Studies on the Detection Methods of Campylobacter and Faecal Indicator Bacteria in Drinking Water
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Campylobacteriosis: a Global Threat
ISSN: 2574-1241 Volume 5- Issue 4: 2018 DOI: 10.26717/BJSTR.2018.11.002165 Muhammad Hanif Mughal. Biomed J Sci & Tech Res Review Article Open Access Campylobacteriosis: A Global Threat Muhammad Hanif Mughal* Homeopathic Clinic, Rawalpindi, Islamabad, Pakistan Received: : November 30, 2018; Published: : December 10, 2018 *Corresponding author: Muhammad Hanif Mughal, Homeopathic Clinic, Rawalpindi-Islamabad, Pakistan Abstract Campylobacter species account for most cases of human gastrointestinal infections worldwide. In humans, Campylobacter bacteria cause illness called campylobacteriosis. It is a common problem in the developing and industrialized world in human population. Campylobacter species extensive research in many developed countries yielded over 7500 peer reviewed articles. In humans, most frequently isolated species had been Campylobacter jejuni, followed by Campylobactercoli Campylobacterlari, and lastly Campylobacter fetus. C. jejuni colonizes important food animals besides chicken, which also includes cattle. The spread of the disease is allied to a wide range of livestock which include sheep, pigs, birds and turkeys. The organism (5-18.6 has% of been all Campylobacter responsible for cases) diarrhoea, in an estimated 400 - 500 million people globally each year. The most important Campylobacter species associated with human infections are C. jejuni, C. coli, C. lari and C. upsaliensis. Campylobacter colonize the lower intestinal tract, including the jejunum, ileum, and colon. The main sources of these microorganisms have been traced in unpasteurized milk, contaminated drinking water, raw or uncooked meat; especially poultry meat and contact with animals. Keywords: Campylobacteriosis; Gasteritis; Campylobacter jejuni; Developing countries; Emerging infections; Climate change Introduction of which C. jejuni and 12 species of C. coli have been associated with Campylobacter cause an illness known as campylobacteriosis is a common infectious problem of the developing and industrialized world. -
Review Campylobacter As a Major Foodborne Pathogen
REVIEW CAMPYLOBACTER AS A MAJOR FOODBORNE PATHOGEN: A REVIEW OF ITS CHARACTERISTICS, PATHOGENESIS, ANTIMICROBIAL RESISTANCE AND CONTROL Ahmed M. Ammar1, El-Sayed Y. El-Naenaeey1, Marwa I. Abd El-Hamid1, Attia A. El-Gedawy2 and Rania M. S. El- Malt*3 Address: Rania Mohamed Saied El-Malt 1 Zagazig University, Faculty of Veterinary Medicine, Department of Microbiology, 19th Saleh Abo Rahil Street, El-Nahal, 44519, Zagazig, Sharkia, Egypt 2 Animal health Research Institute, Department of Bacteriology, Tuberculosis unit, Nadi El-Seid Street,12618 Dokki, Giza, Egypt 3 Animal health Research Institute, Department of Microbiology, El-Mohafza Street, 44516, Zagazig, Sharkia, Egypt, +201061463064 *Corresponding author: [email protected] ABSTRACT Campylobacter, mainly Campylobacter jejuni is viewed as one of the most well-known reasons of foodborne bacterial diarrheal sickness in people around the globe. The genus Campylobacter contains 39 species (spp.) and 16 sub spp. Campylobacter is microaerophilic, Gram negative, spiral- shaped rod with characteristic cork screw motility. It is colonizing the digestive system of numerous wild and household animals and birds, particularly chickens. Intestinal colonization brings about transporter/carrier healthy animals. Consequently, the utilization of contaminated meat, especially chicken meat is the primary source of campylobacteriosis in humans and chickens are responsible for an expected 80% of human campylobacter infection. Interestingly, in contrast with the most recent published reviews that cover specific aspects of campylobacter/campylobacteriosis, this review targets the taxonomy, biological characteristics, identification and habitat of Campylobacter spp. Moreover, it discusses the pathogenesis, resistance to antimicrobial agents and public health significance of Campylobacter spp. Finally, it focuses on the phytochemicals as intervention strategies used to reduce Campylobacter spp.in poultry production. -
Inquiring Into the Gaps of Campylobacter Surveillance Methods
