And Species Strength Values for Plant Species Recorded in Dry and Rainy Seasons During the Studied Period

Total Page:16

File Type:pdf, Size:1020Kb

And Species Strength Values for Plant Species Recorded in Dry and Rainy Seasons During the Studied Period Table S1 Specialization (d’) and species strength values for plant species recorded in dry and rainy seasons during the studied period. Specialization Species strength Family Species Dry season Rainy season Dry season Rainy season Aizoaceae Sesuvium portulacastrum 0.06 0.07 0.66 0.27 Aizoaceae Trianthema portulacastrum 0.12 0.11 2.54 0.46 Amaranthaceae Alternanthera dentata 0.24 0.06 Apocynaceae Catharanthus roseus 0.23 0.46 0.68 0.33 Asteraceae Bidens pilosa 0.06 0.17 2.17 4.19 Asteraceae Chromolaena odorata 0.11 0.10 0.93 1.14 Asteraceae Eclipta prostrata 0.23 0.14 0.24 0.04 Asteraceae Tridax procumbens 0.05 0.05 5.50 4.60 Asteraceae Vernonia cinerea 0.24 0.31 0.49 0.33 Asteraceae Wedelia biflora 0.06 0.07 5.82 4.10 Asteraceae Wedelia trilobata 0.06 0.04 4.17 2.67 Boraginaceae Cordia subcordata 0.40 0.51 0.53 1.03 Boraginaceae Messerschmidia argentea 0.07 0.10 1.53 1.13 Cactaceae Opuntia dillenii 0.03 0.03 0.06 0.03 Capparidaceae Cleome viscosa 0.09 0.05 2.35 0.81 Capparidaceae Gynandropsis gynandra 0.10 0.13 Caricaceae Carica papaya 0.53 0.25 2.71 1.52 Combretaceae Terminalia catappa 0.19 0.27 1.18 0.07 Convolvulaceae Ipomoea obscura 0.07 0.04 0.17 0.99 Convolvulaceae Ipomoea pescaprae 0.09 0.07 1.18 1.12 Convolvulaceae Ipomoea violacea 0.22 0.39 Convolvulaceae Jacquemontia paniculata 0.06 0.07 Cucurbitaceae Coccinia grandis 0.13 0.00 0.15 0.12 Euphorbiaceae Euphorbia atoto 0.16 0.16 1.94 0.76 Euphorbiaceae Euphorbia cyathophora 0.04 0.07 1.58 1.22 Euphorbiaceae Euphorbia hirta 0.12 0.24 1.57 2.28 Euphorbiaceae Ricinus communis 0.26 0.06 0.56 0.12 Fabaceae Alysicarpus vaginalis 0.14 0.23 Fabaceae Canavalia maritima 0.12 0.17 0.16 0.16 Fabaceae Crotalaria pallida 0.36 0.08 0.10 0.04 Fabaceae Macroptilium atropurpureum 0.17 0.10 0.25 0.24 Fabaceae Mimosa pudica 0.08 0.17 0.17 2.03 Fabaceae Rhynchosia minima 0.13 0.16 Fabaceae Senna occidentalis 0.07 0.16 0.17 0.62 Fabaceae Sesbania cannabina 0.14 0.18 0.53 0.27 Fabaceae Vigna marina 0.16 0.11 1.16 0.76 Goodeniaceae Scaevola taccada 0.08 0.10 2.59 1.79 Guttiferae Calophyllum inophyllum 0.03 0.03 Malvaceae Abutilon indicum 0.13 0.07 0.37 0.86 Malvaceae Gossypium hirsutum 0.01 0.05 0.03 0.11 Malvaceae Herissantia crispa 0.07 0.13 0.04 0.21 Malvaceae Sida alnifolia 0.07 0.10 0.33 0.19 Nyctaginaceae Boerhavia diffusa 0.13 0.25 0.53 0.18 Nyctaginaceae Boerhavia erecta 0.11 0.79 Nyctaginaceae Bougainvillea spectabilis 0.19 0.46 0.18 0.48 Nyctaginaceae Pisonia grandis 0.08 0.07 1.29 0.63 Passifloraceae Passiflora foetida 0.03 0.11 0.29 0.43 Portulacaceae Portulaca grandiflora 0.27 0.07 0.23 0.17 Portulacaceae Portulaca oleracea 0.07 0.03 0.96 0.03 Rhamnaceae Colubrina asiatica 0.17 0.32 0.98 2.21 Rubiaceae Guettarda speciosa 