Dictyotales, Phaeophyceae)1

Total Page:16

File Type:pdf, Size:1020Kb

Dictyotales, Phaeophyceae)1 J. Phycol. 46, 1301–1321 (2010) Ó 2010 Phycological Society of America DOI: 10.1111/j.1529-8817.2010.00908.x SPECIES DELIMITATION, TAXONOMY, AND BIOGEOGRAPHY OF DICTYOTA IN EUROPE (DICTYOTALES, PHAEOPHYCEAE)1 Ana Tronholm2 Departamento de Biologı´a Vegetal (Bota´nica), Universidad de La Laguna, 38271 La Laguna, Canary Islands, Spain Frederique Steen, Lennert Tyberghein, Frederik Leliaert, Heroen Verbruggen Phycology Research Group and Centre for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium M. Antonia Ribera Siguan Unitat de Bota`nica, Facultat de Farma`cia, Universitat de Barcelona, Joan XXIII s ⁄ n, 08032 Barcelona, Spain and Olivier De Clerck Phycology Research Group and Centre for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281, Building S8, 9000 Ghent, Belgium Taxonomy of the brown algal genus Dictyota has a supports the by-product hypothesis of reproductive long and troubled history. Our inability to distin- isolation. guish morphological plasticity from fixed diagnostic Keyindexwords:biogeography;Dictyota;Dictyotales; traits that separate the various species has severely diversity; molecular phylogenetics; taxonomy confounded species delineation. From continental Europe, more than 60 species and intraspecific taxa Abbreviations: AIC, Akaike information criterion; have been described over the last two centuries. BI, Bayesian inference; BIC, Bayesian information Using a molecular approach, we addressed the criterion; GTR, general time reversible; ML, diversity of the genus in European waters and made maximum likelihood necessary taxonomic changes. A densely sampled DNA data set demonstrated the presence of six evo- lutionarily significant units (ESUs): Dictyota dichotoma Species of the genus Dictyota J. V. Lamour., along (Huds.) J. V. Lamour., D. fasciola (Roth) J. V. with other Dictyotales, are key components of many Lamour., D. implexa J. V. Lamour., D. mediterranea coastal ecosystems (Lu¨ning 1990). Due to their effi- (Schiffn.) G. Furnari, D. spiralis Mont., and the cient chemical defense systems, which involve newly described D. cyanoloma sp. nov., which was various diterpenes as well as gaseous volatiles (Hay previously reported as D. ciliolata from the Mediter- et al. 1987, Wiesemeier et al. 2007), and their ability ranean Sea. Species distributions, based on to propagate successfully by fragmentation (Herren DNA-confirmed occurrence records, indicate that all et al. 2006), the species are able to maintain a sig- species are geographically confined to the NE nificant biomass under high grazing pressure and Atlantic Ocean with the exception of D. dichotoma therefore have an important role in the structuring and D. implexa, which also occur in South Africa of benthic communities in tropical and temperate and Bermuda, respectively. To investigate potential ecosystems. Despite their prevalence and ecological hybridization between D. dichotoma and D. implexa, importance, species-level taxonomy is long and trou- which were previously shown to be sexually compati- bled. ble in culture, we compiled and analyzed sets of Species are routinely used as fundamental units mitochondrial, plastid, and nuclear markers to of ecological surveys, conservation biology, biogeog- detect putative hybrids or introgression in natural raphy, and macroevolution, yet the empirical delimi- populations. Failure to detect natural hybrids indi- tation of species can pose serious difficulties (Wiens cates that effective pre- and postzygotic isolation 1999, Agapow et al. 2004, Sites and Marshall 2004). mechanisms are at play in natural populations and Defining species boundaries is inherently linked to the species concept applied. Despite extensive dis- 1Received 13 January 2010. Accepted 30 June 2010. putes over species concepts, most biologists agree 2Author for correspondence: e-mail [email protected]. that species are lineages, and what previous authors 1301 1302 ANA TRONHOLM ET AL. have generally disagreed about are the best criteria D. dichotoma. Caribbean representatives of the for recognizing these lineages (Mayden 1997, D. dichotoma complex were segregated and described De Queiroz 1998). As with most algal groups, the as D. pulchella Ho¨rnig and Schnetter (1988). Even morphological species concept has dominated though this tropical species shares its chromosome systematics in Dictyota. Species are recognized by number with D. dichotoma, it appears to be partially discontinuities in morphological characters, but our reproductively isolated, the sporophyte generation inability to distinguish morphological plasticity from resulting from reciprocal crosses being unable to diagnostic traits that separate the various species has produce