Heterokontophyta (Ochrophyta)

Total Page:16

File Type:pdf, Size:1020Kb

Heterokontophyta (Ochrophyta) • Ochrophytes are algae of diverse organization and include unicellular, colonial, filamentous and parenchematous thalli. • They are characterized by the presence of chlorophylls a and c in their plastids as well as xanthophylls (e.g. fucoxanthin) and other carotenoids that mask the chlorophylls (Table 2). • Due to the presence of these pigments, many ochrophytes have a yellowish-green, gold or brown appearance. • As storage products, they accumulate oils and Heterokontophyta chrysolaminarin (C) in cytoplasmic vesicles, but never starch. (Ochrophyta) • Cell walls contain cellulose, and in certain species they contain silica. • Cells possess one or more plastids, each with an envelope formed by two membranes of chloroplast and two membranes of chloroplast endoplasmic reticulum. • Thylacoids, in stacks of three, in most ochrophytes are Fig. Semidiagrammatic drawing of a light surrounded by a band of thylakoids, girdle lamella, just and electron microscopical view of the basic organization of a cell of the beneath the innermost plastid membrane. Chrysophyceae. (C) Chrysolaminarin • Ochrophytes have heterokont flagellated cells with two vesicle; (CE) chloroplast envelope; different flagella, an anterior tinsel (mastigonemes) and (CER) chloroplast endoplasmic reticulum; (CV) contractile vacuole; (E) posterior whiplash (smooth) flagellum (Fig. ). eyespot; (FS) flagellar swelling; (G) Golgi • In this group of algae, mastigonemes consist of three body; (H) hair of the anterior flagellum; parts, a basal, tubular and apical part formed by fibrils. (MB) muciferous body; (MR) microtubular root of flagellum; (N) nucleus. Chrysophyceae and related groups The following classes are commonly recognized in this division and will be discussed here: • Chrysophyceans (Golden-brown algae) are mostly unicellular 1. Chrysophyceae (golden-brown algae) flagellate organisms. 2. Synurophyceae • Some are amoeboid or coccoid. 3. Eustigmatophyceae • Most of the species in the Chrysophyceae are freshwater, occur in 4. Pinguiophyceae unpolluted and soft waters (low in calcium). 5. Dictyochophyceae (silicoflagellates) • Some are strictly marine algae and part of the nanoplankton. 6. Pelagophyceae • Some have a single functional flagellum like Chromulina, while others 7. Bolidophyceae can form colonies like the freshwater genus Uroglena. 8. Bacillariophyceae (diatoms) 9. Raphidophyceae (chloromonads) 10.Xanthophyceae (yellow-green algae) 11.Phaeothamniophyceae 12.Phaeophyceae (brown algae) • Phylogenetic analysis using rDNA nucleotide sequences of the 16S subunit have shown that the classes Chrysophyceae, Synurophyceae, Eustigmatophyceae, Raphidophyceae, Pelagophyceae and Dictyochophyceae are evolutionarily close. Phaeophyceae, Xanthophyceae, Phaeothamniophyceae, Pinguiophyceae and Chrysomerophyceae are also related, and Bacillariophyceae and Chromulina Uroglena Bolidophyceae form an isolated group. • The chloroplasts are parietal and • Many of the Chrysophyceae have a usually only a few in number, often tinsel flagellum that is inserted at the only one or two. anterior end of the cell parallel to the • Chlorophylls a, c1, and c2 are cell axis and a whiplash flagellum that present, with the main carotenoid is inserted approximately perpendicular being fucoxanthin which give them a golden color. to the tinsel flagellum. • The chloroplasts are surrounded by • The posterior whiplash flagellum is two membranes of chloroplast E.R., usually the shorter flagellum and has a the outer membrane of which is swelling at its base on the side toward usually continuous with the outer the cell contains an electron-dense membrane of the nuclear envelope. area referred to as the photoreceptor. • The