok, and Tabulolong, through survey along the coast. Each species found was photographed for identification. After species identification, each macroalga was cleaned and dried, then sublimated for alginate content analysis and secondary metabolite test covering alkaloid, saponin, flavonoid, tannin, terpenoid, and steroid compounds. Results found 11 species of brown macroalgae, namely Padina australis, Padina sp., Turbinaria ornata, Hydroclathrus clathratus, Hormophysa cuneiformis, Sargassum spp., S. cristaefolium, S. polycystum, S. crassifolium, Dictyopteris acrostichoides, and Dictyota ciliolata. The alginate content of two species, H. clathratus and D. ciliolata, was not examined because of insufficient amount. All brown macroalgae contained different alginate with species and the highest occurred in Sargassum spp. and Padina spp. reaching 33.33%, while the lowest was in Turbinaria ornate and S. cristaefolium, only 13.33%. Besides, they held alkaloid, saponin, steroid, terpenoid, tannin and flavonoid compounds that could be developed as medicinal materials. Key Words: species identification, occurrence, content amount, metabolite compounds. Introduction. Macroalgae usually known as seaweed are one of the coastal and marine resources that have good economic or ecological benefits (Pakidi & Suwoyo 2016). Economically, macroalgae can be developed as food materials, livestock feed, medicines, fertilizer and raw materials for industry (Kemer et al 2015).
    [Show full text]
  • Download PDF Version
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Mixed kelp and red seaweeds on infralittoral boulders, cobbles and gravel in tidal rapids MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Thomas Stamp 2015-10-12 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/1037]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Stamp, T.E., 2015. Mixed kelp and red seaweeds on infralittoral boulders, cobbles and gravel in tidal rapids. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.1037.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Mixed kelp and red seaweeds on infralittoral boulders, cobbles and gravel in tidal rapids - Marine Life Information Date: 2015-10-12 Network 17-09-2018 Biotope distribution data provided by EMODnet Seabed Habitats (www.emodnet-seabedhabitats.eu) Researched by Thomas Stamp Refereed by This information is not refereed.
    [Show full text]
  • Universidade Federal Do Estado Do Rio De Janeiro
    UNIVERSIDADE FEDERAL DO ESTADO DO RIO DE JANEIRO - UNIRIO CENTRO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE - CCBS INSTITUTO DE BIOCIÊNCIAS - IBio PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS - PPGBIO (BIODIVERSIDADE NEOTROPICAL) Erick Alves Pereira Lopes Filho Filogenia e filogeografia de espécies de Dictyota Lamouroux (Dictyotales: Phaeophyceae) Rio de Janeiro 2018 Erick Alves Pereira Lopes Filho Filogenia e filogeografia de espécies de Dictyota Lamouroux (Dictyotales: Phaeophyceae) Dissertação apresentada ao Programa de Pós-Graduação em Ciências Biológicas (Biodiversidade Neotropical) da Universidade Federal do Estado do Rio de Janeiro como requisito parcial para obtenção do título de Mestre. Orientador: Prof. Dr. Joel Campos de Paula Co-orientador: Prof. Dr. Fabiano Salgueiro Rio de Janeiro 2018 UNIVERSIDADE FEDERAL DO ESTADO DO RIO DE JANEIRO - UNIRIO CENTRO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE - CCBS INSTITUTO DE BIOCIÊNCIAS - IBio Erick Alves Pereira Lopes Filho Filogenia e filogeografia de espécies de Dictyota Lamouroux (Dictyotales: Phaeophyceae) Dissertação apresentada ao curso de Mestrado em Ciências Biológicas do Programa de Pós- Graduação em Ciências Biológicas (Biodiversidade Neotropical) da Universidade Federal do Estado do Rio de Janeiro no dia 11 de janeiro de 2018, como requisito parcial para a obtenção do título de Mestre em Ciências Biológicas. A mesma foi avaliada pela banca examinadora composta por Dr.ª Maria Beatriz Barbosa de Barros Barreto, Dr.ª Valéria Cassano e Dr. Joel Campos de Paula, sendo suplentes Dr. Fabiano Salgueiro, Dr. Leandro Pederneiras e Dr.ª Valéria Laneuville Teixeira, e aprovada com o conceito _________________ Dr.ª Maria Beatriz Barbosa de Barros Barreto Universidade Federal do Rio de Janeiro ______ Dr.ª Valéria Cassano Universidade de São Paulo Dr.