veterinary sciences Review Inquiring into the Gaps of Campylobacter Surveillance Methods Maria Magana 1, Stylianos Chatzipanagiotou 1, Angeliki R. Burriel 2 and Anastasios Ioannidis 1,2,* 1 Department of Biopathology and Clinical Microbiology, Aeginition Hospital, Athens Medical School, Athens 15772, Greece; [email protected] (M.M.); [email protected] (S.C.) 2 Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta 23100, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-273-1089-729 Academic Editors: Chrissanthy Papadopoulou, Vangelis Economou and Hercules Sakkas Received: 30 April 2017; Accepted: 17 July 2017; Published: 19 July 2017 Abstract: Campylobacter is one of the most common pathogen-related causes of diarrheal illnesses globally and has been recognized as a significant factor of human disease for more than three decades. Molecular typing techniques and their combinations have allowed for species identification among members of the Campylobacter genus with good resolution, but the same tools usually fail to proceed to subtyping of closely related species due to high sequence similarity. This problem is exacerbated by the demanding conditions for isolation and detection from the human, animal or water samples as well as due to the difficulties during laboratory maintenance and long-term storage of the isolates. In an effort to define the ideal typing tool, we underline the strengths and limitations of the typing methodologies currently used to map the broad epidemiologic profile of campylobacteriosis in public health and outbreak investigations. The application of both the old and the new molecular typing tools is discussed and an indirect comparison is presented among the preferred techniques used in current research methodology. -
Insights Into the Role of the Flagellar Glycosylation System in Campylobacter Jejuni Phage-Host Interactions by Jessica Christia
Insights into the role of the flagellar glycosylation system in Campylobacter jejuni phage-host interactions by Jessica Christiane Sacher A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Microbiology and Biotechnology Department of Biological Sciences University of Alberta © Jessica Christiane Sacher, 2018 Abstract Bacteriophages (phages) are the viruses that infect bacteria. Studying how phages interact with their hosts can inspire new ways of controlling bacterial pathogens and can highlight important facets of the biology of both organisms. Furthermore, phage-host characterization can inform exploitation of phages for therapeutics, diagnostics and research tools. Campylobacter jejuni is a deadly foodborne pathogen of humans, and its extensive surface structure glycosylation plays an important role in its virulence. In particular, C. jejuni flagella are required for colonization of its niche in the gastrointestinal tract of birds, and are also required for virulence in humans. C. jejuni devotes a substantial proportion of its genetic repertoire to flagellar biogenesis, which requires glycosylation with sialic acid-like sugars for assembly. Campylobacter phages tend to target either capsular polysaccharides or flagella, but little more than this is known about the factors governing Campylobacter phage-host interactions. My thesis describes the study of C. jejuni interactions with phages in the context of flagellar glycobiology. I found that C. jejuni phage NCTC 12673 interacts with host flagella and flagellar glycans in ways not previously described for other phage-host systems. Furthermore, this phage encodes a protein of unknown function (Gp047) with specific binding affinity for host flagellar glycans. I sought to determine how the C. -
Identification of Campylobacter Species
UK Standards for Microbiology Investigations 2014 Identification of Campylobacter species FEBRUARY 24 - JANUARY 24 BETWEEN ON CONSULTED WAS DOCUMENT THIS - DRAFT Issued by the Standards Unit, Microbiology Services, PHE Bacteriology – Identification | ID 23 | Issue no: dh+ | Issue date: dd.mm.yy <tab+enter>| Page: 1 of 22 © Crown copyright 2013 Identification of Campylobacter species Acknowledgments UK Standards for Microbiology Investigations (SMIs) are developed under the auspices of Public Health England (PHE) working in partnership with the National Health Service (NHS), Public Health Wales and with the professional organisations whose logos are displayed below and listed on the website http://www.hpa.org.uk/SMI/Partnerships. SMIs are developed, reviewed and revised by various working groups which are overseen by a steering committee (see http://www.hpa.org.uk/SMI/WorkingGroups). The contributions of many individuals in clinical, specialist and reference laboratories2014 who have provided information and comments during the development of this document are acknowledged. We are grateful to the Medical Editors for editing the medical content. For further information please contact us at: FEBRUARY 24 Standards Unit - Microbiology Services Public Health England 61 Colindale Avenue London NW9 5EQ JANUARY E-mail: [email protected] 24 Website: http://www.hpa.org.uk/SMI UK Standards for Microbiology Investigations are produced in association with: BETWEEN ON CONSULTED WAS DOCUMENT THIS - DRAFT Bacteriology – Identification | ID 23 | Issue no: dh+ | Issue date: dd.mm.yy <tab+enter>| Page: 2 of 22 UK Standards for Microbiology Investigations | Issued by the Standards Unit, Public Health England Identification of Campylobacter species Contents ACKNOWLEDGMENTS .......................................................................................................... 2 AMENDMENT TABLE ............................................................................................................ -
Campylobacter Concisus and Its Possible Role in Inflammatory Bowel Disease
Campylobacter concisus and its possible role in inflammatory bowel disease Yazan Ismail A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (Microbiology and Immunology) Supervisor: Dr. Li Zhang School of Biotechnology and Biomolecular Sciences Faculty of Science University of New South Wales Australia 2012 Originality statement ‘I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, or substantial proportions of material which have been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged.’ Signed …………………………………………….............. Date …………………………………………….............. i Acknowledgements To Li, I thank god every day that I have chosen this research task and more importantly you as my supervisor. You were always there when I needed you and lifted me every time I felt down, I don’t regret any minute I spent under your supervision. Viki and Siew my beloved sisters can you believe it, at last it is my turn to write you in my acknowledgement. We had beautiful days and days that we hate to remember, but that very dark days made our relation more than just a friendship to remember, or words to describe it is something for eternity, I will never fulfil your favours. -
Phylogenetic Study of the Genus Campylobacter LOUIS M
INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1988, p. 190-200 Vol. 38. No. 2 0020-77 13/88/020190-11$02.OO/O Copyright 0 1988, International Union of Microbiological Societies Phylogenetic Study of the Genus Campylobacter LOUIS M. THOMPSON 111,’ ROBERT M. SMIBERT,2 JOHN L. JOHNSON,2 AND NOEL R. KRIEG1* Microbiology and Immunology Section, Department of Biology,’ and Department of Anaerobic Microbiology,2 Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061 The phylogenetic relationships of all species in the genus Cantpylobacter, Wolinella succinogenes, and other gram-negative bacteria were determined by comparison of partial 16s ribosomal ribonucleic acid sequences. The results of this study indicate that species now recognized in the genus Campylobacter make up three separate ribosomal ribonucleic acid sequence homology groups. Homology group I contains the following true Campylobacter species: Campylobacterfetus (type species), Campylobacter coli, Campylobacter jejuni, Campylo- bacter laridis, Campylobacter hyointestinalis, Campylobacter concisus, Campylobacter mucosalis, Campylobacter sputorum, and ‘‘Campylobacter upsaliensis” (CNW strains). “Campylobacter cinaedi,” ‘Campylobacter fennelliue,” Campylobacter pylori, and W.succinogenes constitute homology group 11. Homology group I11 contains Campylobacter ctyaerophiza and Campylobacter nitrofigilis. We consider the three homology groups to represent separate genera. However, at present, easily determinable phenotypic characteristics needed to clearly -
Thesis Corrections