thylakoids are usually grouped • The flagellar swelling fits into a three to a band. depression of the cell immediately • Pyrenoids are common in beneath which, inside the chloroplast, chloroplasts of the Chrysophyceae. is the eyespot. • The storage product is chrysolaminarin (leucosin), a β- • The eyespot consists of lipid globules 1,3 linked glucan, supposedly found inside the anterior portion of the in a posterior vesicle (C). chloroplast, between the chloroplast • Contractile vacuoles in the anterior envelope and the first band of portion of the cell (CV). Semidiagrammatic drawing of a light and electron thylakoids. Semidiagrammatic drawing of a light and electron microscopical view of the basic organization of a cell of microscopical view of the basic organization of a cell of the Chrysophyceae. (C) Chrysolaminarin vesicle; (CE) the Chrysophyceae. (C) Chrysolaminarin vesicle; (CE) chloroplast envelope; (CER) chloroplast endoplasmic chloroplast envelope; (CER) chloroplast endoplasmic reticulum; (CV) contractile vacuole; (E) eyespot; (FS) reticulum; (CV) contractile vacuole; (E) eyespot; (FS) flagellar swelling; (G) Golgi body; (H) hair of the flagellar swelling; (G) Golgi body; (H) hair of the anterior flagellum; (MB) muciferous body; (MR) anterior flagellum; (MB) muciferous body; (MR) microtubular root of flagellum; (N) nucleus. microtubular root of flagellum; (N) nucleus. ١ • Most of the Chrysophyceae are sensitive to changes in the environment and • The presence of cellulose in cell walls is common, and some species survive the unfavorable periods as statospores. are covered with scales or protected by an organic sheath called the • The formation of a cyst or statospore or resting spore is one character by lorica (L), an envelope around the protoplast, but not generally which a member of the Chrysophyceae or Synurophyceae may be recognized. attached to the protoplast as a wall is. • Statospores, are shaped like a small, externally ornamented bottle enclosed in a silicified wall with a terminal pore closed by nonsilicified plug (P). • Scales (if they are present) are made of silica and are radially or • A vegetative cell forms a statospore internally. biradially symmetrical • Very few chrysophyceans are naked. • When a statospore germinates, there is a dissolution of the plug or separation of it from the spore wall. The protoplast then moves out of the statospore by amoeboid motion, forming flagella as it moves out. Chrysococcus rufescens. (a) Whole cell. (b) Cell Formation of a statospore or cyst Statospore of Ochromonas sphaerocystis. undergoing reproduction. (c) Ultrastructure of in Ochromonas tuberculata. (a)– vegetative cell. (B) Branched cytoplasmic process; (E) (c) The formation of the eyespot; (G) Golgi; (L) lorica; (LV) leucosin vesicle; (LF) statospore. (d) A mature long flagellum; (N) nucleus; (SF) short flagellum; (V) statospore as seen from the collar contractile vacuole. end. (C) Chloroplast; (Co) collar of statospore; (Cr) chrysolaminarin vesicle; (CV) contractile vacuole; (D) discobolocyst; (N) nucleus; (P) plug in pore of statospore; (S) statospore wall; (SDV) silica deposition vesicle; (Sp) spine. • Two different types of projectiles occur in the • Nutrition in the Chrysophyceae can be either phototrophic, Chrysophyceae, muciferous bodies and phagotrophic, or mixotrophic (photosynthetic organism capable of discobolocysts. taking up particles and molecules from the medium). • On discharge the contents of the vesicle in • Food particles include both living (bacteria, small algae, or even muciferous bodies (MB) often form a fibrous network cells of its own kind) and non-living (detritus, fecal material). outside the cell. • The mixotrophic chrysophytes, Epipyxis pulchra have the ability to • The discobolocysts (D) are in the outer