    [Show full text]
  • Dictyotales, Phaeophyceae)1
    ƒ. Phycol. 46, 1301-1321 (2010) © 2010 Phycological Society of America DOI: 10.1 lll/j.1529-8817.2010.00908.x SPECIES DELIMITATION, TAXONOMY, AND BIOGEOGRAPHY OF D ICTYO TA IN EUROPE (DICTYOTALES, PHAEOPHYCEAE)1 Ana Tronholn? Departamento de Biología Vegetal (Botánica) , Universidad de La Laguna, 38271 La Laguna, Canary Islands, Spain Frederique Steen, Lennert Tyberghein, Frederik Leliaert, Heroen Verbruggen Phycology Research Group and Centre for Molecular Phylogenetics and Evolution, Ghent University, Rrijgslaan 281, Building S8, 9000 Ghent, Belgium M. Antonia Ribera Signan Unitat de Botánica, Facultat de Farmacia, Universität de Barcelona, Joan XXIII s/n, 08032 Barcelona, Spain and Olivier De Clerck Phycology Research Group and Centre for Molecular Phylogenetics and Evolution, Ghent University, Rrijgslaan 281, Building S8, 9000 Ghent, Belgium Taxonomy of the brown algal genus Dictyota has a supports the by-product hypothesis of reproductive long and troubled history. Our inability to distin­ isolation. guish morphological plasticity from fixed diagnostic Key index words: biogeography; Dictyota; Dictyotales; traits that separate the various species has severely diversity; molecular phylogenetics; taxonomy confounded species delineation. From continental Europe, more than 60 species and intraspecific taxa Abbreviations: AIC, Akaike information criterion; have been described over the last two centuries. Bí, Bayesian inference; BIC, Bayesian information Using a molecular approach, we addressed the criterion; GTR, general time reversible; ML, diversity of the genus in European waters and made maximum likelihood necessary taxonomic changes. A densely sampled DNA data set demonstrated the presence of six evo- lutionarily significant units (ESUs): Dictyota dichotoma Species of the genus Dictyota J. V. Lamour., along (Huds.) J. V.
    [Show full text]
  • Download PDF Version
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Foliose red seaweeds with dense Dictyota dichotoma and/or Dictyopteris membranacea on exposed lower infralittoral rock MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Dr Heidi Tillin 2018-03-13 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/2]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tillin, H.M. 2018. Foliose red seaweeds with dense [Dictyota dichotoma] and/or [Dictyopteris membranacea] on exposed lower infralittoral rock. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.2.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available
    [Show full text]
  • Evaluation of Antimycotic Activity of Extracts of Marine Algae Collected from Red Sea Coast, Jeddah, Saudi Arabia
    Journal of Biosciences and Medicines, 2018, 6, 51-68 http://www.scirp.org/journal/jbm ISSN Online: 2327-509X ISSN Print: 2327-5081 Evaluation of Antimycotic Activity of Extracts of Marine Algae Collected from Red Sea Coast, Jeddah, Saudi Arabia Huda Sheikh1, Amal El-Naggar1,2*, Danyah Al-Sobahi3 1Department of Biological Science, Science Faculty for Girls, King Abdulaziz University, Jeddah, KSA 2Botany Department, Faculty of Science, Tanta University, Tanta, Egypt 3Makkah, KSA How to cite this paper: Sheikh, H., Abstract El-Naggar, A. and Al-Sobahi, D. (2018) Evaluation of Antimycotic Activity of Ex- In the present study, fifteen species of the dominant marine algae were col- tracts of Marine Algae Collected from Red lected during summer 2013 from four selected sites on Red sea coast, Jeddah, Sea Coast, Jeddah, Saudi Arabia. Journal of Saudi Arabia. The collected species belonged to Chlorophyta, Phaeophyta and Biosciences and Medicines, 6, 51-68. Rhodophyta. Crude algal extracts were prepared by successive extractions us- https://doi.org/10.4236/jbm.2018.64004 ing different solvents (acetone, ethanol, diethyl ether, ethyl acetate, methanol Received: December 4, 2017 and petroleum ether). The crude algal extracts were examined for their anti- Accepted: April 21, 2018 fungal efficacy against Aspergillus flavus, Aspergillus fumigatus, Aspergillus Published: April 24, 2018 niger, Candida albicans and Candida tropicalis using agar well diffusion me- Copyright © 2018 by author and thod. The algal extracts evoked different patterns of antifungal activities. Re- Scientific Research Publishing Inc. sults reveal that acetone was the best solvent suited for extraction of bioactive This work is licensed under the Creative compounds from tested seaweeds with inhibition activity (19.3%) followed by Commons Attribution International ethyl acetate (17.1%), ethanol (16.4%), petroleum ether (15.9%), diethyl ether License (CC BY 4.0).