viable tetraspores. severely confounded species delimitation. The lack The application of a biological species concept in of understanding of the variability of morphological Dictyota yielded an orderly and simple classification. characters has led to an erroneous taxonomy However, the ability of different strains to produce whereby specimens on the fringes of the morpho- viable offspring under artificial conditions, though logical spectrum have habitually been described as meaningful in itself, does not necessarily reflect nat- different species (De Clerck and Coppejans 1999) ural conditions. It is obvious that the evolution of or where different species were lumped into a single reproductive isolation is far more complex than entity on the basis of superficial similarity. From gametic compatibility alone (Coyne and Orr 2004). continental Europe, more than 60 species and intra- Various pre- and postzygotic reproductive barriers specific taxa have been described over the last two may interact to reduce or completely prevent the centuries (Ho¨rnig and Schnetter 1988, De Clerck formation of hybrid offspring between two sexually 2003). It is generally accepted that this number is a compatible species. It is therefore of interest to test gross overestimation of the real taxonomic diversity if the observed gametic compatibility of the D. dicho- caused by misinterpretation of morphological plas- toma complex extends to the formation of hybrids ticity. There is currently no consensus as to how in natural populations also. The detection of many species are present. Along the Atlantic coast hybrids or introgression in natural populations has of mainland Europe, reports are limited to two become feasible by applying molecular techniques. species: D. dichotoma, a common species ranging as Differential inheritance patterns of DNA from dif- far north as southern Norway (Hoek 1982), and ferent genomic compartments offer an effective tool D. spiralis, which is probably common along the Por- to detect putative hybrids or the lack thereof (Coyer tuguese coast but known only from scattered locali- et al. 2002a, Fraser et al. 2009, Niwa et al. 2009, ties in more northern reaches (Newton 1931, Gayral Tellier et al. 2009). In brown algae, mtDNA appears 1966, Ardre´ 1970, Hardy and Guiry 2003, Araujo to be maternally inherited (Motomura 1990, Coyer et al. 2009). The Mediterranean Sea is thought to et al. 2002b, Peters et al. 2004, Kato et al. 2006), be harbor a much higher diversity than the Atlantic it that paternal leakage has recently been demon- coast, but there is no consensus on how many strated in a hybrid zone between two closely related species are present there. Fucus species (Hoarau et al. 2009). The inheritance In an attempt to clarify the taxonomy of Dictyota pattern of chloroplast DNA is likely correlated with in the North Atlantic, Schnetter and coworkers the morphological differentiation of male and employed a biological species concept in combina- female gametes. Inheritance is biparental in isoga- tion with karyological observations and morphologi- mous species (Peters et al. 2004, Kato et al. 2006); cal analyses. Schnetter et al. (1987) and Ho¨rnig and all oogamous brown algae examined to date inherit Schnetter (1988) recognized three Mediterranean chloroplasts maternally. It is therefore assumed that species, D. fasciola, D. spiralis, and the morphologi- in Dictyota chloroplasts are maternally transmitted. cally extremely variable D. dichotoma. Slender growth Besides the conceptual issues related to delimit- forms of the latter species were named D. dichotoma ing species, several problems regarding the diversity var. intricata (C. Agardh) Grev. While there was rela- of Dictyota in Europe persist. First, the presence of tively little doubt about the identities of D. fasciola only three species along the coasts of mainland and D. spiralis, the studies of Schnetter and cowork- Europe and the Mediterranean Sea was never unani- ers applied a very broad concept of D. dichotoma. mously accepted. Taxa such as D. linearis and Previously, phycologists had recognized several D. mediterranea, which were considered synonyms of, species in the D. dichotoma complex, D. divaricata respectively, D. dichotoma and D. fasciola by Ho¨rnig J. V. Lamour., D. linearis (C. Agardh) Grev., and et al. (1992a,b), continue to be recognized by sev- D. pusilla J. V. Lamour. being the most commonly eral authors (Furnari et al. 1999, Pena Martı´n et al. applied names. Chromosome counts and crossing 2004, Rull Lluch et al. 2005, Serio et al. 2006). Sec- experiments revealed a haploid chromosome num- ond, the geographic distribution of the various spe- ber of n = 16 and full interfertility for all European cies remains uncertain. Literature reports suggest specimens of the D.
