The Case of Electricity and Natural Gas in Spain

Total Page:16

File Type:pdf, Size:1020Kb

The Case of Electricity and Natural Gas in Spain energies Article Energy Market Prices in Times of COVID-19: The Case of Electricity and Natural Gas in Spain Luis M. Abadie Basque Centre for Climate Change—BC3, Edificio Sede No. 1, 1st Floor, Basque Country University Science Park, 48940 Leioa, Spain; [email protected]; Tel.: +34-944-014-690 Abstract: The COVID-19 pandemic is having a strong impact on the economies of all countries, negatively affecting almost all sectors. This paper compares Spanish electricity and natural gas prices in the first half-year of 2020 with the prices expected for that period at the end of 2019. The half-year of 2020 selected coincides with the period of greatest impact of COVID-19 on Spanish society. Expected prices and their future probability distributions are calculated using a stochastic model with deterministic and stochastic parts; the stochastic part includes mean-reverting and jumps behaviour. The model is calibrated with 2016–2019 daily spot prices for electricity and with day-ahead prices for natural gas. The results show large monthly differences between the prices expected at the end of the year 2019 and the actual prices for the half-year; in May 2020, wholesale electricity prices are found to be EUR 31.60/MWh lower than expected, i.e., 60% lower. In the case of natural gas, the prices in the same month are EUR 8.96/MWh lower than expected, i.e., 62% lower. The spark spread (SS) is positive but lower than expected and also lower than in the same months of the previous year. Keywords: electricity prices; natural gas prices; COVID-19; stochastic models; jumps; spark spread Citation: Abadie, L.M. Energy 1. Introduction Market Prices in Times of COVID-19: The Case of Electricity and Natural The COVID-19 pandemic has caused a strong economic impact in all countries. This Gas in Spain. Energies 2021, 14, 1632. in turn has strongly affected energy demand and consequently prices. Its effects have been https://doi.org/10.3390/en14061632 felt in several economic sectors, including construction and industry. COVID-19 is having a great impact on energy systems around the world, decreasing investments and threatening Academic Editor: Ricardo J. Bessa to slow the expansion of key clean energy technologies [1]. According to [2], in the first months of 2020, the world’s natural gas markets have Received: 10 February 2021 experienced the largest demand negative shock ever recorded in their recent history because Accepted: 11 March 2021 of the COVID-19 pandemic and because of mild winter temperatures in the northern Published: 15 March 2021 hemisphere early in the year. The timeline of COVID-19 is the following [3]: On 31 December 2019, China reported Publisher’s Note: MDPI stays neutral a cluster of cases of pneumonia where a novel coronavirus was eventually identified. After, with regard to jurisdictional claims in on 12 January 2020, China publicly shared the genetic sequence of COVID-19. Addition- published maps and institutional affil- ally, on 11 March 2020, the WHO determined that COVID-19 could be characterized as iations. a pandemic. The following dates are significant for Spain: • 13 March 2020: introduction of the “state of alarm”. • 30 March 2020: tightening of the state of alarm with a ban on all non-essential activities. Copyright: © 2021 by the author. • 13 April: return to work for construction and some industrial workers. Licensee MDPI, Basel, Switzerland. This article is an open access article Because of this chronology with the initial COVID-19 information reported on 31 distributed under the terms and December 2019, quotes from earlier dates are used to estimate the prices that would have conditions of the Creative Commons been expected in the first half of 2020 without COVID-19. Attribution (CC BY) license (https:// This study seeks to analyse the impact of the COVID-19 crisis on wholesale energy creativecommons.org/licenses/by/ markets in Spain during the first half-year of 2020, covering electricity and natural gas. It 4.0/). sets out to analyse the following points: (a) To what extent has the COVID-19 pandemic Energies 2021, 14, 1632. https://doi.org/10.3390/en14061632 https://www.mdpi.com/journal/energies Energies 2021, 14, x FOR PEER REVIEW 2 of 18 This study seeks to analyse the impact of the COVID-19 crisis on wholesale energy Energies 2021, 14, 1632 2 of 17 markets in Spain during the first half-year of 2020, covering electricity and natural gas. It sets out to analyse the following points: (a) To what extent has the COVID-19 pandemic affected the wholesale market prices of electricity and natural gas in Spain? (b) When did the marketsaffected react by the lowering wholesale prices? market To that prices end, of real electricity and estimated and natural data gas for inthe Spain? first half (b) When did of 2020 arethe