0.60 0.52 1.14 0.38 Rubiaceae Ixora chinensis 0.36 0.32 0.10 0.08 Rubiaceae Morinda citrifolia 0.24 0.21 1.44 1.37 Simaroubaceae Suriana maritima 0.09 0.08 0.13 0.61 Solanaceae Datura metel 0.14 0.12 0.99 0.77 Solanaceae Physalis minima 0.08 0.08 0.45 0.89 Solanaceae Solanum photeinocarpum 0.02 0.05 0.22 0.53 Tiliaceae Triumfetta procumbens 0.10 0.17 0.08 0.49 Verbenaceae Clerodendrum inerme 0.36 0.51 0.10 0.17 Verbenaceae Lantana camara 0.26 0.37 0.88 1.96 Verbenaceae Phyla nodiflora 0.07 0.05 1.84 1.36 Verbenaceae Stachytarpheta jamaicensis 0.13 0.22 0.47 2.43 Zygophyllaceae Tribulus cistoides 0.06 0.06 3.13 2.32 Table S2 Specialization (d’) and species strength values for pollinator species recorded in dry and rainy seasons during the studied period. (F and M represents female and male individuals respectively) Specialization Species strength Group Species Dry season Rainy season Dry season Rainy season Apidae Ceratina lieftincki 0.17 0.08 4.26 3.41 Apidae Apis cerana 0.08 0.14 4.65 6.56 Apidae Ceratina smaragdula 0.12 0.16 3.41 2.34 Apidae Braunapis hewitti 0.08 0.10 1.82 2.87 Apidae Braunapis puangensis 0.12 0.10 5.28 5.22 Apidae Ceratina dentipes 0.14 0.19 1.07 1.27 Arctiidae Utetheisa lotrix 0.10 0.10 0.28 0.48 Butterflies Zizina otis 0.18 0.14 1.21 1.00 Butterflies Borbo cinnara 0.20 0.07 0.30 0.59 Butterflies Euchrysops cnejus 0.25 0.12 1.89 1.49 Butterflies Zizeeria karsandra 0.16 0.22 0.36 0.54 Butterflies Danaus chrysippus 0.11 0.03 0.37 0.25 Butterflies Ariadne ariadne 0.26 0.27 2.41 1.32 Butterflies Eurema hecabe 0.18 0.15 0.47 0.18 Butterflies Elymnias malelas 0.09 0.20 0.22 0.13 Butterflies Catopsilia pyranthe 0.23 0.28 1.57 0.65 Butterflies Hypolimnas bolina 0.04 0.25 0.13 0.26 Butterflies Vanessa indica 0.09 0.09 Butterflies Potanthus confucius 0.55 0.37 Diptera Bactrocera dorsalis 0.02 0.24 Diptera Hemipyrellia ligurriens 0.07 0.09 0.57 0.38 Diptera Rhinia apicalis 0.09 0.10 1.16 0.57 Diptera Miltogramma.sp 0.05 0.26 0.43 0.23 Diptera Miltogrammatinae 0.07 0.26 0.75 0.23 Diptera Musca domestica 0.13 0.10 0.08 0.04 Diptera Stratiomyidae 0.20 0.63 Diptera Seniorwhitea reciproca 0.00 0.09 0.04 0.19 Diptera Chrysomya megacephala 0.16 0.11 0.50 1.77 Hawkmoths Agrius convolvuli 0.67 0.51 0.58 0.94 Hawkmoths Cephonodes hylas 0.38 0.23 0.39 0.98 Hawkmoths Hippotion velox 0.22 0.33 0.65 0.65 Hawkmoths Macroglossum neotroglodytus 0.53 0.31 0.17 0.62 Hawkmoths Hippotion rosetta 0.53 0.05 0.17 0.03 Hawkmoths Macroglossum sitiene 0.24 0.24 0.56 2.38 Hemiptera Triatominae 0.04 0.16 0.22 0.44 Hymenoptera Campsomeriella collaris F 0.22 0.11 0.71 2.38 Hymenoptera Campsomeriella collaris M 0.02 0.01 0.51 0.99 Hymenoptera Micromeriella marginella F 0.06 0.05 0.68 0.97 Hymenoptera Micromeriella marginella M 0.09 0.06 2.44 0.93 Hymenoptera Delta esuriens 0.05 0.15 1.40 2.35 Hymenoptera Bembix fucosa 0.07 0.03 0.74 0.30 Hymenoptera Mutillidae 0.07 0.30 Hymenoptera Sphecidae 0.20 0.12 0.47 0.15 Hymenoptera Apodynerus