Sedimentology and Paleocurrent Study of the Early Triassic Rocks in the Ruhuhu Basin, SW Tanzania

Total Page:16

File Type:pdf, Size:1020Kb

Sedimentology and Paleocurrent Study of the Early Triassic Rocks in the Ruhuhu Basin, SW Tanzania Tanzania Journal of Science 46(2): 383-396, 2020 ISSN 0856-1761, e-ISSN 2507-7961 © College of Natural and Applied Sciences, University of Dar es Salaam, 2020 Sedimentology and Paleocurrent Study of the Early Triassic Rocks in the Ruhuhu Basin, SW Tanzania Audax Syprian Kiwango* and Diwakar Mishra Department of Geology, College of Earth Sciences and Engineering, The University of Dodoma, P. O. Box 259, Dodoma, Tanzania E-mail addresses: [email protected]; [email protected] *Corresponding author Received 14 November 2019, Revised 9 April 2020, Accepted 27 April 2020, Published June 2020 Abstract The sedimentary succession ranging in age from Permian to Early Triassic in Ruhuhu basin was subdivided into eight informal lithostratigraphic units, identified by the symbols from K1 to K8. Manda Formation (K8) belongs to Early Triassic age and comprises two Members, i.e., Lower Kingori Member and Upper Lifua Member (150-200 m thickness). The implications of present study relate to inter and intra basinal correlations which may provide regional depositional framework from a mass of local details. Present investigation connoting the lithofacies studies in conjunction with palaeocurrent and grain size analysis of the early Triassic strata aims at interpreting the depositional environment of Lifua Member. Based on the present study, five lithofacies have been identified, namely (i) Massive matrix supported paraconglomerate (Gmm), (ii) Massive sandstone (Sm), (iii) Parallel-horizontal laminated sandstone (Sh), (iv) Planar cross- bedded sandstone (Sp) and (v) Fine silt, mud and clay (Fl). Sandstone facies (Sm, Sh, and Sp) exhibit normal grading and unimodal palaeocurrent direction. Grain size analysis indicated that the sandstones were moderately sorted, finely skewed, mesokurtic and most of the grains were silty- sand. Bivariate scatter plots suggest that the Lifua Member sandstone is of riverine environment. Lithofacies, palaeocurrent and grain size studies suggest fluvial environment dominated by sand channel deposits. Keywords: Lifua Member; Early Triassic; Lithofacies, Paleocurrent; Channel deposits; Ruhuhu basin Introduction basin is subdivided into eight informal The Ruhuhu Basin is located in the south lithostratigraphic units, identified by the west Tanzania and contains all symbols from K1 to K8 (Wopfner et al. lithostratigraphic units of Permo- 1991). K8 is termed as Manda Beds that are Carboniferous to Early Triassic (Karoo of Early Triassic age and is the youngest succession). The NE-SW trending Ruhuhu stratigraphic unit of the Karoo sequence of Basin is one of the chain of Karoo basins the Ruhuhu basin. Charig (1957) raised the across southern Africa that formed during the status of Manda Beds as the Manda break up of Gondwana Supercontinent in the Formation and composed of two Members, Late Carboniferous/Early Permian (Kreuser et i.e., Lower Kingori Member and Upper Lifua al. 1990). Member. Ruhuhu basin exhibits excellent The sedimentary succession ranging in outcrops of all units, amounting to a age from Permian to Early Triassic in Ruhuhu cumulative total thickness of up to 3,000 m 383 http://journals.udsm.ac.tz/index.php/tjs www.ajol.info/index.php/tjs/ Kiwango and Mishra - Sedimentology and Paleocurrent Study of the Early Triassic Rocks … (Catuneanu 2005). The study has been fluvial domain. Topographic map of Lifua conducted in the Lifua Member. Most of the showing the location of the studied sections is Lifua Member units are located in the western shown in Figure 1. part of the Ruhuhu basin bordering Lake Nyasa. The study area lies between 34°36ʹE- Geological setting and stratigraphy 34°48ʹ E and 10°27ʹS-10°30ʹS and covering The Karoo basins of Tanzania occur an area of approximately 250 km2. mainly as grabens or half-grabens tilted to the Through the proper study of sedimentary direction E–SE or S. They are faulted into the rock deposits, interpretation of geological Ubendian basement. Boundary faults post- history