GENETIC EPIDEMIOLOGY AND HETEROGENEITY OF CAMPYLOBACTER SPP. STEVEN J. DUNN A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS OF NOTTINGHAM TRENT UNIVERSITY FOR THE DEGREE OF DOCTOR OF PHILOSOPHY JUNE 2017 This work is the intellectual property of the author Steven J. Dunn. You may copy up to 5% of this work for private study, or personal, non-commercial research. Any re-use of the information contained within this document should be fully referenced, quoting the author, title, university, degree level and pagination. Queries or requests for any other use, or if a more substantial copy is required, should be directed in the owner of the Intellectual Property Rights. i Dedicated to my family. For everything, Thank you. ii Abstract Initially, this work examines clinical Campylobacter isolates obtained from a single health trust site in Nottingham. These results reveal novel sequence types, and identified a previously undescribed peak in incidence that is observable across national data. By utilising a read mapping approach in combination with existing comparative methods, the first instance of case linkage between sporadic clinical isolates was demonstrated. This dataset also revealed an instance of repeat patient sampling, with the resulting isolates showing a marked level of diversity. This generated questions as to whether the diversity that Campylobacter exhibits can be resolved to an intra-population level. To study this further, isolates from the dominant clinical lineage – C. jejuni ST-21 – were analysed using a deep sequencing methodology. These results reveal a number of minor allele variations in chemotaxis, membrane and flagellar associated loci, which are hypothesised to undergo variation in response to selective pressures in the human gut. -
Risk Assessment of Campylobacter Spp. in Finland
Evira Research Reports 2/2016 Risk assessment of Campylobacter spp. in Finland Evira Research Report 2/2016 Risk assessment of Campylobacter spp. in Finland PROJECT TEAM Manuel González Finnish Food Safety Authority Evira Antti Mikkelä Finnish Food Safety Authority Evira Pirkko Tuominen Finnish Food Safety Authority Evira Jukka Ranta Finnish Food Safety Authority Evira Marjaana Hakkinen Finnish Food Safety Authority Evira Marja-Liisa Hänninen University of Helsinki Ann-Katrin Llarena University of Helsinki ACKNOWLEDGEMENTS to the experts regarding antimicrobial resistance Anna-Liisa Myllyniemi Finnish Food Safety Authority Evira Suvi Nykäsenoja Finnish Food Safety Authority Evira and to the steering group Marjatta Rahkio Ministry of Agriculture and Forestry Sebastian Hielm Ministry of Agriculture and Forestry Elja Arjas University of Helsinki Eija Kaukonen HKscan Oyj Terhi Laaksonen Finnish Food Safety Authority Evira Tuija Lilja Saarioinen Oy Saara Raulo Finnish Food Safety Authority Evira Petri Yli-Soini Atria Finland The project was funded by Makera, the development fund of the Ministry of Agriculture and Forestry (MMM 2054/312/2011) DESCRIPTION Publisher Finnish Food Safety Authority Evira Title Campylobacter spp. in the food chain and in the environment Authors Manuel González (Evira), Antti Mikkelä (Evira), Pirkko Tuominen (Evira), Jukka Ranta (Evira), Marjaana Hakkinen (Evira), Marja-Liisa Hänninen (UH), Ann-Katrin Llarena (UH) Abstract Campylobacter spp. are among the most common causes of gastrointestinal diseases in EU countries. Between four and five thousand human campylobacteriosis cases are registered each year in Finland, of which the majority are most probably acquired from abroad. The prevalence and concentration of campylobacters in foods are influenced by the whole production chain. -
Deep-Sea Hydrothermal Vent Epsilonproteobacteria Encode a Conserved and Widespread Nitrate Reduction Pathway (Nap)
The ISME Journal (2014) 8, 1510–1521 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE Deep-sea hydrothermal vent Epsilonproteobacteria encode a conserved and widespread nitrate reduction pathway (Nap) Costantino Vetriani1,2,4, James W Voordeckers1,2,4,5, Melitza Crespo-Medina1,2,6, Charles E O’Brien1,2, Donato Giovannelli1,2,3 and Richard A Lutz2 1Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA; 2Institute of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA and 3Institute of Marine Science - ISMAR, National Research Council of Italy, CNR, Ancona, Italy Despite the frequent isolation of nitrate-respiring Epsilonproteobacteria from deep-sea hydro- thermal vents, the genes coding for the nitrate reduction pathway in these organisms have not been investigated in depth. In this study we have shown that the gene cluster coding for the periplasmic nitrate reductase complex (nap) is highly conserved in chemolithoautotrophic, nitrate-reducing Epsilonproteobacteria from deep-sea hydrothermal vents. Furthermore, we have