flavospinosus 0.05 0.07 1.77 0.80 Hymenoptera Eumeninae 0.09 0.71 Hymenoptera Bembecinus prismaticus 0.07 0.24 Hymenoptera Halictus propinquus 0.06 0.16 1.38 3.45 Hymenoptera Megachilidae 0.05 0.16 0.17 0.35 Hymenoptera Megachile rixator 0.15 0.08 1.28 0.56 Hymenoptera Chalalcididae 0.08 0.10 0.17 0.13 Hymenoptera Polistes stigma 0.03 0.08 1.69 0.31 Hymenoptera Batozonellus annulatus 0.14 0.34 Hymenoptera Xanthopimpla punctata 0.14 0.38 0.25 0.38 Hymenoptera Iphiaulax stramineus 0.10 0.23 0.38 0.20 Hymenoptera Pompilidae 0.02 0.08 Passeriformes Zosterops japonicus 0.61 0.81 0.60 0.50 Syrphidae Eristalis sp. 0.07 0.14 0.64 1.50 Syrphidae Syritta orientalis 0.10 0.03 0.27 0.53 Syrphidae Paragus bicolor 0.07 0.08 2.07 3.48 Syrphidae Ischiodon scutellaris 0.14 0.12 0.25 1.41 Syrphidae Asarkina porcina 0.12 0.11 Syrphidae Asarkina salviae 0.11 0.74 Syrphidae Eristalinus quinqueslineatus 0.01 0.06 0.14 0.42 Syrphidae Eupeodes corollae 0.18 0.12 .
Recommended publications
  • A Recent Phytochemical Review – Fruits of Tribulus Terrestris Linn
    Suresh Reddy Yanala et al /J. Pharm. Sci. & Res. Vol. 8(3), 2016, 132-140 A Recent Phytochemical Review – Fruits of Tribulus terrestris Linn Suresh Reddy Yanala¹*, D. Sathyanarayana², K. Kannan³ Department of Pharmacy, Annamalai University, Chidambaram, Tamil Nadu, India Abstract The genus Tribulus, belonging to family Zygophyllaceae, comprises about 20 species widely distributed across the world, of which three species, viz. Tribulus terrestris, Tribulus cistoides and Tribulus alatus, are of common occurrence in India. Among them, T. terrestris commonly known as gokharu or puncture wine is a well known medicinal herb has been used for a long time in both the Indian and Chinese alternative systems of medicine for treatment of various kinds of diseases. This review summarized the current knowledge on the phytochemistry. Fruits of the Tribulus terrestris contain a variety of chemical constituents which are medicinally important, such as flavonoids, flavonol glycosides, steroidal saponins, steroidal glycosides, furostanol saponins, furosteroidal saponins, furostanol glycosides, sapogenins and alkaloids. It has diuretic, aphrodisiac, antiurolithic, immunomodulatory, antidiabetic, absorption enhancing, hypolipidemic, cardiotonic, central nervous system, hepatoprotective, anti-inflammatory, analgesic, antispasmodic, anticancer, antibacterial, anthelmintic, larvicidal, and anticarcinogenic activities. For the last few decades or so, extensive research work has been done to prove its pharmacological activities of its various extracts. Keywords-Tribulus terrestris L. fruit, Gokhru, Zygophyllaceae, Phytochemicals 1. INTRODUCTION 1.3 Common and Vernacular Names 1.1 Botany and occurrence. Tribulus terrestris has a list of alternative names almost as Tribulus terrestris L. is awell known and widely long as its history. In Traditional Chinese Medicine it is distributed species of the genus Tribulus.