of the area is feasible. Sedimentary date the deposition and were active most structures such as planar cross bedding and probably during middle Jurassic as a result of trough cross bedding are the most directional the breakup of Gondwana (Kreuser et al. sedimentary structures that are applicable in 1990). Some of the basins that comprise paleocurrent measurements (Selley 2000). Karoo rocks in Tanzania are Tanga basin, The measurement of paleocurrent indicators Ruvuma basin, Ruhuhu basin, Rufiji trough is important in the study of sedimentary and Njuga basin. rocks, since they provide information on the Earlier studies of the Ruhuhu Basin date local/regional palaeoslope, depositional back in 1890’s during which coal was environment, current and wind directions discovered (Stockley and Oates 1937). Later which are useful in facies interpretation on, extensive drilling programs started at (Tucker 2003). Paleocurrent studies along various parts of Ruhuhu basin and other parts with facies/subfacies analysis and grain size of Tanzania such as Ketewaka-Mchuchuma studies could provide a clear picture of and Ngaka coalfields (Semkiwa 1992). The depositional environment. Most of the studies Ruhuhu Basin is not only the basin that still conducted in the Ruhuhu Basin focused comprises a fairly complete succession of mainly on the paleontology and the economic typical Karoo beds, but also due to its potential of coal accumulations in the basin elevated position on the shoulder of the (Kreuser et al. 1990, Nesbitt et al. 2014, Neogene Nyasa Rift it provides excellent Barrett 2015). However, studies on the outcrop of all units, amounting to a depositional environment have been given cumulative total thickness in excess of 3,000 little attention to date. So taking the m (Catuneanu 2005). importance of depositional environment, the The sedimentary succession ranging in present investigation applies integrated age from Permian to Early Triassic in Ruhuhu approach of lithofacies studies in conjunction basin is subdivided into eight informal with palaeocurrent and grain size analysis of lithostratigraphic units, identified by the the Early Triassic strata in interpreting symbols from K1 to K8 (Wopfner et al. 1991, depositional environment of Lifua Member. Figure 2). K1 to K6 represent Permian Analysis of paleocurrent pattern needs to be succession and they are in ascending order in combined with study of lithofacies and grain which K1 represents Glacigene deposits, K2 size for maximum information. In order to represents a lower coal bearing unit, K3 reconstruct depositional environment and represents red and green arkoses, K4 paleogeography, it is essential to establish represents an upper coal bearing unit, K5 regional framework. In this context, the represents lacustrine carbonates, and K6 present study will be useful for inter and intra represents multicolored siliciclastics with basinal correlations which may provide vertebrate remains (Kreuser et al. 1990). K7 regional depositional framework from a mass and K8 are termed as Kingori Sandstone and of local details. It may also provide some Manda Beds, respectively. The beds are of alternative ideas for depositional modelling in early Triassic age and are the youngest 384 Tanz. J. Sci. Vol. 46(2), 2020 stratigraphic units of the Karoo sequence of the Ruhuhu basin. Figure 1: Topographic map of Lifua showing the locations of the studied sections (modified from Douglas Lake Minerals Inc. 2011). 385 Kiwango and Mishra - Sedimentology and Paleocurrent Study of the Early Triassic Rocks … In this aspect, it could be stated that Africa, the Lifua Member is considered to be Charig (1957) was the pioneer in raising the Anisian in age (Nesbitt et al. 2014). status of Manda Beds the youngest unit which A shale pebble conglomerate, consisting was deciphered earlier by Stockley and Oates of clasts derived from the underlying (1937). After this description, the Kingori multicoloured and marls of the K6 unit marks Sandstones have become the Kingori the base of the Kingori Sandstone (Wopfner Sandstone Member of the Manda Formation, et al. 1991). This unconformity between K6 and original Manda Beds has become a and K7 marks the