Recommended publications
  • Diversity of Brown Macroalgae in Kupang Bay Waters and Alginate Content Potential and Its Phytochemistry Yuliana Salosso, Yudiana Jasmanindar
    Diversity of brown macroalgae in Kupang Bay waters and alginate content potential and its phytochemistry Yuliana Salosso, Yudiana Jasmanindar Faculty of Marine and Fisheries, Nusa Cendana University, Kupang, Jl Adisucipto, Penfui Kupang, Nusa Tenggara Timur, Indonesia. Corresponding author: Y. Salosso, [email protected] Abstract. This study was aimed at knowing the diversity, alginate content, and phytochemical content of brown macro algae found in Kupang Bay waters. Macroalgal sampling was carried out at the lowest tide in Paradiso beach, Kelapa Lima, Pasir Panjang, Bolok, and Tabulolong, through survey along the coast. Each species found was photographed for identification. After species identification, each macroalga was cleaned and dried, then sublimated for alginate content analysis and secondary metabolite test covering alkaloid, saponin, flavonoid, tannin, terpenoid, and steroid compounds. Results found 11 species of brown macroalgae, namely Padina australis, Padina sp., Turbinaria ornata, Hydroclathrus clathratus, Hormophysa cuneiformis, Sargassum spp., S. cristaefolium, S. polycystum, S. crassifolium, Dictyopteris acrostichoides, and Dictyota ciliolata. The alginate content of two species, H. clathratus and D. ciliolata, was not examined because of insufficient amount. All brown macroalgae contained different alginate with species and the highest occurred in Sargassum spp. and Padina spp. reaching 33.33%, while the lowest was in Turbinaria ornate and S. cristaefolium, only 13.33%. Besides, they held alkaloid, saponin, steroid, terpenoid, tannin and flavonoid compounds that could be developed as medicinal materials. Key Words: species identification, occurrence, content amount, metabolite compounds. Introduction. Macroalgae usually known as seaweed are one of the coastal and marine resources that have good economic or ecological benefits (Pakidi & Suwoyo 2016). Economically, macroalgae can be developed as food materials, livestock feed, medicines, fertilizer and raw materials for industry (Kemer et al 2015).
    [Show full text]
  • Download PDF Version
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Mixed kelp and red seaweeds on infralittoral boulders, cobbles and gravel in tidal rapids MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Thomas Stamp 2015-10-12 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/1037]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Stamp, T.E., 2015. Mixed kelp and red seaweeds on infralittoral boulders, cobbles and gravel in tidal rapids. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.1037.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Mixed kelp and red seaweeds on infralittoral boulders, cobbles and gravel in tidal rapids - Marine Life Information Date: 2015-10-12 Network 17-09-2018 Biotope distribution data provided by EMODnet Seabed Habitats (www.emodnet-seabedhabitats.eu) Researched by Thomas Stamp Refereed by This information is not refereed.