layer of cytoplasm and consist of a single membrane select or reject specific food item. bounded vesicle with a hollow disc in the outward facing part of the vesicles. The discharge is explosive, taking place by the expansion of the projectile into a thin thread 6 to 11 µm long. Semidiagrammatic drawing of a light and electron microscopical view of the basic organization of a cell of the Chrysophyceae. (MB) muciferous body. Phagotrophy in Epipyxia pulchra. The cell has a posterior stalk by which it is attached to a lorica. (a) The long tinsel flagellum beats in such a way that water and suspended particles are drawn to the cell. (b) A particle is seized by the long tinsel flagellum. (c) The particle is maneuvered between the (a) Ochromonas tuberculatus. (D) discobolocyst; (b) two flagella. (d) A feeding cap from the cell envelopes the particle. (e) The particle is enclosed within Charged and discharged discobolocysts. a food vacuole within the cytoplasm. The stalk has pulled the cell into the lorica. • Chrysophytes are notorious for their production of fishy or rancid smells, reflecting release of unsaturated aldehydes derived from the high cell content of polyunsaturated acids. • Mitotic division is the most • These chemicals are classified as algal volatile organic common mechanism of compounds (AVOCs). asexual reproduction. • Sexual reproduction is rare, but when it occurs, gametes are anisogamous. • Vegetative cells are haploid, and meiosis is the first division of the zygote. • In some cases, zygotes are statospores, representing a resting phase. Three unsaturated fatty-acid derivatives produced by chrysophytes that result in rancid or fishy odors. The life cycle of Dinobryon. ٢ • Eustimatophytes are yellow-green unicells that • Synurophyceae are flagellate algae occur in freshwater, brackish water, and seawater as covered with silica-scales (S). well as in the soil. • They are closely related to the Chrysophyceae. • They produce naked zoospores. • The Synurophyceae differ from chrysophyceans in • Most bear a single pleuronematic
Recommended publications
  • University of Oklahoma
    UNIVERSITY OF OKLAHOMA GRADUATE COLLEGE MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION SUBMITTED TO THE GRADUATE FACULTY in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY By JOSHUA THOMAS COOPER Norman, Oklahoma 2017 MACRONUTRIENTS SHAPE MICROBIAL COMMUNITIES, GENE EXPRESSION AND PROTEIN EVOLUTION A DISSERTATION APPROVED FOR THE DEPARTMENT OF MICROBIOLOGY AND PLANT BIOLOGY BY ______________________________ Dr. Boris Wawrik, Chair ______________________________ Dr. J. Phil Gibson ______________________________ Dr. Anne K. Dunn ______________________________ Dr. John Paul Masly ______________________________ Dr. K. David Hambright ii © Copyright by JOSHUA THOMAS COOPER 2017 All Rights Reserved. iii Acknowledgments I would like to thank my two advisors Dr. Boris Wawrik and Dr. J. Phil Gibson for helping me become a better scientist and better educator. I would also like to thank my committee members Dr. Anne K. Dunn, Dr. K. David Hambright, and Dr. J.P. Masly for providing valuable inputs that lead me to carefully consider my research questions. I would also like to thank Dr. J.P. Masly for the opportunity to coauthor a book chapter on the speciation of diatoms. It is still such a privilege that you believed in me and my crazy diatom ideas to form a concise chapter in addition to learn your style of writing has been a benefit to my professional development. I’m also thankful for my first undergraduate research mentor, Dr. Miriam Steinitz-Kannan, now retired from Northern Kentucky University, who was the first to show the amazing wonders of pond scum. Who knew that studying diatoms and algae as an undergraduate would lead me all the way to a Ph.D.