boundary between the subunit of the formation called the Lifua Permian and the Triassic as supported by the Member. On the basis of comparison with the different vertebrate faunas contained in the tetrapod fauna of subzone C of the Lower Bone Bed ‘K6’ and in the Manda Beds Cynognathus Assemblage Zone of South ‘K8’. Figure 2: Stratigraphic table of the Songea Group as established in the Ruhuhu Basin (adopted from Catuneanu 2005). Methodology Lithofacies and their classification The fieldwork was conducted between Each succession was recorded and examined February and March 2016 and involved in detail, thereafter the recorded sediments identification of outcrops of the Lifua attributes were observed. The depositional Member-Manda Beds especially on the flanks structures were considered first since these of rivers and on the sides of road cuts. Each reflect the depositional processes excellently; outcrop was evaluated and interpreted in then followed by texture, lithology and fossil terms of lithology, sedimentary structures, content. Everything was named or numbered texture, and palaeocurrent measurement for future reference. Once the various facies together with collection of samples. Vertical have been differentiated, a table with their profiles and other length related dimensions various features (name, code, typical of beds were also measured.
Recommended publications
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • University of Birmingham the Earliest Bird-Line Archosaurs and The
    University of Birmingham The earliest bird-line archosaurs and the assembly of the dinosaur body plan Nesbitt, Sterling; Butler, Richard; Ezcurra, Martin; Barrett, Paul; Stocker, Michelle; Angielczyk, Kenneth; Smith, Roger; Sidor, Christian; Niedzwiedzki, Grzegorz; Sennikov, Andrey; Charig, Alan DOI: 10.1038/nature22037 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Nesbitt, S, Butler, R, Ezcurra, M, Barrett, P, Stocker, M, Angielczyk, K, Smith, R, Sidor, C, Niedzwiedzki, G, Sennikov, A & Charig, A 2017, 'The earliest bird-line archosaurs and the assembly of the dinosaur body plan', Nature, vol. 544, no. 7651, pp. 484-487. https://doi.org/10.1038/nature22037 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 03/03/2017. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
    [Show full text]
  • Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships
    438 Article 438 by Saswati Bandyopadhyay1* and Sanghamitra Ray2 Gondwana Vertebrate Faunas of India: Their Diversity and Intercontinental Relationships 1Geological Studies Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India; email: [email protected] 2Department of Geology and Geophysics, Indian Institute of Technology, Kharagpur 721302, India; email: [email protected] *Corresponding author (Received : 23/12/2018; Revised accepted : 11/09/2019) https://doi.org/10.18814/epiiugs/2020/020028 The twelve Gondwanan stratigraphic horizons of many extant lineages, producing highly diverse terrestrial vertebrates India have yielded varied vertebrate fossils. The oldest in the vacant niches created throughout the world due to the end- Permian extinction event. Diapsids diversified rapidly by the Middle fossil record is the Endothiodon-dominated multitaxic Triassic in to many communities of continental tetrapods, whereas Kundaram fauna, which correlates the Kundaram the non-mammalian synapsids became a minor components for the Formation with several other coeval Late Permian remainder of the Mesozoic Era. The Gondwana basins of peninsular horizons of South Africa, Zambia, Tanzania, India (Fig. 1A) aptly exemplify the diverse vertebrate faunas found Mozambique, Malawi, Madagascar and Brazil. The from the Late Palaeozoic and Mesozoic. During the last few decades much emphasis was given on explorations and excavations of Permian-Triassic transition in India is marked by vertebrate fossils in these basins which have yielded many new fossil distinct taxonomic shift and faunal characteristics and vertebrates, significant both in numbers and diversity of genera, and represented by small-sized holdover fauna of the providing information on their taphonomy, taxonomy, phylogeny, Early Triassic Panchet and Kamthi fauna.