    [Show full text]
  • Project CSE 1 Identification of Species and the Origin of Tribulus Found in Areas of Dried Vine Fruit Production
    Final report: Project CSE 1 Identification of species and the origin of Tribulus found in areas of dried vine fruit production Prepared for The Australian Dried Fruits Research and Development Council Prepared by Dr J. K. Scott and Ms. S. M. Morrison CSIRO Division of Entomology Western Australia 31 August 1994 a DEPARTMENT OF AGRICULTURE C S I RO WESTERN AUSTRALIA AUSTRALIA CSE 1 IDENTIFYING SPECIES AND ORIGIN OF TRIBULUS FOUND IN AREAS OF DRIED VINE FRUIT PRODUCTION Organisation: CSIRO Division of Entomology Location: South Perth Department of Agriculture, W.A. Supervisor: Dr J.K. Scott Time Span: July 1991 to June 1994 Objective: To identify, and determine the origin of Tribulus species (caltrop) that occur in areas of dried vine fruit production as a pre-requisite for identifying suitable control measures. Progress: 1. Burrs of Tribulus terrestris s./. were obtained from 54 collections throughout the world distribution of this weed. 2. Morphological analysis of the burrs indicated that the Queensland and Northern Territory collections form a separate group from collections in southern Australia, and that a third group exists in northern Western Australia. The combination of height and length of burrs was most useful to separate the groups and is a suitable quick technique for the preliminary identification of major taxonomic groups. Morphology however, did not reflect all of the variation detected by cytology and isozyme analysis. 3. Chromosome counts of 2n = 24, 36 and 48 were detected in root tips of germinated seed. This polyploid series appears to have an autopolyploid origin. The cytogenetic studies showed that the Queensland and Northern Territory collections are different from all other Australian collections, except possibly two southern collections.
    [Show full text]
  • The Sphingidae (Lepidoptera) of the Philippines
    ©Entomologischer Verein Apollo e.V. Frankfurt am Main; download unter www.zobodat.at Nachr. entomol. Ver. Apollo, Suppl. 17: 17-132 (1998) 17 The Sphingidae (Lepidoptera) of the Philippines Willem H o g e n e s and Colin G. T r e a d a w a y Willem Hogenes, Zoologisch Museum Amsterdam, Afd. Entomologie, Plantage Middenlaan 64, NL-1018 DH Amsterdam, The Netherlands Colin G. T readaway, Entomologie II, Forschungsinstitut Senckenberg, Senckenberganlage 25, D-60325 Frankfurt am Main, Germany Abstract: This publication covers all Sphingidae known from the Philippines at this time in the form of an annotated checklist. (A concise checklist of the species can be found in Table 4, page 120.) Distribution maps are included as well as 18 colour plates covering all but one species. Where no specimens of a particular spe­ cies from the Philippines were available to us, illustrations are given of specimens from outside the Philippines. In total we have listed 117 species (with 5 additional subspecies where more than one subspecies of a species exists in the Philippines). Four tables are provided: 1) a breakdown of the number of species and endemic species/subspecies for each subfamily, tribe and genus of Philippine Sphingidae; 2) an evaluation of the number of species as well as endemic species/subspecies per island for the nine largest islands of the Philippines plus one small island group for comparison; 3) an evaluation of the Sphingidae endemicity for each of Vane-Wright’s (1990) faunal regions. From these tables it can be readily deduced that the highest species counts can be encountered on the islands of Palawan (73 species), Luzon (72), Mindanao, Leyte and Negros (62 each).