    [Show full text]
  • Qualitative and Quantitative Analysis of Phytochemical Studies on Brown Seaweed, Dictyota Dichotoma
    © 2016 IJEDR | Volume 4, Issue 2 | ISSN: 2321-9939 Qualitative and Quantitative Analysis of Phytochemical Studies on Brown Seaweed, Dictyota dichotoma 1 Mohammed Deyab, 2 Taha Elkatony and 3 Fatma Ward 1 Professor of microbiology, 2 Professor of plant physiology, 3 Ph.D. Student Botany Department, Faculty of Science, Damietta University, Damietta, Egypt ________________________________________________________________________________________________________ Abstract - In recent years, the secondary metabolites (Phytochemicals) have been extensively investigated as a source of medicinal agents. The sample for the study constitutes Dictyota dichotoma from brown seaweed. It was collected from Hurghada, Red sea coast of Egypt. Four different extracts of Dictyota dichotoma were subjected to phytochemical analysis of secondary metabolites both qualitatively and quantitatively by preliminary phytochemical screening tests of ten different chemical compounds (alkaloids, terpenoids, steroids, tannins, saponins, flavonoids, phenols, coumarins, quinones and glycosides). The result of phytochemical screening of Dictyota dichotoma showed the presence of alkaloids, terpenoids, steroids, tannins, flavonoids, phenols, coumarins, quinones and glycosides and the absence of saponins. Among the four different extracts, ethyl acetate extract showed the presence of maximum number (9) of compounds. Next to that, Methanol extracts showed seven compounds. Hexane extracts showed six compounds and acetone extracts showed only four compounds. The estimation of total phenolics, tannins and flavonoids were observed in different extracts of Dictyota dichotoma. The quantitative phytochemical analyses revealed that secondary metabolites such as phenolics (2.14 ± 0.15 mg GAE/g dry wt) and flavonoids (1.72 ± 0.05 mg RUE/g dry wt) showed high amounts in methanol extract, while tannins (2.12 ± 0.45 mg CAE /g dry wt) showed high amounts in ethyl acetate extract.
    [Show full text]
  • New Diterpenes from Dictyota Dichotoma Hudson
    Mar. Drugs 2013, 11, 3109-3123; doi:10.3390/md11093109 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Pachydictyols B and C: New Diterpenes from Dictyota dichotoma Hudson Ghada S. E. Abou-El-Wafa 1,†, Mohamed Shaaban 2,3,†,*, Khaled A. Shaaban 2,†, Mohamed E. E. El-Naggar 1,‡, Armin Maier 4, Heinz H. Fiebig 4 and Hartmut Laatsch 2 1 Department of Botany, Faculty of Science, Mansoura University, Algomhuria St. 60, El-Mansoura 35516, Egypt; E-Mail: [email protected] 2 Institute of Organic and Biomolecular Chemistry, University of Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany; E-Mails: [email protected] (K.A.S.); [email protected] (H.L.) 3 Chemistry of Natural Compounds Department, Division of Pharmaceutical Industries, National Research Centre, El-Behoos St. 33, Dokki-Cairo 12622, Egypt 4 Oncotest GmbH, Am Flughafen 12-14, D-79108 Freiburg, Germany; E-Mails: [email protected] (A.M.); [email protected] (H.H.F.) † These authors contributed equally to this work. ‡ Deceased on 9 December 2011. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +202-270-1728 (ext. 2609); Fax: +202-3337-0931. Received: 19 June 2013; in revised form: 12 August 2013 / Accepted: 12 August 2013 / Published: 22 August 2013 Abstract: Two new diterpenoids, pachydictyol B (1a/1b) and C (2), were isolated from the dichloromethane extract of the marine brown alga, Dictyota dichotoma, collected from the Red Sea coast of Egypt, along with the known metabolites, pachydictyol A (3a), dictyol E (4), cis-africanan-1α-ol (5a), fucosterol (6), tetrahydrothiophen-1,1-dioxide and poly-β-hydroxybutyric acid.