    [Show full text]
  • Universidade Federal Do Estado Do Rio De Janeiro
    UNIVERSIDADE FEDERAL DO ESTADO DO RIO DE JANEIRO - UNIRIO CENTRO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE - CCBS INSTITUTO DE BIOCIÊNCIAS - IBio PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS - PPGBIO (BIODIVERSIDADE NEOTROPICAL) Erick Alves Pereira Lopes Filho Filogenia e filogeografia de espécies de Dictyota Lamouroux (Dictyotales: Phaeophyceae) Rio de Janeiro 2018 Erick Alves Pereira Lopes Filho Filogenia e filogeografia de espécies de Dictyota Lamouroux (Dictyotales: Phaeophyceae) Dissertação apresentada ao Programa de Pós-Graduação em Ciências Biológicas (Biodiversidade Neotropical) da Universidade Federal do Estado do Rio de Janeiro como requisito parcial para obtenção do título de Mestre. Orientador: Prof. Dr. Joel Campos de Paula Co-orientador: Prof. Dr. Fabiano Salgueiro Rio de Janeiro 2018 UNIVERSIDADE FEDERAL DO ESTADO DO RIO DE JANEIRO - UNIRIO CENTRO DE CIÊNCIAS BIOLÓGICAS E DA SAÚDE - CCBS INSTITUTO DE BIOCIÊNCIAS - IBio Erick Alves Pereira Lopes Filho Filogenia e filogeografia de espécies de Dictyota Lamouroux (Dictyotales: Phaeophyceae) Dissertação apresentada ao curso de Mestrado em Ciências Biológicas do Programa de Pós- Graduação em Ciências Biológicas (Biodiversidade Neotropical) da Universidade Federal do Estado do Rio de Janeiro no dia 11 de janeiro de 2018, como requisito parcial para a obtenção do título de Mestre em Ciências Biológicas. A mesma foi avaliada pela banca examinadora composta por Dr.ª Maria Beatriz Barbosa de Barros Barreto, Dr.ª Valéria Cassano e Dr. Joel Campos de Paula, sendo suplentes Dr. Fabiano Salgueiro, Dr. Leandro Pederneiras e Dr.ª Valéria Laneuville Teixeira, e aprovada com o conceito _________________ Dr.ª Maria Beatriz Barbosa de Barros Barreto Universidade Federal do Rio de Janeiro ______ Dr.ª Valéria Cassano Universidade de São Paulo Dr.
    [Show full text]
  • BROWN ALGAE [147 Species] (
    CHECKLIST of the SEAWEEDS OF IRELAND: BROWN ALGAE [147 species] (http://seaweed.ucg.ie/Ireland/Check-listPhIre.html) PHAEOPHYTA: PHAEOPHYCEAE ECTOCARPALES Ectocarpaceae Acinetospora Bornet Acinetospora crinita (Carmichael ex Harvey) Kornmann Dichosporangium Hauck Dichosporangium chordariae Wollny Ectocarpus Lyngbye Ectocarpus fasciculatus Harvey Ectocarpus siliculosus (Dillwyn) Lyngbye Feldmannia Hamel Feldmannia globifera (Kützing) Hamel Feldmannia simplex (P Crouan et H Crouan) Hamel Hincksia J E Gray - Formerly Giffordia; see Silva in Silva et al. (1987) Hincksia granulosa (J E Smith) P C Silva - Synonym: Giffordia granulosa (J E Smith) Hamel Hincksia hincksiae (Harvey) P C Silva - Synonym: Giffordia hincksiae (Harvey) Hamel Hincksia mitchelliae (Harvey) P C Silva - Synonym: Giffordia mitchelliae (Harvey) Hamel Hincksia ovata (Kjellman) P C Silva - Synonym: Giffordia ovata (Kjellman) Kylin - See Morton (1994, p.32) Hincksia sandriana (Zanardini) P C Silva - Synonym: Giffordia sandriana (Zanardini) Hamel - Only known from Co. Down; see Morton (1994, p.32) Hincksia secunda (Kützing) P C Silva - Synonym: Giffordia secunda (Kützing) Batters Herponema J Agardh Herponema solitarium (Sauvageau) Hamel Herponema velutinum (Greville) J Agardh Kuetzingiella Kornmann Kuetzingiella battersii (Bornet) Kornmann Kuetzingiella holmesii (Batters) Russell Laminariocolax Kylin Laminariocolax tomentosoides (Farlow) Kylin Mikrosyphar Kuckuck Mikrosyphar polysiphoniae Kuckuck Mikrosyphar porphyrae Kuckuck Phaeostroma Kuckuck Phaeostroma pustulosum Kuckuck
    [Show full text]
  • Lecture21 Stramenopiles-Phaeophyceae.Pptx
    Stramenopiles IV (Ch. 14):! Phaeophyceae or Brown Algae" PHAEOPHYCEAE" •250 genera and +1500 spp" •Seaweeds: large, complex thalli (kelp); some filaments (no unicells or colonies)" •Almost all are marine (@ 5 FW genera)" •Chlorophylls a & c, #-carotene, fucoxanthin & violaxanthin " •PER " •Physodes (tannins = phenols)" •Walls: cellulose fibers with alginic acid (alginate)" •Storage products are:" • laminarin (#-1,3 glucan), " • mannitol (sap & “antifreeze”)" • lipids" •Flagella: Heterokont, of course!" •Fucans or fucoidins are sulfated sugars" How these algae grow?" GROWTH MODES AND MERISTEMS" DIFFUSE GROWTH: cell division is not localized: Ectocarpales" GROWTH MODES AND MERISTEMS" DIFFUSE GROWTH: cell division is not localized: Ectocarpales" MERISTEMATIC GROWTH: localized regions of cell division" 