    [Show full text]
  • Pacific Islands Area
    Habitat Planting for Pollinators Pacific Islands Area November 2014 The Xerces Society for Invertebrate Conservation www.xerces.org Acknowledgements This document is the result of collaboration with state and federal agencies and educational institutions. The authors would like to express their sincere gratitude for the technical assistance and time spent suggesting, advising, reviewing, and editing. In particular, we would like to thank the staff at the Hoolehua Plant Materials Center on the Hawaiian Island of Molokai, NRCS staff in Hawaii and American Samoa, and researchers and extension personnel at American Samoa Community College Land Grant (especially Mark Schmaedick). Authors Written by Jolie Goldenetz-Dollar (American Samoa Community College), Brianna Borders, Eric Lee- Mäder, and Mace Vaughan (The Xerces Society for Invertebrate Conservation), and Gregory Koob, Kawika Duvauchelle, and Glenn Sakamoto (USDA Natural Resources Conservation Service). Editing and layout Ashley Minnerath (The Xerces Society). Updated November 2014 by Sara Morris, Emily Krafft, and Anne Stine (The Xerces Society). Photographs We thank the photographers who generously allowed use of their images. Copyright of all photographs remains with the photographers. Cover main: Jolie Goldenetz-Dollar, American Samoa Community College. Cover bottom left: John Kaia, Lahaina Photography. Cover bottom right: Gregory Koob, Hawaii Natural Resources Conservation Service. Funding This technical note was funded by the U.S. Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS) and produced jointly by the NRCS and The Xerces Society for Invertebrate Conservation. Additional support was provided by the National Institute for Food and Agriculture (USDA). Please contact Tony Ingersoll ([email protected]) for more information about this publication.
    [Show full text]
  • Northward Range Expansion of Southern Butterflies According to Climate Change in South Korea
    Journal of Climate Change Research 2020, Vol. 11, No. 6-1, pp. 643~656 DOI: http://dx.doi.org/10.15531/KSCCR.2020.11.6.643 Northward Range Expansion of Southern Butterflies According to Climate Change in South Korea Adhikari, Pradeep* Jeon, Ja-Young** Kim, Hyun Woo*** Oh, Hong-Shik**** Adhikari, Prabhat***** and Seo, Changwan******† *Research Specialist, Environmental Impact Assessment Team, National Institute of Ecology, Korea **Researcher, Ecosystem Service Team, National Institute of Ecology, Korea / PhD student, Landscape Architecture, University of Seoul, Seoul, Korea ***Research Specialist, Eco Bank Team, National Institute of Ecology, Korea ****Professor, Interdisciplinary Graduate Program in Advanced Convergence Technology and Science and Faculty of Science Education, Jeju National University, South Korea *****Master student, Central Department of Botany, Tribhuvan University, Kathmandu, Nepal ******Chief Researcher, Division of Ecological Assessment, National Institute of Ecology, Korea ABSTRACT Climate change is one of the most influential factors on the range expansion of southern species into northern regions, which has been studied among insects, fish, birds and plants extensively in Europe and North America. However, in South Korea, few studies on the northward range expansion of insects, particularly butterflies, have been conducted. Therefore, we selected eight species of southern butterflies and calculated the potential species richness values and their range expansion in different provinces of Korea under two climate change scenarios (RCP 4.5 and RCP 8.5) using the maximum entropy (MaxEnt) modeling approach. Based on these model predictions, areas of suitable habitat, species richness, and species expansion of southern butterflies are expected to increase in provinces in the northern regions ( >36°N latitude), particularly in Chungcheongbuk, Gyeonggi, Gangwon, Incheon, and Seoul.