    [Show full text]
  • Heptasuchus Clarki, from the ?Mid-Upper Triassic, Southeastern Big Horn Mountains, Central Wyoming (USA)
    The osteology and phylogenetic position of the loricatan (Archosauria: Pseudosuchia) Heptasuchus clarki, from the ?Mid-Upper Triassic, southeastern Big Horn Mountains, Central Wyoming (USA) † Sterling J. Nesbitt1, John M. Zawiskie2,3, Robert M. Dawley4 1 Department of Geosciences, Virginia Tech, Blacksburg, VA, USA 2 Cranbrook Institute of Science, Bloomfield Hills, MI, USA 3 Department of Geology, Wayne State University, Detroit, MI, USA 4 Department of Biology, Ursinus College, Collegeville, PA, USA † Deceased author. ABSTRACT Loricatan pseudosuchians (known as “rauisuchians”) typically consist of poorly understood fragmentary remains known worldwide from the Middle Triassic to the end of the Triassic Period. Renewed interest and the discovery of more complete specimens recently revolutionized our understanding of the relationships of archosaurs, the origin of Crocodylomorpha, and the paleobiology of these animals. However, there are still few loricatans known from the Middle to early portion of the Late Triassic and the forms that occur during this time are largely known from southern Pangea or Europe. Heptasuchus clarki was the first formally recognized North American “rauisuchian” and was collected from a poorly sampled and disparately fossiliferous sequence of Triassic strata in North America. Exposed along the trend of the Casper Arch flanking the southeastern Big Horn Mountains, the type locality of Heptasuchus clarki occurs within a sequence of red beds above the Alcova Limestone and Crow Mountain formations within the Chugwater Group. The age of the type locality is poorly constrained to the Middle—early Late Triassic and is Submitted 17 June 2020 Accepted 14 September 2020 likely similar to or just older than that of the Popo Agie Formation assemblage from Published 27 October 2020 the western portion of Wyoming.
    [Show full text]
  • Middle Triassic Vertebrates of India
    Journal of African Earth Sciences, Vol. 29, No. 1, pp.233-241, 1999 g 1999 Elsevier Science Ltd Pergamon Pll:SO899-5382(99)00093-7 All rights reserved. Printed in Great Britain 0899.5362/99 $- see front matter Middle Triassic vertebrates of India SASWATI BANDYOPADHYAY * and DHURJATI P. SENGUPTA Geological Studies Unit, Indian Statistical Institute, 203 BT Road, Calcutta 700 035, India ABSTRACT-Until recently, the Yerrapalli Formation of the Pranhita-Godavari Valley, Deccan, India, was considered as the only Middle Triassic vertebrate-bearing horizon of. India. A new fauna1 assemblage comprising dipnoans, capitosaurids, brachyopids, trematosaurids, dicynodonts, rhynchosaurs and archosaurs has recently been recovered from the Denwa Formation of the Satpura Basin, central India. This fauna1 assemblage gives ample indications to suggest another Middle Triassic vertebrate-bearing horizon from India. The fauna1 elements of the Denwa Formation compare very well with those from the Moenkopi Formation of North America, and appear slightly older than the Yerrapalli fauna. The Bhimaram Formation, occurring immediately above the Yerrapalli and below the Carnian Maleri Formation, has also produced some capitosaurid and dicynodont fragments. An analysis of these three vertebrate-bearing horizons from India reveals that, while the Denwa and Yerrapalli Formations can be dated as Early and Middle Anisian, respectively, the Bhimaram Formation may be anywhere between Late Anisian and Ladinian. o 1999 Elsevier Science Limited. All rights reserved. RESUME-Jusqu’il y a peu, la Formation Yerrapalli de la vallee de Pranhita-Godavari (Deccan, Inde) dtait considerbe comme le seul niveau $I vertebres du Trias moyen. Une nouvelle association faunistique comprenant des dipneustes, des capitosaurides, des brachyopides, des tremato- saurides, des dicynidontes, des rhynchosaures et des archosaures a et& recemment decouverte dans la Formation de Denwa, du bassin de Saptura, en lnde centrale.