1. Apical cell" • Single: Sphacelariales, Dictyotales, Fucales" • Marginal: Dictyotales" Dictyota! Padina! Sphacelaria! Fucus! GROWTH MODES AND MERISTEMS" DIFFUSE GROWTH: cell division is not localized: Ectocarpales" MERISTEMATIC GROWTH: localized regions of cell division" 1. Apical cell" 2. Trichothalic: Desmarestiales, ! Cutleriales" Desmarestia! GROWTH MODES AND MERISTEMS" DIFFUSE GROWTH: cell division is not localized: Ectocarpales" MERISTEMATIC GROWTH: localized regions of cell division" 1. Apical cell" 2. Trichothalic: Desmarestiales, ! Cutleriales" 3. Intercalary: Laminariales" Laminaria! GROWTH MODES AND MERISTEMS" DIFFUSE GROWTH: cell division is not localized: Ectocarpales" MERISTEMATIC GROWTH: localized regions of cell division" 1.
    [Show full text]
  • Terpenes and Sterols Composition of Marine Brown Algae Padina Pavonica (Dictyotales) and Hormophysa Triquetra (Fucales)
    Available online on www.ijppr.com International Journal of Pharmacognosy and Phytochemical Research 2014-15; 6(4); 894-900 ISSN: 0975-4873 Research Article Terpenes and Sterols Composition of Marine Brown Algae Padina pavonica (Dictyotales) and Hormophysa triquetra (Fucales) *Gihan A. El Shoubaky, Essam A. Salem Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt Available Online: 22nd November, 2014 ABSTRACT In this study the terpenes and sterols composition were identified and estimated qualitatively and quantitatively from the brown algae Padina pavonica (Dictyotales) and Hormophysa triquetra (Fucales) by using GC/MS (Gas Chromatography- Mass Spectrum). Significant differences were found in the terpenes and sterols composition of the selected algae. The analysis revealed the presence of 19 terpenes in Padina pavonica and 20 terpenes in Hormophysa triquetra, in addition to 5 sterols recoded in both of them.The total concentration of terpenes in Hormophysa triquetra recorded the highest percentage than Padina pavonica. In contrast, Padina pavonica registered high content of sterols than those in Hormophysa triquetra. The main terpene component was the hemiterpene 3-Furoic acid recording in Hormophysa triquetra more than in Padina pavonica. The diterpene phytol compound occupied the second rank according to their concentration percentage in both of the studied species. Hormophysa triquetra characterized by alkylbenzene derivatives more than Padina pavonica.Fucosterolwas the major sterol component in both of the selected algae recording a convergent concentration in Padina pavonica and Hormophysa triquetra. β- Sitosterol was detected only in Padina pavonica whereas β–Sitostanol and Stigmasterol were characterized in Hormophysa triquetra. Campesterol was found in the two studied species.
    [Show full text]
  • New Records of Benthic Brown Algae (Ochrophyta) from Hainan Island (1990 - 2016)
    Titlyanova TV et al. Ochrophyta from Hainan Data Paper New records of benthic brown algae (Ochrophyta) from Hainan Island (1990 - 2016) Tamara V. Titlyanova1, Eduard A. Titlyanov1, Li Xiubao2, Bangmei Xia3, Inka Bartsch4 1National Scientific Centre of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevskogo 17, Vladivostok, 690041, Russia; 2Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; 3Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, 266071 Qingdao, PR China; 4Alfred-Wegener-Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany Corresponding author: E Titlyanov, e-mail: [email protected] Abstract This study reports on the intertidal and shallow subtidal brown algal flora from Hainan Island in the South China Sea, based on extensive sample collection conducted in 1990, 1992 and 2008−2016. The analysis revealed 27 new records of brown algae for Hainan Island, including 5 species which also constitute new records for China. 21 of these species are de- scribed with photographs and an annotated list of all species with information on life forms, habitat (localities and tidal zones) and their geographical distribution is provided. Keywords: Hainan Island, new records, seaweeds, brown algae Introduction et al. 1994; Hodgson & Yau 1997; Tadashi et al. 2008). Overall, algal species richness also changed. Hainan Island is located on the subtropical northern Partial inventory of the benthic flora of Hainan has periphery of the Pacific Ocean in the South China Sea already been carried out (Titlyanov et al. 2011a, 2015, 2016; (18˚10′-20˚9′ N, 108˚37′-111˚1′ E).