    [Show full text]
  • Notes on Hawk Moths ( Lepidoptera — Sphingidae )
    Colemania, Number 33, pp. 1-16 1 Published : 30 January 2013 ISSN 0970-3292 © Kumar Ghorpadé Notes on Hawk Moths (Lepidoptera—Sphingidae) in the Karwar-Dharwar transect, peninsular India: a tribute to T.R.D. Bell (1863-1948)1 KUMAR GHORPADÉ Post-Graduate Teacher and Research Associate in Systematic Entomology, University of Agricultural Sciences, P.O. Box 221, K.C. Park P.O., Dharwar 580 008, India. E-mail: [email protected] R.R. PATIL Professor and Head, Department of Agricultural Entomology, University of Agricultural Sciences, Krishi Nagar, Dharwar 580 005, India. E-mail: [email protected] MALLAPPA K. CHANDARAGI Doctoral student, Department of Agricultural Entomology, University of Agricultural Sciences, Krishi Nagar, Dharwar 580 005, India. E-mail: [email protected] Abstract. This is an update of the Hawk-Moths flying in the transect between the cities of Karwar and Dharwar in northern Karnataka state, peninsular India, based on and following up on the previous fairly detailed study made by T.R.D. Bell around Karwar and summarized in the 1937 FAUNA OF BRITISH INDIA volume on Sphingidae. A total of 69 species of 27 genera are listed. The Western Ghats ‘Hot Spot’ separates these towns, one that lies on the coast of the Arabian Sea and the other further east, leeward of the ghats, on the Deccan Plateau. The intervening tract exhibits a wide range of habitats and altitudes, lying in the North Kanara and Dharwar districts of Karnataka. This paper is also an update and summary of Sphingidae flying in peninsular India. Limited field sampling was done; collections submitted by students of the Agricultural University at Dharwar were also examined and are cited here .
    [Show full text]
  • Southern Gulf, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Lepidoptera, Sphingidae)
    ©Entomologischer Verein Apollo e.V. Frankfurt am Main; download unter www.zobodat.at Nachr. entomol. Ver. Apollo, N. F. 36 (1): 55–61 (2015) 55 A checklist of the hawkmoths of Woodlark Island, Papua New Guinea (Lepidoptera, Sphingidae) W. John Tennent, George Clapp and Eleanor Clapp W. John Tennent, Scientific Associate, Department of Life Sciences, Natural History Museum, London SW7 5BD, England; [email protected] George Clapp, 17 Tamborine Street, Hemmant, Queensland 4174, Australia Eleanor Clapp, 18 Adriana Drive, Buderim, Queensland 4556, Australia Abstract: A tabulated and annotated checklist of hawk­ exploration began again in 1973, and Woodlark Mining moths (Sphingidae) observed and collected by the first Limited (purchased by Kula Gold in 2007) was form ally au thor during three visits to Woodlark Island (Papua New granted a mining lease by the PNG govern ment in July Gui nea, Milne Bay Province) in 2010–2011 is presented. Nu me rous moths were attracted to mercury vapour bulbs 2014. used to illuminate a helicopter landing site and security A combination of an oceanic origin (Woodlark has lights around the administrative building at Bomagai Camp ne ver been connected by land to New Guinea), remo­ (Woodlark Mining Limited), near Kulumudau on the west te ness from the main island of New Guinea, and rather of the island. re stricted habitats, has resulted in an ecologically dis­ Keywords: Lepidoptera, Sphingidae, Papua New Guinea, Milne Bay Province, Woodlark Island, range extension, tinct fauna. For example, there are no birds of paradise, distribution, new island records. bower birds, or wallabies on Woodlark, and only one species each of honey eater, sunbird and cuscus — all taxa Verzeichnis der Schwärmer von Woodlark Island, that are diverse and in some cases moderately numerous Papua-Neuguinea (Lepidoptera, Sphingidae) elsewhere in Papua New Guinea.