    [Show full text]
  • Number of Living Species in Australia and the World
    Numbers of Living Species in Australia and the World 2nd edition Arthur D. Chapman Australian Biodiversity Information Services australia’s nature Toowoomba, Australia there is more still to be discovered… Report for the Australian Biological Resources Study Canberra, Australia September 2009 CONTENTS Foreword 1 Insecta (insects) 23 Plants 43 Viruses 59 Arachnida Magnoliophyta (flowering plants) 43 Protoctista (mainly Introduction 2 (spiders, scorpions, etc) 26 Gymnosperms (Coniferophyta, Protozoa—others included Executive Summary 6 Pycnogonida (sea spiders) 28 Cycadophyta, Gnetophyta under fungi, algae, Myriapoda and Ginkgophyta) 45 Chromista, etc) 60 Detailed discussion by Group 12 (millipedes, centipedes) 29 Ferns and Allies 46 Chordates 13 Acknowledgements 63 Crustacea (crabs, lobsters, etc) 31 Bryophyta Mammalia (mammals) 13 Onychophora (velvet worms) 32 (mosses, liverworts, hornworts) 47 References 66 Aves (birds) 14 Hexapoda (proturans, springtails) 33 Plant Algae (including green Reptilia (reptiles) 15 Mollusca (molluscs, shellfish) 34 algae, red algae, glaucophytes) 49 Amphibia (frogs, etc) 16 Annelida (segmented worms) 35 Fungi 51 Pisces (fishes including Nematoda Fungi (excluding taxa Chondrichthyes and (nematodes, roundworms) 36 treated under Chromista Osteichthyes) 17 and Protoctista) 51 Acanthocephala Agnatha (hagfish, (thorny-headed worms) 37 Lichen-forming fungi 53 lampreys, slime eels) 18 Platyhelminthes (flat worms) 38 Others 54 Cephalochordata (lancelets) 19 Cnidaria (jellyfish, Prokaryota (Bacteria Tunicata or Urochordata sea anenomes, corals) 39 [Monera] of previous report) 54 (sea squirts, doliolids, salps) 20 Porifera (sponges) 40 Cyanophyta (Cyanobacteria) 55 Invertebrates 21 Other Invertebrates 41 Chromista (including some Hemichordata (hemichordates) 21 species previously included Echinodermata (starfish, under either algae or fungi) 56 sea cucumbers, etc) 22 FOREWORD In Australia and around the world, biodiversity is under huge Harnessing core science and knowledge bases, like and growing pressure.
    [Show full text]
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Aeropalynological Study of Yangmingshan National Park, Taiwan
    Taiwania, 50(2): 101-108, 2005 Two Marine Brown Algae (Phaeophyceae) New to Pratas Island Showe-Mei Lin(1,2), Shin-Yi Chang(1) and Chia-Ming Kuo(1) (Manuscript received 24 January, 2005; accepted 22 March, 2005) ABSTRACT: Two marine brown algae, Cladosiphon okamuranus Tokida and Stypopodium flabelliforme Weber-van Bosse, are reported from Pratas Island for the first time. Diagnostic morphological features are illustrated and the taxonomic status of the two species is also discussed. KEY WORDS: Marine brown algae, Phaeophyceae, Cladosiphon okamuranus, Stypopodium flabelliforme. INTRODUCTION The marine macro-algal flora of Taiwan has been studied by numerous phycologists (summarized in Lewis and Norris, 1987). The recorded number of species reaches over 500 (Lewis and Norris, 1987; Chiang and Wang, 1987; Huang, 1990, 1991, 1999a, 1999b; Wang and Chiang, 1993; Wang et al., 1993; Huang and Chang, 1999; Lin, 2002, 2004; Lin et al., 2002, 2004a, 2004b; Lin and Fredericq, 2003). The number of marine macro-algal species for the region has recently increased due to intensive investigations this past decade (Huang, 1991, 1999a, 1999b; Wang et al., 1993; Huang and Chiang, 1999), and numerous new species continue to be discovered (Lewis et al., 1996; Lin et al., 2002). The marine flora of Pratas Island, a remote island situated at South China Sea between Hong Kong and the Philippines and one of territories of Taiwan, has been little studied in the past decades (Chiang, 1975; Lewis and Lin, 1994). Pratas Island, 2 km in length by 0.8 km in width, is part of emerged coral reef areas in western side of Pratas Atoll, ca.