compared. markets reactProbability by lowering distributi prices?ons Tofor thatestimations end, real before and estimated COVID-19 data expan- for the first half sion are basedof 2020 on a are stochastic compared. mean-reverting Probability distributions jump diffusion for estimations model calibrated before COVID-19with daily expansion quotes fromare 2016–2019, based on a and stochastic using mean-revertingthe closing data jump for diffusion2019 as the model starting calibrated point withof the daily quotes estimate. from 2016–2019, and using the closing data for 2019 as the starting point of the estimate. As cited inAs the cited report in theon the report sectoral on the tren sectorald in electricity trend in electricity demand from demand large from consum- large consumers ers in Spainin [4], Spain electricity [4], electricity consumption consumption in April in 2020 April was 2020 23.8% was lower 23.8% than lower in April than in2019 April 2019 in in industry,industry, 23.7% lower 23.7% in lower services in services and 13.8% and lower 13.8% in lower “other in “otherconsumers”. consumers”. This is Thisequiv- is equivalent alent to an tooverall an overall drop dropof 22.8% of 22.8% in the in total the totalfor large for largeconsumers. consumers. Figure 1 showsFigure a 1sharp shows drop a sharp in electricity drop in electricityproduction production and prices and in Spain prices in in the Spain first in the first months of months2020. These of 2020. 2020 Theseprices 2020 are much prices lower are much than lower the prices than for the 2016–2019. prices for 2016–2019. Figure 1. SpanishFigure monthly 1. Spanish electricity monthly generation electricity and generation prices, andfrom prices, January from 2016 January to June 2016 2020. to June 2020. Source: Source: ownown work work based based on ESIOS on ESIOS [5]. [5]. Figure 2 alsoFigure shows2 also a sharp shows drop a sharp in natural drop ingas natural prices gasin Spain prices in in 2016–2019 Spain in 2016–2019 and in and in the first monthsthe first of months2020. These of 2020. latest These prices latest are lower prices than are lower those thanfor 2016–2019. those for 2016–2019. Figure 2. Spanish monthly natural gas prices, from January 2016 to June 2020. Source: own work based on Iberian gas market (MIBGAS) [6]. The COVID-19 pandemic has affected the power plants cost calculated as described by [7], decreasing for natural gas combined cycles. In all cases, the decrease in electricity Energies 2021, 14, 1632 3 of 17 prices has caused a reduction in income. This net income drop has affected renewable energy plants, where there has been no reduction in costs. The papers below are some of those that have analysed the stochastic behaviour of electricity and natural gas prices. A two-factor jump-diffusion model with seasonality for the valuation of electricity futures contracts was proposed by [8]; this model was applicate to the Pennsylvania-New Jersey-Maryland (PJM) US electricity market incorporating a jump risk premium. The seasonal systematic pattern is of crucial importance in explaining the shape of the futures/forward curve being a simple sinusoidal function adequate for this [9]. This was analysed with Nordic Power Exchange’s spot, futures and forward prices. The effectiveness of different jump specifications when modelling electricity prices was compared by [10]. They calibrate the models to the daily European Energy Exchange (EEX) market. The authors analyse the impact of the jump components on derivatives pricing. The electricity prices behaviour in deregulated markets using a general class of mod- els with seasonality, mean reversion, GARCH behaviour and time-dependent jumps is analysed in [11]. They estimate eight different nested models and find strong evidence that electricity equilibrium prices are mean reverting, with volatility clustering (GARCH) and with jumps of time-dependent intensity. A model of electricity spot prices that combines mean reversion, spikes, negative prices and stochastic volatility can be found in [12], where different mean reversion rates for “normal” and “extreme” (spike) periods are used. In this paper, a modified version of the stochastic model described in simulating elec- tricity prices with mean-reversion and jump-diffusion [13] is used. This version includes the effects of non-working days. There are some recent publications about the effects of the COVID-19 pandemic on the energy markets. The papers below are some of those. A positive effect of the infectious diseases EMVID index on the realized volatility of crude oil prices with highest level of statistical significance [14] has been observed; this was found using a heterogeneous autoregressive realized volatility (HAR-RV) model. The aggregated electricity demand decreased in Great Britain (GB) during March 2020 due to the mitigation measures including lockdown and work from home (WFH) because of the COVID-19 crisis [15].