    [Show full text]
  • University of Birmingham the Earliest Bird-Line Archosaurs and The
    University of Birmingham The earliest bird-line archosaurs and the assembly of the dinosaur body plan Nesbitt, Sterling; Butler, Richard; Ezcurra, Martin; Barrett, Paul; Stocker, Michelle; Angielczyk, Kenneth; Smith, Roger; Sidor, Christian; Niedzwiedzki, Grzegorz; Sennikov, Andrey; Charig, Alan DOI: 10.1038/nature22037 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Nesbitt, S, Butler, R, Ezcurra, M, Barrett, P, Stocker, M, Angielczyk, K, Smith, R, Sidor, C, Niedzwiedzki, G, Sennikov, A & Charig, A 2017, 'The earliest bird-line archosaurs and the assembly of the dinosaur body plan', Nature, vol. 544, no. 7651, pp. 484-487. https://doi.org/10.1038/nature22037 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 03/03/2017. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
    [Show full text]
  • ON the PRINCIPLES of GLOBAL CORRELATION of the CONTINENTAL TRIASSIC on the TETRAPODS the Triassic Was a Time of Transition From
    Acta Palaeontologica Polonica Vol. 34, No. 2 pp. 149-173 Warszawa, 1989 V. G. OCHEV and M. A. SHISHKIN ON THE PRINCIPLES OF GLOBAL CORRELATION OF THE CONTINENTAL TRIASSIC ON THE TETRAPODS OCHEV, V. G. and SHISHKIN, M. A.: On the principles of global correlation af the continental Triassic on the tetsapods. Acta Palaeont. Polonica, 34, 2, 143--173, 1989. History of the Triassic land vertebrates comprises three successive global epoches referred to as proterosuchian, kannemeyeroid and dinosaur ones. The earliest and the middle epoches are typified by the regional faunal sequence of East Europe. The proterosuchian time spaas here the Neorhachitome and Paroto- suchus faunas, the former being directly correlated with the Induan-Lower Olenekian, and the latter with the Upper Olenekian (Spathian). The Eryosuchus and Mastodonsaurus faunas of the kannemeyeroid epoch in East Europe are Middle Triassic in age and correspond to the Muschelkalk and Lettenkohle respectively. An evidence is brought for contemporaneity of the protero- suchian-kannemeyeroid biotic replacement in Laurasia and Gondwana. This implies the Middle Triassic age of the Cynognathus Zone of South Africa and its equivalents in South America. The bulk of Lystrosausus fauna in Gondwana is suggested to range over the most of, or the whole, Early Triassic. K e y w 0 r d s: Triassic tetrapods, biotic epoches, correlation. V. G. Ochev, Saratov State University, Saratov, USSR; M. A. Shtshktn, PaUleontologtcal Institute, Academy of Sciences of the USSR, Profsoyuznaya, 123 Moscow, USSR. Received: December 1988. INTRODUCTION The Triassic was a time of transition from the late Palaeozoic (the- rapsid) to the true Mesozoic (archosaur) stage of the tetrapod faunal evolution.