    [Show full text]
  • Biology and Systematics of Heterokont and Haptophyte Algae1
    American Journal of Botany 91(10): 1508±1522. 2004. BIOLOGY AND SYSTEMATICS OF HETEROKONT AND HAPTOPHYTE ALGAE1 ROBERT A. ANDERSEN Bigelow Laboratory for Ocean Sciences, P.O. Box 475, West Boothbay Harbor, Maine 04575 USA In this paper, I review what is currently known of phylogenetic relationships of heterokont and haptophyte algae. Heterokont algae are a monophyletic group that is classi®ed into 17 classes and represents a diverse group of marine, freshwater, and terrestrial algae. Classes are distinguished by morphology, chloroplast pigments, ultrastructural features, and gene sequence data. Electron microscopy and molecular biology have contributed signi®cantly to our understanding of their evolutionary relationships, but even today class relationships are poorly understood. Haptophyte algae are a second monophyletic group that consists of two classes of predominately marine phytoplankton. The closest relatives of the haptophytes are currently unknown, but recent evidence indicates they may be part of a large assemblage (chromalveolates) that includes heterokont algae and other stramenopiles, alveolates, and cryptophytes. Heter- okont and haptophyte algae are important primary producers in aquatic habitats, and they are probably the primary carbon source for petroleum products (crude oil, natural gas). Key words: chromalveolate; chromist; chromophyte; ¯agella; phylogeny; stramenopile; tree of life. Heterokont algae are a monophyletic group that includes all (Phaeophyceae) by Linnaeus (1753), and shortly thereafter, photosynthetic organisms with tripartite tubular hairs on the microscopic chrysophytes (currently 5 Oikomonas, Anthophy- mature ¯agellum (discussed later; also see Wetherbee et al., sa) were described by MuÈller (1773, 1786). The history of 1988, for de®nitions of mature and immature ¯agella), as well heterokont algae was recently discussed in detail (Andersen, as some nonphotosynthetic relatives and some that have sec- 2004), and four distinct periods were identi®ed.
    [Show full text]
  • The Interplay of Positive and Negative Influences
    Journal of Experimental Marine Biology and Ecology 448 (2013) 162–170 Contents lists available at SciVerse ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Effects of seaweed canopies and adult barnacles on barnacle recruitment: The interplay of positive and negative influences Arne J. Beermann a, Julius A. Ellrich a, Markus Molis b, Ricardo A. Scrosati a,⁎ a Saint Francis Xavier University, Department of Biology, Antigonish, Nova Scotia B2G 2W5, Canada b Alfred Wegener Institute for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany article info abstract Article history: Barnacles are dominant sessile invertebrates on many rocky shores worldwide. Hence, investigating the factors Received 15 February 2013 that affect their recruitment is important. Through field experiments done on the Atlantic coast of Canada, we Received in revised form 30 June 2013 investigated interspecificandintraspecific relationships affecting intertidal barnacle recruitment. Specifically, Accepted 1 July 2013 we evaluated the effects of seaweed canopies (Ascophyllum nodosum) and adult barnacles (Semibalanus Available online xxxx balanoides) on the density of barnacle recruits at the end of the recruitment season. The effects of three canopy treatments on barnacle recruitment and understory environmental conditions allowed us to identify positive Keywords: Ascophyllum and negative effects of canopies. At mid-intertidal elevations subjected to a moderate wave action, we found Barnacle that, during high tides, the flexible algal fronds damage wire sensors established on the substrate (whiplash Intertidal effect) and limit barnacle recruitment. However, at low tide, algal canopies limit water loss and temperature Seaweed extremes and enhance barnacle recruitment in understory habitats.