    [Show full text]
  • Tribulus Terrestris Puncture Vine
    Tribulus terrestris Puncture vine Introduction The genus Tribulus contains 20 species worldwide, primarily occurring in tropical and subtropical regions. In China, only 2 species have been recorded[132]. Species of Tribulus in China Scientific Name T. terrestris L.* T. cistoides L. * Recorded as T. terrester L. in FRPS and fruit July through September. and sparse forests in Hainan, and the Fruits are stiff, glabrous or hairy, 4-6 hot, dry valleys in Yunnan[132]. Taxonomy mm long, with 2 spines in the middle Order: Geraniales of fruit margin. The fruits is a 5 part Natural Enemies of Tribulus Suborder: Geraniineae mericarp[132]. One species of fungi and one arthropod Family: Zygophyllaceae have been found to be associated with Genus: Tribulus L. Habitat Tribulus terrestris. Species: Tribulus terrestris L. Tribulus terrestris occurs in sandy (=Tribulus terrester L.) areas, waste land, hillside slopes, as well as residential areas[132]. Description Tribulus terrestris is an herbaceous Distribution annual, with glabrous, villous or hirsute, Tribulus terrestris has a nationwide procumbent stems that are 20-60 cm distribution in China[132]. in length. Leaves are parapinnately compound 1.5-5 cm long with 3-8 pairs Economic Importance of opposite leaflets for each. Each leaf Tribulus terrestris can be used as is oblong or asymmetrical, 5-10 mm forage while green. Fruits are medically long and 2-5 mm wide, acute or obtuse useful. It is a common pest plant in apically, slightly asymmetrical basally, the pasture[132] and causes damage to and an entire margin. Axillary yellow cotton, pulse, root and tuber crops and flowers have a pedicel shorter than the other crops and vegetables[39].
    [Show full text]
  • Identification of Invertebrates Collected on the 2007 Invertebrate Survey
    1 CORINGA–HERALD NATIONAL NATURE RESERVE – IDENTIFICATION OF INVERTEBRATES COLLECTED ON THE 2007 INVERTEBRATE SURVEY Penelope Greenslade and Roger Farrow Report prepared by XCS Consulting for the Australian Government Department of the Environment, Water, Heritage and the Arts June 2008 2 Addresses of authors Penelope Greenslade, School of Botany and Zoology, Australian National University, GPO Box, Australian Capital Territory, 0200, Australia. Roger Farrow, Tilembeya Consulting, "Tilembeya", 777 Urila Road, Queanbeyan, New South Wales 2620, Australia. XCS Consulting, GPO Box 2566, Canberra City, 2601, Australia. DISCLAIMER: While XCS Consulting Pty Ltd makes all reasonable effort to ensure that information provided to the customer is accurate and reliable, XCS Consulting makes no warranties and accepts no liabilities for any injury, loss or damage resulting from use and reliance upon information provided. Mention of any product or service is for information purposes only and does not constitute a recommendation by XCS Consulting Pty Ltd of any such product or service, either expressed or implied. Copyright © Commonwealth of Australia 2008 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, any process may reproduce no part without prior written permission from the Commonwealth. Requests and inquiries concerning reproduction and rights should be addressed to the Commonwealth Copyright Administration, Attorney General’s Department, Robert Garret Offices, National Circuit, Barton ACT 2600 or posted at http://www.ag.gov.au/cca Disclaimer The views and opinions expressed in this publication are those of the authors and do not necessarily reflect those of the Australian Government or the Minister for the Environment, Heritage and the Arts or the Minister for Climate Change and Water.