    [Show full text]
  • Dictyotales, Phaeophyceae) Species from the Canary Islands1
    J. Phycol. 46, 1075–1087 (2010) Ó 2010 Phycological Society of America DOI: 10.1111/j.1529-8817.2010.00912.x NICHE PARTITIONING AND THE COEXISTENCE OF TWO CRYPTIC DICTYOTA (DICTYOTALES, PHAEOPHYCEAE) SPECIES FROM THE CANARY ISLANDS1 Ana Tronholm,2 Marta Sanso´n, Julio Afonso-Carrillo Departamento de Biologı´a Vegetal (Bota´nica), Universidad de La Laguna, 38271 La Laguna, Canary Islands, Spain Heroen Verbruggen, and Olivier De Clerck Research Group Phycology and Centre for Molecular Phylogenetics and Evolution, Biology Department, Ghent University, Krijgslaan 281 S8, 9000 Ghent, Belgium Coexistence in a homogeneous environment The advent of DNA sequencing two decades ago requires species to specialize in distinct niches. has considerably altered our ideas about algal spe- Sympatry of cryptic species is of special interest to cies-level diversity. A plethora of studies has revealed both ecologists and evolutionary biologists because cryptic or sibling species within morphologically the mechanisms that facilitate their persistent coexis- defined species, falsifying the assumption that speci- tence are obscure. In this study, we report on two ation events always coincide with any noticeable sympatric Dictyota species, D. dichotoma (Huds.) morphological differentiation. As aptly stated by J. V. Lamour. and the newly described species Saunders and Lemkuhl (2005), species do not D. cymatophila sp. nov., from the Canary Islands. evolve specifically to render their identification Gene sequence data (rbcL, psbA, nad1, cox1, cox3, easier for scientists. In many cases, the respective and LSU rDNA) demonstrate that D. dichotoma and cryptic species are confined to discrete nonoverlap- D. cymatophila do not represent sister species. ping geographic regions.
    [Show full text]
  • Redalyc.On the Presence of Fertile Gametophytes of Padina Pavonica
    Anales del Jardín Botánico de Madrid ISSN: 0211-1322 [email protected] Consejo Superior de Investigaciones Científicas España Gómez Garreta, Amelia; Lluch, Jordi Rull; Barceló Martí, M. Carme; Ribera Siguan, M. Antonia On the presence of fertile gametophytes of Padina pavonica (Dictyotales, Phaeophyceae) from the Iberian coasts Anales del Jardín Botánico de Madrid, vol. 64, núm. 1, enero-junio, 2007, pp. 27-33 Consejo Superior de Investigaciones Científicas Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=55664102 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Anales del Jardín Botánico de Madrid Vol. 64(1): 27-33 enero-junio 2007 ISSN: 0211-1322 On the presence of fertile gametophytes of Padina pavonica (Dictyotales, Phaeophyceae) from the Iberian coasts by Amelia Gómez Garreta, Jordi Rull Lluch, M. Carme Barceló Martí & M. Antonia Ribera Siguan Laboratori de Botànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain. [email protected] (corresponding author), [email protected], [email protected], [email protected] Abstract Resumen Gómez Garreta, A., Rull Lluch, J., Barceló Martí, M.C. & Ribera Gómez Garreta, A., Rull Lluch, J., Barceló Martí, M.C. & Ribera Siguan, M.A. 2007. On the presence of fertile gametophytes of Siguan, M.A. 2007. Sobre la presencia de gametófitos fértiles de Padina pavonica (Dictyotales, Phaeophyceae) from the Iberian Padina pavonica (Dictyotales, Phaeophyceae) en las costas ibéri- coasts.