shown that the napA gene is expressed in pure cultures of vent Epsilonproteobacteria and it is highly conserved in microbial communities collected from deep-sea vents characterized by different temperature and redox regimes. The diversity of nitrate-reducing Epsilonproteobacteria was found to be higher in moderate temperature, diffuse flow vents than in high temperature black smokers or in low temperatures, substrate-associated communities. As NapA has a high affinity for nitrate compared with the membrane-bound enzyme, its occurrence in vent Epsilonproteobacteria may represent an adaptation of these organisms to the low nitrate concentrations typically found in vent fluids. -
Ecology of Campylobacter Colonization in Poultry
ECOLOGY OF CAMPYLOBACTER COLONIZATION IN POULTRY: ROLE OF MATERNAL ANTIBODIES IN PROTECTION AND SOURCES OF FLOCK INFECTION DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Orhan Sahin, D.V.M., M.S. ***** The Ohio State University 2003 Dissertation Committee: Professor Qijing Zhang, Advisor Approved by Professor Teresa Y. Morishita ________________________ Professor Linda J. Saif Advisor Professor Yehia M. Saif Department of Veterinary Preventive Medicine ABSTRACT Campylobacter jejuni, a gram-negative organism, is a leading bacterial cause of human foodborne enterocolitis worldwide. Although poultry are considered the major reservoir for this human pathogen, the ecology of Campylobacter in chicken flocks is poorly understood, hampering the design of effective intervention strategies at the preharvest stage. In the first part of this project, the prevalence, antigenic specificity, and bactericidal activity of poultry Campylobacter maternal antibodies were investigated. High levels of specific antibodies were detected in egg yolks, sera of broiler breeders, and young broiler chicks, as maternally-derived antibodies. These antibodies were against multiple outer membrane components of Campylobacter, and active in antibody- dependent complement-mediated killing of C. jejuni. These findings indicated the widespread presence of functional Campylobacter antibodies in the poultry production system, and prompted us to conduct the second part of the project to determine the effect of Campylobacter maternal antibodies on the colonization of young chickens by C. jejuni using challenge studies. Laboratory inoculation of commercial broilers of different ages showed that the onset of colonization occurred much sooner in birds challenged at the age of 21-days (which are naturally negative for Campylobacter antibody) than it did in the birds inoculated at 3-days of age (which are naturally positive for Campylobacter maternal antibody). -
Molecular Characterization of Biofilm Production and Whole Genome Sequencing of Selected Campylobacter Concisus Oral and Clinical Strains
Molecular characterization of biofilm production and whole genome sequencing of selected Campylobacter concisus oral and clinical strains A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Mohsina Huq BSc; MSc (Microbiology); MS (Biotech) School of Applied Sciences College of Science Engineering and Health RMIT University September, 2016 DECLARATION I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is the result of work which has been carried out since the official commencement date of the approved research program; any editorial work, paid or unpaid, carried out by a third party is acknowledged; and, ethics procedures and guidelines have been followed. Mohsina Huq 30/09/2016 I ACKNOWLEDGEMENTS I would like to express my sincere appreciation and gratitude to my senior supervisor Dr. Taghrid Istivan for her invaluable comments and comprehensive feedback on my work. I am grateful to her for her patient support, kind assistance, consistent encouragement and great guidance throughout the entire period of my research. My sincere gratitude goes to my associate supervisors Professor Peter Smooker and Dr. Thi Thu Hao Van for their continuous encouragement and guidance throughout this research program. I would like to thank the Department of Education and Training, Australian Government for awarding me with the Endeavour Postgraduate Scholarship. Without their funding, this work would not have been possible. My sincere gratitude goes to the Dean of Research and Innovation, Professor Andrew Smith for granting me the top-up scholarship which was a great help to complete this research study.