    [Show full text]
  • Bonner Zoologische Beiträge
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Bonn zoological Bulletin - früher Bonner Zoologische Beiträge. Jahr/Year: 1977 Band/Volume: 28 Autor(en)/Author(s): Roesler Rolf-Ulrich, Küppers Peter V. Artikel/Article: Beiträge zur Kenntnis der Insektenfauna Sumatras: Zur Ethologie und Geobiologie der Schwärmer Sumatras (Lepidoptera: Sphingidae) 160-197 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zoologicalbulletin.de; www.biologiezentrum.at Beiträge zur Kenntnis der Insektenfauna Sumatras: Zur Ethologie und Geobiologie der Schwärmer Sumatras (Lepidoptera: Sphingidae) *) Von R. ULRICH ROESLER und PETER V. KÜPPERS, Karlsruhe Inhalt Seite Einleitung 160 Verhalten der Schwärmer beim Anflug 164 Charakteristik der Fundorte und deren Elemente 168 Verbreitungstabelle 183 Biogeographische Betrachtungen 185 Futterpflanzenliste 190 Zusammenfassung — Summary 194,195 Literaturverzeichnis 196 Einleitung Dieser Studie liegen die Schwärmer-Ausbeuten zweier Reisen der Auto- ren nach Sumatra (1972 und 1975) zugrunde sowie das seit Jahren von Herrn Dr. Diehl (Dolok Merangir, Sumatra) zur Verfügung gestellte Ma- terial an Sphingiden, zu welchem die Belegtiere hinzukommen, die Herr Dr. Krikken (Rijksmuseum van Natuurlijke Historie, Leiden) 1972 von sei- ner Forschungsreise nach Nordsumatra mitgebracht und uns zur Mitbear- beitung zur Verfügung gestellt hat. Beiden genannten Herren danken wir für ihr Entgegenkommen und die bereitwillige
    [Show full text]
  • Title Effects of Internal Irradiation in the Pale Grass Blue Butterfly
    Effects of internal irradiation in the pale grass blue butterfly Zizeeria maha and comparative morphological analysis of the Title grass blue butterflies Zizeeria and Zizina (Lepidoptera: Lycaenidae)( Abstract_論文要旨 ) Author(s) Gurung, Raj Deep Citation Issue Date 2017-09-14 URL http://hdl.handle.net/20.500.12000/37407 Rights Form3 Ab 8tract Ti tle Effects Effects of internal irradiation in the pale grass blue butterfly Zizeeri a. m a. ha and comparative morphological analysis of the grass blue butterflies butterflies Zizeeria and Zizina (Le pidoptera : Lycaenidae) Lycaenid Lycaenid butte rf1 ies like Zizeeria and Zizina 紅 'e mainly distributed in A 企lcan , Asian Asian and Aus 仕alian continents. With wing spans of 20 - 30 mm and low tlight ability these these bu 陶 rflies 訂 ee 鎚 Y to re 紅 at table top rearing space under laboratory conditions . Additionally , their simple wing pa 悦 :rns and their responses to various changes in environmental environmental temperature and chemicals factors make them candidates ぉ environmental environmental indicators. To expand the lycaneid model system additional rearing of three Zizina species (Zizina (Zizina otis labradus , Zizina otis riukuensis , Zizina emelina) and one Zizeeria species (Zizeeria (Zizeeria karsandra) under conditions .1aboratory w ぉ successfully performed. Imm ature S旬ges of these butterflies were compared toge 也er and a morphologic a1 -trait database of immature immature s也ges of these butterflies was established. Such system will not only help mωidenti ち rthese organisms at early s句ges but will be equally help 白1 to observe the response response to certain environmental factors. Recently , Japanese pale grass blue butterfly Zizzeria .maha use 錨 m environmental environmental indicator is on the rise after Fukushima Nuclear Power Plant fallou t.
    [Show full text]