    [Show full text]
  • Dictyotales, Phaeophyceae)1
    J. Phycol. 46, 1301–1321 (2010) Ó 2010 Phycological Society of America DOI: 10.1111/j.1529-8817.2010.00908.x SPECIES DELIMITATION, TAXONOMY, AND BIOGEOGRAPHY OF DICTYOTA IN EUROPE (DICTYOTALES, PHAEOPHYCEAE)1 Ana Tronholm2 Departamento de Biologı´a Vegetal (Bota´nica), Universidad de La Laguna, 38271 La Laguna, Canary Islands, Spain Frederique Steen, Lennert Tyberghein, Frederik Leliaert, Heroen Verbruggen Phycology Research Group and Centre for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium M. Antonia Ribera Siguan Unitat de Bota`nica, Facultat de Farma`cia, Universitat de Barcelona, Joan XXIII s ⁄ n, 08032 Barcelona, Spain and Olivier De Clerck Phycology Research Group and Centre for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium Taxonomy of the brown algal genus Dictyota has a supports the by-product hypothesis of reproductive long and troubled history. Our inability to distin- isolation. guish morphological plasticity from fixed diagnostic Keyindexwords:biogeography;Dictyota;Dictyotales; traits that separate the various species has severely diversity; molecular phylogenetics; taxonomy confounded species delineation. From continental Europe, more than 60 species and intraspecific taxa Abbreviations: AIC, Akaike information criterion; have been described over the last two centuries. BI, Bayesian inference; BIC, Bayesian information Using a molecular approach, we addressed the criterion; GTR, general time reversible; ML, diversity of the genus in European waters and made maximum likelihood necessary taxonomic changes. A densely sampled DNA data set demonstrated the presence of six evo- lutionarily significant units (ESUs): Dictyota dichotoma Species of the genus Dictyota J. V. Lamour., along (Huds.) J. V.
    [Show full text]
  • MS11-Mmar Delebecq.Pdf
    Cah. Biol. Mar. (2011) 52 : In situ photosynthetic performance of Laminaria digitata (Phaeophyceae) during spring tides in Northern Brittany Gaspard DELEBECQ1,2,3,4, Dominique DAVOULT3,4, Dominique MENU2, Marie-Andrée JANQUIN1,2, Aline MIGNÉ3,4, Jean-Claude DAUVIN5 and François GEVAERT1,2 (1)Université Lille1, Univ Lille Nord de France, Station Marine, F-62930 Wimereux, France Fax 00 33 21 99 29 01. E-mail: [email protected] (2) CNRS, UMR 8187 LOG, F-62930 Wimereux, France (3) UPMC Univ Paris 06, Station Biologique, F-29680 Roscoff, France (4) CNRS, UMR 7144 AD2M, F-29680 Roscoff, France (5) Université de Caen Basse Normandie, Laboratoire Morphodynamique Continentale et Côtière, UMR CNRS 6143 M2C, 2-4 rue de Tilleuls, F-14000 Caen, France Abstract: The ability of Laminaria digitata (Hudson) J.V. Lamouroux to cope with rapid and drastic changes in light was studied in the field by measuring photosystem II fluorescence, net oxygen production and pigment content. Experiments were conducted during two spring tides of late spring in Northern Brittany where low spring tides occur around noon. Daily patterns of the photosynthetic performance of Laminaria digitata were observed in relation to changes in incident under- water light. Photoinhibitory light exposure induced a sharp decrease of the optimal quantum yield (Fv/Fm), a decline of the net oxygen production in the first of the two spring tides investigated and a concomitant increase in the de-epoxidation ratio of the Violaxanthin pool. Photoinhibition persisted at a lower extent at the end of the day and complete recovery was achieved during the night.