Recommended publications
  • FINAL REPORT Mechanical Systems Re-Design and Breadth Topics Northfield Mental Healthcare Center Northfield, Ohio
    FINAL REPORT Mechanical Systems Re-Design and Breadth Topics Northfield Mental Healthcare Center Northfield, Ohio Ji Won Park Mechanical Option Faculty Consultant: Dr. Stephen Treado Date revised and submitted: April, 3rd, 2013 Final Report Northfield Mental Healthcare Center Dr. Stephen Treado Ji Won Park Mechanical Option Spring 2013 TABLE OF CONTENTS ACKNOWLEDGEMENTS ........................................................................................................................................ 6 EXECUTIVE SUMMARY .......................................................................................................................................... 8 SECTION ONE. PROJECT BACKGROUND .......................................................................................................... 9 1.1 Project Background ................................................................................................................................... 9 1.2 Existing Mechanical System Summary .................................................................................................. 9 1.3 Energy modeling - Input ........................................................................................................................ 12 1.3.1 Design Condition ............................................................................................................................... 13 1.3.2 Model Design .....................................................................................................................................
    [Show full text]
  • Procuring Fuel Cells for Stationary Power: a Guide for Federal Facility Decision Makers
    Procuring Fuel Cells for Stationary Power: A Guide for Federal Facility Decision Makers OCTOBER 2011 Fuel Cell Oak Ridge Technologies Program National Laboratory PROCURING FUEL CELLS FOR STATIONARY POWER NOTICE Available electronically at This report was prepared as an account of work sponsored by an agency of www.eere.energy.gov/hydrogenandfuelcells/ the United States government. Neither the United States government nor fc_publications.html#fe_stationary any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, Available for a processing fee to completeness, or usefulness of any information, apparatus, product, or process U.S. Department of Energy and its disclosed, or represents that its use would not infringe privately owned rights. contractors, in paper, from: Reference herein to any specific commercial product, process, or service U.S. Department of Energy by trade name, trademark, manufacturer, or otherwise does not necessarily Office of Scientific and Technical Information constitute or imply its endorsement, recommendation, or favoring by the United P.O. Box 62 States government or any agency thereof. The views and opinions of authors Oak Ridge, TN 37831-0062 expressed herein do not necessarily state or reflect those of the United States phone: 865.576.8401 government or any agency thereof. fax: 865.576.5728 email: [email protected] Available for sale to the public, in paper, from: U.S. Department of Commerce National Technical
    [Show full text]
  • Winds of Change: an Analysis of Recent Changes In
    Winds of change An analysis of recent changes in the South Australian electricity market McConnell & Sandiford August 2016 About the Melbourne Energy Institute The Melbourne Energy Institute brings together the work of over 150 researchers, across seven faculties at The University of Melbourne , providing international leadership in energy research and delivering solutions to meet our future energy needs. By bringing together discipline-based research strengths and by engaging with stakeholders outside the University, the Institute offers the critical capacity to rethink the way we generate, deliver and use energy. The Institute presents research opportunities in bioenergy, solar, wind, geothermal, nu- clear, fuel cells and carbon capture and storage. It also engages in energy efficiency for urban planning, architecture, transport and distributed systems, and reliable energy transmission. Economic and policy questions constitute a significant plank of the Institutes research pro- gram and include: market regulation and demand; carbon trading; energy system modelling; climate change feed backs; and social justice implications of energy policy. Acknowledgments The Melbourne Energy Institute acknowledges the Australian Conservation Foundation (ACF) and the Australian-German Climate & Energy College for their support of this research. The authors would also like to thank the reviewers for their helpful comments. Winds of Change - an analysis of recent changes in the South Australian electricity mar- ket is licensed CC BY 3.0 AU. doi:10.4225/49/57A0A5C1373F9
    [Show full text]
  • CHP Guide #2: Level 1 Feasibility Screening for Combined Heat And
    HUD CHP GUIDE #2: FEASIBILITY SCREENING FOR COMBINED HEAT AND POWER IN MULTIFAMILY HOUSING Prepared for U.S. Department of Housing and Urban Development by U.S. Department of Energy, Oak Ridge National Laboratory May 2009 HUD CHP GUIDE #2: FE AS IB ILITY S CR E E NING FOR COMBINED HEAT AND POWER 2 Introduction The U.S. Department of Housing and Urban Development's (HUD) 2002 Energy Action Plan1 includes an initiative to promote the use of combined heat and power (CHP) in multifamily housing. The primary target is existing buildings. The average efficiency of the fossil-fueled power plants in the U.S. is 33% and has remained virtually unchanged for 40 years. This means that two-thirds of the energy in the fuel is lost as heat, and 8% of the remainder is lost in transmission and distgribution over wires. Combined Heat and Power (CHP)--also known as “cogeneration”—is the sequential production of two or more useful forms of energy from a single fuel consuming device. CHP systems recycle waste heat and convert it to useful energy, and they can achieve overall efficiencies of over 80%. CHP can significantly reduce a multi-family building’s annual energy costs. Instead of buying all the building’s electricity from a utility and separately purchasing fuel for its heating (mechanical) equipment, most--or even all--of the electricity and heat can be produced for less money by a small on-site power plant operating at a higher combined efficiency. The best economic prospects for CHP are single buildings with at least 100 units, master metered for utilities, with access to natural gas.