    [Show full text]
  • Interactive Effects of Increasing Temperature and Nutrient Loading On
    Aquatic Botany 133 (2016) 70–78 Contents lists available at ScienceDirect Aquatic Botany jou rnal homepage: www.elsevier.com/locate/aquabot Interactive effects of increasing temperature and nutrient loading on the habitat-forming rockweed Ascophyllum nodosum ∗ Lauren M. Kay , Allison L. Schmidt, Kristen L. Wilson, Heike K. Lotze Department of Biology, Dalhousie University, 1355 Oxford St., PO Box 15000, Halifax, NS, B3H 4R2, Canada a r t i c l e i n f o a b s t r a c t Article history: Perennial seaweeds are dominant primary producers and foundation species along rocky shores, provid- Received 31 December 2015 ing essential ecosystem functions and services. Although increasingly affected by various anthropogenic Received in revised form 2 June 2016 activities, the cumulative effects of multiple stressors are little known. We tested the interactive effects Accepted 4 June 2016 of nutrient enrichment and increased water temperatures on growth, nitrogen retention and carbon Available online 6 June 2016 ◦ ◦ storage in juvenile Ascophyllum nodosum from Nova Scotia, Canada (44 29.9 N, 63 31.7 W) using a multi-factorial laboratory experiment. Temperature strongly affected growth, significantly reducing Keywords: ◦ ◦ ◦ weight and length gain from 16 C to 20 C and 24 C. Medium nutrient enrichment enhanced while high Ascophyllum nodosum enrichment slowed rockweed growth at lower temperatures, yet these effects disappeared with warming. Juvenile growth Nitrogen retention in rockweed tissue significantly increased with nutrient enrichment and decreased Climate warming Nutrient loading with warming, whereas carbon storage remained unaffected. These individual and interactive effects of Interactive effects nutrient loading and climate warming may alter the structure and function of rockweed habitats with potentially far-reaching ecological and economic consequences.
    [Show full text]
  • Download PDF Version
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Ascophyllum nodosum on full salinity mid eulittoral mixed substrata MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Frances Perry & Jacqueline Hill 2020-04-07 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/275]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Perry, F. & Hill, J.M., 2020. [Ascophyllum nodosum] on full salinity mid eulittoral mixed substrata. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.275.2 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2020-04-07 Ascophyllum nodosum on full salinity mid eulittoral mixed substrata - Marine Life Information Network Ascophyllum nodosum on full salinity mid eulittoral mixed substrata Photographer: Charlotte Johnston Copyright: Joint Nature Conservation Committee (JNCC) 17-09-2018 Biotope distribution data provided by EMODnet Seabed Habitats (www.emodnet-seabedhabitats.eu) Researched by Frances Perry & Jacqueline Hill Refereed by Prof.
    [Show full text]
  • Tracing the Origin of Planktonic Protists in an Ancient Lake
    microorganisms Article Tracing the Origin of Planktonic Protists in an Ancient Lake Nataliia V. Annenkova 1,* , Caterina R. Giner 2,3 and Ramiro Logares 2,* 1 Limnological Institute Siberian Branch of the Russian Academy of Sciences 3, Ulan-Batorskaya St., 664033 Irkutsk, Russia 2 Institute of Marine Sciences (ICM), CSIC, Passeig Marítim de la Barceloneta, 37-49, ES08003 Barcelona, Spain; [email protected] 3 Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada * Correspondence: [email protected] (N.V.A.); [email protected] (R.L.) Received: 26 February 2020; Accepted: 7 April 2020; Published: 9 April 2020 Abstract: Ancient lakes are among the most interesting models for evolution studies because their biodiversity is the result of a complex combination of migration and speciation. Here, we investigate the origin of single celled planktonic eukaryotes from the oldest lake in the world—Lake Baikal (Russia). By using 18S rDNA metabarcoding, we recovered 1414 Operational Taxonomic Units (OTUs) belonging to protists populating surface waters (1–50 m) and representing pico/nano-sized cells. The recovered communities resembled other lacustrine freshwater assemblages found elsewhere, especially the taxonomically unclassified protists. However, our results suggest that a fraction of Baikal protists could belong to glacial relicts and have close relationships with marine/brackish species. Moreover, our results suggest that rapid radiation may have occurred among some protist taxa, partially mirroring what was already shown for multicellular organisms in Lake Baikal. We found 16% of the OTUs belonging to potential species flocks in Stramenopiles, Alveolata, Opisthokonta, Archaeplastida, Rhizaria, and Hacrobia.