    [Show full text]
  • Studies on the Genus of Dictyota Lamouroux from the Coast of Karachi, Pakistan
    Pak. J. Bot., 40(1): 377-389, 2008. STUDIES ON THE GENUS OF DICTYOTA LAMOUROUX FROM THE COAST OF KARACHI, PAKISTAN MUBINA BEGUM AND NAUSHABA KHATOON Department of Botany, University of Karachi, Karachi, Pakistan. Abstract Eco-taxonomic study of 4 species of Dictyota (Dictoyotales, Phaeophyta) dealing with the revision of D. dichotoma, D. haukiana Nizam but D. dichotoma var. intricata and D. dimensis as new records for the coast of Karachi, Pakistan is reported. Introduction Dictyota is one of the largest genus of the order dictyotales (Phaeophyta) which has not been studied in detail from the coast of Karachi, Pakistan. Few scientists described it from different parts of the Arabian Sea. Boergesen (1934) only listed two species of Dictyota, D. atomaria Hauck (=Dictyota haukiana, Nizam.), D. dictotona (Huds) Lamourax from the coast of Karachi. Boergesen (1932, 1935, 1937) reported D. atomaria Hauck and D. dichotoma (Hudson) Lamouroux (1937) from Indian Ocean. Durairatnam (1961) described D. indica Sonder, D. atomaria Hauck, D. dichotama (Hudson) Lamour from Ceylon, Sri Lanka. Misra (1966) described D. indica Sonder, D. atomaria Hauck, D. dichotoma (Hudson) Lamouroux and D. dichotoma (Hudson) Lamouroux var. intricata (C. Agardh) Greville from the eastern coast of Arabian Sea (West coast of India). Shaikh & Shameel (1995) recently reported D. dichotoma, D. dumosa, D. haukiana, D. indica, D. maxima from the coast of Pakistan. Present attempt is made to study the dominant genus Dictyota in detail dealing with the taxonomy and ecology of 4 species viz., D. dichotoma (Huds) Lamour, D. haukiana Nizam., D. dimensis Kütz., D. dichotoma Lamour. var. intricata (C.
    [Show full text]
  • Diversity and Distribution of Seaweeds from the West Coast of Maharashtra
    J. Algal Biomass Utln. 2017, 8(3): 29- 39 Distribution of Seaweeds from the West Coast of Maharashtra eISSN: 2229 – 6905 Diversity and Distribution of Seaweeds from the West Coast of Maharashtra Waghmode A.V Department of Botany, Rajarshi Chh. Shahu College, Kadamwadi, Kolhapur-416004. E-mail: [email protected] Abstract The purpose of this research is to introduce the diversity of algal flora along the west coast of Maharashtra. The present study of seaweeds was conducted at west coast of Maharashtra formed of different inter-tidal rock shores with rich algal vegetation. During the study period (Aug 2015 to Feb 2016), total 73 species of seaweeds were recorded. An updated species list has been compiled on the basis of fresh collections. Of these 21 species belong to Chlorophyta, 17 species to Phaeophyta and 33 species to Rhodophyta. Among them, Blue-green algae like Lyngbya, Microcoleus were found all over the west coast. Red algae were found more, then the green and brown from the west coast of Maharashtra. Caulerpa spp were observed only at Sindhudurgh and Raighad district. S. ilicifolium were found commonly throughout the west coast. Keywords: Diversity, Seaweeds distribution, Maharashtra coast Introduction Algae are the most common marine vegetation commonly called “Seaweeeds”. They are classified into Blue-green (Cyanophyta), Green (Chlorophyta), Brown (Phaeophyta) and Red (Rhodophyta). Seaweeds play important role in marine food chains. It is suggested that seaweeds could become a major food and energy resource in the 21st century. Biodiversity is the variety among living organisms and the ecological complexes in which they occur.
    [Show full text]