    [Show full text]
  • University of Birmingham a New Kannemeyeriiform
    University of Birmingham A new kannemeyeriiform dicynodont (Ufudocyclops mukanelai gen. et sp. nov.) from Subzone C of the Cynognathus Assemblage Zone (Triassic of South Africa) with implications for biostratigraphic correlation with other African Triassic faunas Kammerer, Christian; Viglietti, Pia; Hancox, John; Butler, Richard; Choiniere, Jonah DOI: 10.1080/02724634.2019.1596921 Document Version Peer reviewed version Citation for published version (Harvard): Kammerer, C, Viglietti, P, Hancox, J, Butler, R & Choiniere, J 2019, 'A new kannemeyeriiform dicynodont (Ufudocyclops mukanelai gen. et sp. nov.) from Subzone C of the Cynognathus Assemblage Zone (Triassic of South Africa) with implications for biostratigraphic correlation with other African Triassic faunas', Journal of Vertebrate Paleontology, vol. 39, no. 2, e1596921. https://doi.org/10.1080/02724634.2019.1596921 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 26/06/2019 This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Vertebrate Paleontology on 21/05/2019, available online: http://www.tandfonline.com/10.1080/02724634.2019.1596921 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
    [Show full text]
  • Mandasuchus Tanyauchen Gen. Et Sp. Nov., a Pseudosuchian Archosaur
    Mandasuchus tanyauchen gen. et sp. nov., a pseudosuchian archosaur from the Manda Beds (?Middle Triassic) of Tanzania Butler, Richard; Nesbitt, Sterling; Charig, Alan; Gower, D.J.; Barrett, Paul DOI: 10.1080/02724634.2017.1343728 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Butler, R, Nesbitt, S, Charig, A, Gower, DJ & Barrett, P 2018, 'Mandasuchus tanyauchen gen. et sp. nov., a pseudosuchian archosaur from the Manda Beds (?Middle Triassic) of Tanzania' Journal of Vertebrate Paleontology, vol. 37, pp. 96-121. https://doi.org/10.1080/02724634.2017.1343728 Link to publication on Research at Birmingham portal Publisher Rights Statement: This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Vertebrate Paleontology on 27th March 2018, available online: http://www.tandfonline.com/10.1080/02724634.2017.1343728. Checked 26/7/18. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.
    [Show full text]
  • The Karoo Basins of South-Central Africa
    Journal of African Earth Sciences 43 (2005) 211–253 www.elsevier.com/locate/jafrearsci The Karoo basins of south-central Africa O. Catuneanu a,*, H. Wopfner b, P.G. Eriksson c, B. Cairncross d, B.S. Rubidge e, R.M.H. Smith f, P.J. Hancox e a Department of Earth and Atmospheric Sciences, University of Alberta, 1-26 Earth Sciences Building, Edmonton, Alta., Canada T6G 2E3 b Geologisches Institut, Universitat zu Koln, Zulpicher Str. 49, 50674 Koln, Germany c Department of Geology, University of Pretoria, Pretoria 0002, South Africa d Department of Geology, University of Johannesburg, P.O. Box 524, Auckland Park, Johannesburg 2006, South Africa e Bernard Price Institute for Palaeontological Research, University of Witwatersrand, PO Wits, Johannesburg 2050, South Africa f Department of Karoo Palaeontology, Iziko: South African Museum, Cape Town, South Africa Received 1 June 2004; accepted 18 July 2005 Available online 25 October 2005 Abstract The Karoo basins of south-central Africa evolved during the first-order cycle of supercontinent assembly and breakup of Pangea, under the influence of two distinct tectonic regimes sourced from the southern and northern margins of Gondwana. The southern tec- tonic regime was related to processes of subduction and orogenesis along the Panthalassan (palaeo-Pacific) margin of Gondwana, which resulted in the formation of a retroarc foreland system known as the ‘‘main Karoo’’ Basin, with the primary subsidence mechanisms represented by flexural and dynamic loading. This basin preserves the reference stratigraphy of the Late Carboniferous–Middle Jurassic Karoo time, which includes the Dwyka, Ecca, Beaufort and Stormberg lithostratigraphic units. North of the main Karoo Basin, the tec- tonic regimes were dominated by extensional or transtensional stresses that propagated southwards into the supercontinent from the divergent Tethyan margin of Gondwana.