    [Show full text]
  • Safety Assessment of Brown Algae-Derived Ingredients As Used in Cosmetics
    Safety Assessment of Brown Algae-Derived Ingredients as Used in Cosmetics Status: Draft Report for Panel Review Release Date: August 29, 2018 Panel Meeting Date: September 24-25, 2018 The 2018 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This report was prepared by Lillian C. Becker, former Scientific Analyst/Writer and Priya Cherian, Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 [email protected] Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Priya Cherian, Scientific Analyst/Writer Date: August 29, 2018 Subject: Safety Assessment of Brown Algae as Used in Cosmetics Enclosed is the Draft Report of 83 brown algae-derived ingredients as used in cosmetics. (It is identified as broalg092018rep in this pdf.) This is the first time the Panel is reviewing this document. The ingredients in this review are extracts, powders, juices, or waters derived from one or multiple species of brown algae. Information received from the Personal Care Products Council (Council) are attached: • use concentration data of brown algae and algae-derived ingredients (broalg092018data1, broalg092018data2, broalg092018data3); • Information regarding hydrolyzed fucoidan extracted from Laminaria digitata has been included in the report.
    [Show full text]
  • <I>AUREOCOCCUS ANOPHAGEFFERENS</I>
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2016 MOLECULAR AND ECOLOGICAL ASPECTS OF THE INTERACTIONS BETWEEN AUREOCOCCUS ANOPHAGEFFERENS AND ITS GIANT VIRUS Mohammad Moniruzzaman University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Moniruzzaman, Mohammad, "MOLECULAR AND ECOLOGICAL ASPECTS OF THE INTERACTIONS BETWEEN AUREOCOCCUS ANOPHAGEFFERENS AND ITS GIANT VIRUS. " PhD diss., University of Tennessee, 2016. https://trace.tennessee.edu/utk_graddiss/4152 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Mohammad Moniruzzaman entitled "MOLECULAR AND ECOLOGICAL ASPECTS OF THE INTERACTIONS BETWEEN AUREOCOCCUS ANOPHAGEFFERENS AND ITS GIANT VIRUS." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Microbiology. Steven W. Wilhelm, Major Professor We have read this dissertation
    [Show full text]
  • Draft Genome of the Brown Alga, Nemacystus Decipiens, Onna-1 Strain: Fusion of Genes Involved in the Sulfated Fucan Biosynthesis Pathway
    Draft genome of the brown alga, Nemacystus decipiens, Onna-1 strain: Fusion of genes involved in the sulfated fucan biosynthesis pathway Author Koki Nishitsuji, Asuka Arimoto, Yoshimi Higa, Munekazu Mekaru, Mayumi Kawamitsu, Noriyuki Satoh, Eiichi Shoguchi journal or Scientific Reports publication title volume 9 number 1 page range 4607 year 2019-03-14 Publisher Nature Research Rights (C) 2019 The Author(s). Author's flag publisher URL http://id.nii.ac.jp/1394/00000906/ doi: info:doi/10.1038/s41598-019-40955-2 Creative Commons? Attribution 4.0 International? (https://creativecommons.org/licenses/by/4.0/) www.nature.com/scientificreports OPEN Draft genome of the brown alga, Nemacystus decipiens, Onna-1 strain: Fusion of genes involved Received: 21 May 2018 Accepted: 22 February 2019 in the sulfated fucan biosynthesis Published: xx xx xxxx pathway Koki Nishitsuji 1, Asuka Arimoto1, Yoshimi Higa2, Munekazu Mekaru2, Mayumi Kawamitsu3, Noriyuki Satoh 1 & Eiichi Shoguchi1 The brown alga, Nemacystus decipiens (“ito-mozuku” in Japanese), is one of the major edible seaweeds, cultivated principally in Okinawa, Japan. N. decipiens is also a signifcant source of fucoidan, which has various physiological activities. To facilitate brown algal studies, we decoded the ~154 Mbp draft genome of N. decipiens Onna-1 strain. The genome is estimated to contain 15,156 protein-coding genes, ~78% of which are substantiated by corresponding mRNAs. Mitochondrial genes analysis showed a close relationship between N. decipiens and Cladosiphon okamuranus. Comparisons with the C. okamuranus and Ectocarpus siliculosus genomes identifed a set of N. decipiens-specifc genes. Gene ontology annotation showed more than half of these are classifed as molecular function, enzymatic activity, and/or biological process.
    [Show full text]