    [Show full text]
  • Impact of the Oil Price on EU Energy Prices
    DIRECTORATE GENERAL FOR INTERNAL POLICIES POLICY DEPARTMENT A: ECONOMIC AND SCIENTIFIC POLICY The Impact of the Oil Price on EU Energy Prices STUDY Abstract Oil prices have increased considerably over the past years at global level, while natural gas and other energy prices have seen differing developments in each world region. The present report examines the level of impact of high oil prices on European energy prices and analyses the underlying mechanisms. Policy options to reduce this impact are discussed. IP/A/ITRE/ST/2013-03 February 2014 PE 518.747 EN This document was requested by the European Parliament's Committee on Industry, Research and Energy. AUTHORS Uwe ALBRECHT, Ludwig-Bölkow-Systemtechnik (LBST) Matthias ALTMANN, Ludwig-Bölkow-Systemtechnik (LBST) Jan ZERHUSEN, Ludwig-Bölkow-Systemtechnik (LBST) Tetyana RAKSHA, Ludwig-Bölkow-Systemtechnik (LBST) Patrick MAIO, HINICIO Alexandre BEAUDET, HINICIO Paola TRUCCO, HINICIO Christian EGENHOFER, Centre for European Policy Studies (CEPS) Arno BEHRENS, Centre for European Policy Studies (CEPS) Jonas TEUSCH, Centre for European Policy Studies (CEPS) Julian WIECZORKIEWICZ, Centre for European Policy Studies (CEPS) Fabio GENOESE, Centre for European Policy Studies (CEPS) Guy MAISONNIER, IFPEN RESPONSIBLE ADMINISTRATORS Cécile KÉRÉBEL Balazs MELLAR Policy Department A: Economic and Scientific Policy European Parliament B-1047 Brussels E-mail: [email protected] LINGUISTIC VERSION Original: EN ABOUT THE EDITOR To contact Policy Department A or to subscribe to its newsletter please write to: [email protected] Manuscript completed in February 2014. © European Union, 2014. This document is available on the Internet at: http://www.europarl.europa.eu/studies DISCLAIMER The opinions expressed in this document are the sole responsibility of the author and do not necessarily represent the official position of the European Parliament.
    [Show full text]
  • Power & Utilities in Europe | Newsletter July 2018
    Power & Utilities July 2018 Newsletter Power & Utilities in Europe Commodities Crude oil ($/bbl) Crude oil prices experienced mild volatility in Q2 2018. In May, Brent prices reached $77 per barrel while WTI prices reached $70 per barrel. However, oil prices fell slightly in June 2018 following OPEC announcements to increase production. 130 120 Furthermore, the Brent-WTI spread widened to $10, a magnitude last seen in 110 February 2015. 100 90 The continued rise in oil prices this quarter was driven by supply concerns 80 following US economic sanctions against Iran. These sanctions led to the exit of 70 prominent oil companies from Iran, most notably Total and Maersk, the former 60 50 having committed a billion US dollars’ worth of investments in 2017. In addition, the 40 ongoing political and economic crisis in Venezuela contributed to further declines in 30 oil output and hence an increase in prices. Jun-14ec-14 Jun-15ec-15 Jun-16ec-16 Jun-17ec-17 Jun-18ec-18 Jun-19ec-19 Jun-20ec-20 In spite of this, the upward movement in oil prices cooled in June 2018 due to Spot Brent Spot WTI Future Brent Future WTI concerns over plans by OPEC and Russia to increase oil production. Following OPEC’s meeting on 22 June 2018 in Vienna, member countries agreed to comply with Source Capital IQ output targets set in 2016, although no specific details were forthcoming. These 2016 targets aimed to reduce output by 1.7 million barrels per day (bpd). However, due to supply disruptions (in particular Venezuela, Angola and Libya), actual reductions exceeded the targets.