    [Show full text]
  • Dictyota Adnata Zanardini (Phaeophyceae) - a New Record from the Sundarbans Mangrove Forests, Bangladesh
    Bangladesh J. Bot. 49(2): 407-412, 2020 (June) - Short communication DICTYOTA ADNATA ZANARDINI (PHAEOPHYCEAE) - A NEW RECORD FROM THE SUNDARBANS MANGROVE FORESTS, BANGLADESH 1 2 MD ARIFUL ISLAM, MD RASHEDUL ISLAM , ABDUL AZIZ AND LAWRENCE M LIAO* Aquatic Botany Laboratory, Department of Bioresource Science, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan 739-8528 Keywords: Brown algae, Epiphyte, Phycology, Taxonomy, A new record Abstract Samples were collected from Arpangasia and Kholpetua rivers within the Sundarbans in Bangladesh during February to March and December 2018. Among several forms was found a tightly prostrate brown alga occurring on moist parts of mangrove plants and clayey soil. Flattened brownish thalli tightly attached to pneumatophores and lower parts of mangrove trunks, spreading and branching dichotomously, sometimes overlapping and attached by means of unbranched marginal and sub-marginal rhizoids were collected. Distinct marginal sori are well developed in fertile specimens. On the basis of these characters, the sample has been identified as Dictyota adnata Zanardini which is herein reported as a new record for Bangladesh. The Sundarbans is the world’s largest mangrove ecosystem that is shared by India and Bangladesh fronting the vast Bay of Bengal to the south representing a unique ecosystem showcasing an astounding floral and faunal assemblage that is constantly exposed to various anthropogenic and natural threats (Aziz and Paul 2015). The rich biodiversity and largest contiguous forests of the Sundarbans were recognized when large portions of it were designated as a UNESCO World Heritage Site as well as a Ramsar site. The algal flora within the Sundarbans was first studied by Islam (1973) who documented 35 species, most of them belonging to the “Bostrychietum” group.
    [Show full text]
  • Dictyotales, Phaeophyceae)1
    ƒ. Phycol. 46, 1301-1321 (2010) © 2010 Phycological Society of America DOI: 10.1 lll/j.1529-8817.2010.00908.x SPECIES DELIMITATION, TAXONOMY, AND BIOGEOGRAPHY OF D ICTYO TA IN EUROPE (DICTYOTALES, PHAEOPHYCEAE)1 Ana Tronholn? Departamento de Biología Vegetal (Botánica) , Universidad de La Laguna, 38271 La Laguna, Canary Islands, Spain Frederique Steen, Lennert Tyberghein, Frederik Leliaert, Heroen Verbruggen Phycology Research Group and Centre for Molecular Phylogenetics and Evolution, Ghent University, Rrijgslaan 281, Building S8, 9000 Ghent, Belgium M. Antonia Ribera Signan Unitat de Botánica, Facultat de Farmacia, Universität de Barcelona, Joan XXIII s/n, 08032 Barcelona, Spain and Olivier De Clerck Phycology Research Group and Centre for Molecular Phylogenetics and Evolution, Ghent University, Rrijgslaan 281, Building S8, 9000 Ghent, Belgium Taxonomy of the brown algal genus Dictyota has a supports the by-product hypothesis of reproductive long and troubled history. Our inability to distin­ isolation. guish morphological plasticity from fixed diagnostic Key index words: biogeography; Dictyota; Dictyotales; traits that separate the various species has severely diversity; molecular phylogenetics; taxonomy confounded species delineation. From continental Europe, more than 60 species and intraspecific taxa Abbreviations: AIC, Akaike information criterion; have been described over the last two centuries. Bí, Bayesian inference; BIC, Bayesian information Using a molecular approach, we addressed the criterion; GTR, general time reversible; ML, diversity of the genus in European waters and made maximum likelihood necessary taxonomic changes. A densely sampled DNA data set demonstrated the presence of six evo- lutionarily significant units (ESUs): Dictyota dichotoma Species of the genus Dictyota J. V. Lamour., along (Huds.) J. V.
    [Show full text]
  • Download PDF Version
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Foliose red seaweeds with dense Dictyota dichotoma and/or Dictyopteris membranacea on exposed lower infralittoral rock MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review Dr Heidi Tillin 2018-03-13 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/2]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Tillin, H.M. 2018. Foliose red seaweeds with dense [Dictyota dichotoma] and/or [Dictyopteris membranacea] on exposed lower infralittoral rock. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.2.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available
    [Show full text]