    [Show full text]
  • PALAEONTOLOGIA AFRICANA Volume 44 December 2009 Annals of the Bernard Price Institute for Palaeontological Research
    PALAEONTOLOGIA AFRICANA Volume 44 December 2009 Annals of the Bernard Price Institute for Palaeontological Research VOLUME 44, 2009 AFRICANA PALAEONTOLOGIA Supported by PALAEONTOLOGICAL SCIENTIFIC TRUST PALAEONTOLOGICAL SCIENTIFIC TRUST ISSN 0078-8554 SCHOOL OF GEOSCIENCES BERNARD PRICE INSTITUTE FOR PALAEONTOLOGICAL RESEARCH Academic Staff Dr K. Padian (University of California, Berkeley, Director and Chair of Palaeontology California, U.S.A.) B.S. Rubidge BSc (Hons), MSc (Stell), PhD (UPE) Dr K.M. Pigg (Arizona State University, Arizona, U.S.A.) Deputy Director Prof. L. Scott (University of the Free State, Bloemfontein) M.K. Bamford BSc (Hons), MSc, PhD (Witwatersrand) Dr R.M.H. Smith (South African Museum, Cape Town) Senior Research Officers Technical and Support Staff F. Abdala BSc, PhD (UNT, Argentina) Principal Technician A.M. Yates, BSc (Adelaide), BSc (Hons), PhD (La Trobe) R. McRae-Samuel Research Officer Senior Administrative Secretary L.R. Backwell BA (Hons), MSc, PhD (Witwatersrand) S.C. Tshishonga Collections Curator Assistant Research Technician B. Zipfel NHD Pod., NHD PS Ed. (TWR), BSc (Hons) C.B. Dube (Brighton), PhD (Witwatersrand) Technician/Fossil Preparator Post Doctoral Fellows P. Chakane R. Mutter BSc, MSc, PhD (Zurich, Switzerland) S. Jirah F. Neumann BSc, MSc, PhD (Friedrich-Wilhelms-Univer- P.R. Mukanela sity, Bonn) G. Ndlovu D. Steart BSc, DipEd (La Trobe University), PhD (Victoria T. Nemavhundi University of Technology, Australia) S. Tshabalala Editorial Panel Custodian, Makapansgat Sites M.K. Bamford: Editor S. Maluleke L.R. Backwell: Associate Editor Honorary Staff B.S. Rubidge: Associate Editor Honorary Research Associates A.M. Yates: Associate Editor K. Angielczyk BSc (Univ of Michigan, Ann Arbor), PhD Consulting Editors (Univ California, Berkeley) Dr J.A.
    [Show full text]
  • Middle Triassic) of Southwestern Tanzania
    A New Archosauriform (Reptilia: Diapsida) from the Manda Beds (Middle Triassic) of Southwestern Tanzania Sterling J. Nesbitt1*, Richard J. Butler2, David J. Gower3 1 Burke Museum and Department of Biology, University of Washington, Seattle, Washington, United States of America, 2 GeoBio-Center, Ludwig-Maximilians-Universita¨t Mu¨nchen, Munich, Germany, 3 Department of Life Sciences, The Natural History Museum, Cromwell Road, London, United Kingdom Abstract Background: Archosauria and their closest relatives, the non-archosaurian archosauriforms, diversified in the Early and Middle Triassic, soon after the end-Permian extinction. This diversification is poorly documented in most Lower and Middle Triassic rock sequences because fossils of early groups of archosauriforms are relatively rare compared to those of other amniotes. The early Middle Triassic (? late Anisian) Manda beds of southwestern Tanzania form an exception, with early archosaur skeletons being relatively common and preserved as articulated or associated specimens. The Manda archosaur assemblage is exceptionally diverse for the Middle Triassic. However, to date, no non-archosaurian archosauriforms have been reported from these rocks. Methodology/Principal Findings: Here, we name a new taxon, Asperoris mnyama gen. et sp. nov., from the Manda beds and thoroughly describe the only known specimen. The specimen consists of a well-preserved partial skull including tooth- bearing elements (premaxilla, maxilla), the nasal, partial skull roof, and several incomplete elements. All skull elements are covered in an autapomorphic highly rugose sculpturing. A unique combination of character states indicates that A. mnyama lies just outside Archosauria as a stem archosaur within Archosauriformes, but more precise relationships of A. mnyama relative to other early archosauriform clades (e.g., Erythrosuchidae) cannot be determined currently.
    [Show full text]