    [Show full text]
  • Determinants of Power Spreads in Electricity Futures Markets: a Multinational Analysis
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Spodniak, Petr; Bertsch, Valentin Working Paper Determinants of power spreads in electricity futures markets: A multinational analysis ESRI Working Paper, No. 580 Provided in Cooperation with: The Economic and Social Research Institute (ESRI), Dublin Suggested Citation: Spodniak, Petr; Bertsch, Valentin (2017) : Determinants of power spreads in electricity futures markets: A multinational analysis, ESRI Working Paper, No. 580, The Economic and Social Research Institute (ESRI), Dublin This Version is available at: http://hdl.handle.net/10419/174313 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Working Paper No. 580 December 2017 Determinants of power spreads in electricity futures markets: A multinational analysis Petr Spodniak*a,b and Valentin Bertscha,b Abstract: The growth in variable renewable energy (vRES) and the need for flexibility in power systems go hand in hand.
    [Show full text]
  • Valuing Power Plants Under Emission Reduction Regulations and Investing in New Technologies: an Exchange Option on Real Options
    University of Oxford Kellogg College Master of Science in Mathematical Finance Valuing power plants under emission reduction regulations and investing in new technologies: An exchange option on real options d-fine GmbH1 Supervisor: Professor Sam Howison2 April 2010 1d-fine GmbH, Opernplatz 2, 60313 Frankfurt, Germany (info@d-fine.de) 2University of Oxford, Mathematical Institute, [email protected] Abstract In this dissertation we model the value of a power generation asset through a real option approach. With electricity, fuel and emission allowances we express every essential uncertainty on the energy market by an own stochastic process and derive an optimal clean spark spread. Typical operational constraints of a power plant are taken into account. Beside analysing the behaviour of the generation asset under different constraints, we want to evaluate the option to invest in new technologies to improve these constraints. In this dissertation, we do not set up the standard American option with strike equal to the investment as usual, but set up an exchange option on two real options with different constraints. We show that this approach handles an option on new technology much more sensitive to the individual price uncertainties and considers all possible employments. If the intrinsic value of the exchange option exceeds the realization costs, it is time to invest. We also state an explicit Monte Carlo algorithm and present numerical results for the option to install a Carbon Capture and Storage unit. 1 Contents 1 Introduction 2 2 Modelling power plants 5 2.1 The clean spark spread . 5 2.2 Energy markets .
    [Show full text]
  • Sustaining Value in Challenging Times July 2016
    Sustaining value in challenging times July 2016 Capital Markets Story Agenda 1. Investment rationale 2. Financial highlights & commitment to shareholders 3. Appendix 3.1 European Generation 3.2 Global Commodities 3.3 International Power 3.4 Top-Management incentives & Uniper Supervisory Board 2 What we as Uniper stand for Portfolio Performance Potential 3 Focused portfolio with attractive assets Portfolio Performance across Europe/Russia Potential • One of the largest European generators with 31 GW of own, mostly dispatchable generation capacity European • Diversified base across technologies and main NWE Generation markets • Strong capabilities in construction, operations and maintenance • A leading physical energy trader with global footprint • Large gas midstream business in Europe with more than Global 400 TWh gas LTC portfolio, own storage capacity of Commodities 8.8 bcm and pipeline shareholdings • Participation in giant Russian gas field • Optimisation of European Generation portfolio • Number 3 privately-owned Russian generation company International • ~30% capacity increase since 2010 Power • 11 GW of generation assets 4 Diversified earning sources Portfolio Performance Potential 59% Adj. 18% EBITDA 1 23% European Global International Generation Commodities Power • Hydro fleet with low variable costs • Gas midstream driven by • Favourable regulatory framework a significant earnings contributor integrated steering and providing largely predictable • Fossil fleet benefits from optimisation of assets and positions earnings from Russian capacity significant share of non-wholesale along the midstream value chain markets earnings • Stability of business in local • Stable infrastructure elements from currency terms • Flexibility of CCGTs not yet gas pipeline participations significantly contributing to • Diversified Russian earnings from earnings power • Plateau gas production at limited long-term capacity contracts costs (new), capacity auctions (old) and energy-only market 1.
    [Show full text]
  • Program on Technology Innovation:Scenario-Based
    Program on Technology Innovation: Scenario-Based Technology R&D Strategy for the Electric Power Industry: Final Report Volume 2 - Background Information and Details Technical Report Program on Technology Innovation: Scenario-Based Technology R&D Strategy for the Electric Power Industry: Final Report Volume 2 – Background Information and Details 1014385 Final Report, December 2006 EPRI Project Manager R. Schainker ELECTRIC POWER RESEARCH INSTITUTE 3420 Hillview Avenue, Palo Alto, California 94304-1338 • PO Box 10412, Palo Alto, California 94303-0813 • USA 800.313.3774 • 650.855.2121 • [email protected] • www.epri.com DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING ON BEHALF OF ANY OF THEM: (A) MAKES ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (III) THAT THIS DOCUMENT IS SUITABLE TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR (B) ASSUMES RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING ANY CONSEQUENTIAL DAMAGES, EVEN IF EPRI OR ANY EPRI REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES) RESULTING FROM YOUR SELECTION OR USE OF THIS DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN THIS DOCUMENT.
    [Show full text]
  • Cogeneration & Trigeneration – How to Produce Energy Efficiently
    Cogeneration & Trigeneration – How to Produce Energy Efficiently A practical Guide for Experts in Emerging and Developing Economies Published by: Cogeneration & Trigeneration – How to Produce Energy Efficiently A practical Guide for Experts in Emerging and Developing Economies 4 CONTENTS Contents Abbreviations and Acronyms ...............................................................................................................8 1 Introduction ..........................................................................................................................................13 2 Co- and Trigeneration Technologies and their Application ............................................18 2.1 Introduction and Definitions .......................................................................................................19 2.2 Cogeneration Technologies ...........................................................................................................23 2.3 Trigeneration Technologies ..........................................................................................................23 2.3.1 Absorption Technology ........................................................................................................24 2.3.2 Adsorption Technology ........................................................................................................25 2.4 Gas Engines ...........................................................................................................................................26 2.5 Steam Turbines
    [Show full text]
  • Coal: a Global Fuel
    Coal: A Global Fuel Challenges & Perspectives Dr. M Valdelievre Politechnika - Warszaw - May 2015 Programme Day 1- Monday 20 April Coal: A Global Fuel 1- Coal: a Fossil Fuel 1H Primary Energy Fuel Geology -Origin – Ranking - Analysis World Reserves & Production: Hard Coal-Lignite-Peat 2- The Coal chain: 2H Mining Techniques Health, Safety & Environment Concerns Coal Preparation & Beneficiation Process Bulk Transportation International Coal Flow - The Seaborne Market Day 2 –Tuesday 3- Industrial Process 1H30 Methane from Coal : CBM - CMM Coal Conversion: to Gas & Liquid CTL/CTO Industry kiln: Steel mills & Cement Plants Coal & Power: a sustainable Binomial 4-Tutorial Work Session 1H 30 Day 3 - Wednesday Combustion : Effluents & CO2 Challenges 5 Coal Combustion: 1H30 general Features Effluent SOX-NOX-PM-Metal .. Formation/Reduction Emission Regulations 6- Industrial Plants: Clean Combustion Technologies-CCT 1H30 Pulverized - PC Fluidized bed - FBC-CFBC- Bubble Bed Gasification Plant- IGCC Day 4 –Thursday 7 Tutorial Work Session 1H30 8- CO2 Problematic 1H30 CO2 Emission Trend CO2 Reduction: Combustion Efficiency/Super Critical Regime… Co-Firing Biomass CO2 Capture & Storage / CCS Day 5 –Friday 9- 21st Century Coal Perspectives 1H 30 Coal Cases: INDIA-CHINA-USA-EU/Germany Last Words 10- Coal Test 1 H 1- Coal: A Primary Fuel 2013/2012 Facts ( WCA.est.) Coal World Consumption + 3 % 30.1 % of Primary Energy 41% of Electricity Generation +/- 68% Coal used for Electricity Generation Coal: a Successful Story… Thanks to Coal to have fueled the industrial
    [Show full text]