In Vitro Antimicrobial Synergism Within Plant Extract Combinations from Three

Total Page:16

File Type:pdf, Size:1020Kb

In Vitro Antimicrobial Synergism Within Plant Extract Combinations from Three Journal of Ethnopharmacology 139 (2012) 81–89 Contents lists available at SciVerse ScienceDirect Journal of Ethnopharmacology journa l homepage: www.elsevier.com/locate/jethpharm In vitro antimicrobial synergism within plant extract combinations from three South African medicinal bulbs ∗ B. Ncube, J.F. Finnie, J. Van Staden Research Centre for Plant Growth and Development, School of Life Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa a r t i c l e i n f o a b s t r a c t Article history: Ethnopharmacological relevance: Tulbaghia violacea, Hypoxis hemerocallidea and Merwilla plumbea are used Received 27 July 2011 in South African traditional medicine for the treatment of some infectious diseases and other ailments. Received in revised form Aim of the study: The study aimed at investigating the antimicrobial efficacies of independent and various 21 September 2011 within-plant extract combinations of three medicinal bulbs to understand the possible pharmacological Accepted 15 October 2011 interactions. Available online 30 October 2011 Materials and methods: Bulb and leaf extracts of the three medicinal plants, independently and in com- binations, were comparatively assessed for antimicrobial activity against two Gram-positive and two Keywords: Antimicrobial Gram-negative bacteria and Candida albicans using the microdilution method. The fractional inhibitory concentration indices (FIC) for two extract combinations were determined. Extract combination Interaction Results: At least one extract combination in each plant sample demonstrated good antimicrobial activity Phytochemical against all the test organisms. The efficacies of the various extract combinations in each plant sample Synergy varied, with the strongest synergistic effect exhibited by the proportional extract yield combination of PE and DCM extracts in Merwilla plumbea bulb sample against Staphylococcus aureus (FIC index of 0.1). Most extract combinations demonstrated either a synergistic, additive or indifferent interaction effect against the test bacteria with only a few exhibiting antagonistic effects. Conclusion: The observed antimicrobial efficacy and synergistic interactions indicate the beneficial aspects of combination chemotherapy of medicinal plant extracts in the treatment of infectious diseases. © 2011 Elsevier Ireland Ltd. All rights reserved. 1. Introduction with the rapidly changing and potentially damaging external envi- ronmental factors. Being organisms devoid of mobility, plants have The continued evolution of infectious diseases and the devel- evolved elaborate alternative defence strategies, which involve an opment of resistance by pathogens to existing pharmaceuticals, enormous variety of chemical metabolites as tools to overcome have led to the intensification of the search for new novel leads, stress conditions. The ability of plants to carry out combinatorial against fungal, parasitic, bacterial, and viral infections (Gibbons, chemistry by mixing, matching and evolving the gene products 2004). Despite the recent advances in drug development through required for secondary metabolite biosynthetic pathways, creates molecular modelling, combinatorial and synthetic chemistry, nat- an unlimited pool of chemical compounds, which humans have ural plant-derived compounds are still proving to be an invaluable exploited to their benefit. The use of plants by humans in both tra- source of medicines for humans (Salim et al., 2008). Plant-derived ditional and modern medicinal systems, therefore, largely exploits antimicrobials have a long history of providing the much needed this principle. novel therapeutics (Avila et al., 2008). Plants constantly interact A number of traditionally used medicinal plants have to date been screened for various biological activities in both in vivo and in vitro models. The chemical investigation and purification of extracts from plants purported to have medicinal properties have Abbreviations: ATCC, American type culture collection; CFU, colony forming unit; yielded numerous purified compounds which have proven to be DCM, dichloromethane; EtOH, ethanol; FIC, fractional inhibitory concentration; INT, indispensable in the practice of modern medicine (Goldstein et al., p-iodonitrotetrazolium chloride; MH, Mueller–Hinton; MIC, minimum inhibitory 1974; Tyler et al., 1988). In traditional medicine, however, these concentration; MFC, minimum fungicidal concentration; PE, petroleum ether; YM, compounds are largely utilised as crude extracts in the form of yeast malt. ∗ herbal remedies (Pujol, 1990). In light of the new emerging infec- Corresponding author. Tel.: +27 33 2605130; fax: +27 33 2605897. E-mail address: [email protected] (J. Van Staden). tious diseases and the development of resistance in those with 0378-8741/$ – see front matter © 2011 Elsevier Ireland Ltd. All rights reserved. doi:10.1016/j.jep.2011.10.025 82 B. Ncube et al. / Journal of Ethnopharmacology 139 (2012) 81–89 existing curatives, one of the strategies employed in traditional 2.3. Preparation of saponin-rich extracts herbal medicine to overcome these mechanisms is the combina- tion of herbal remedies. Herbal remedies are often prepared from a Saponins were extracted from the plant material as described combination of several different plant species. The pharmacological by Makkar et al. (2007). The dried and ground plant samples were effects of such mixtures could be as a result of the total sum of differ- defatted with hexane in a Soxhlet apparatus for 3 h. After air- ent classes of compounds with diverse mechanisms of action. There drying, saponins were extracted twice from the defatted samples have been reports of the total contents of a herbal product show- (10 g) in 100 ml of 50% aqueous methanol by incubating at room ing a significantly better effect than an equivalent dose of a single temperature overnight with continuous stirring. The extracts were isolated active ingredient or a single constituent herb (Williamson, then centrifuged at 3000 rpm for 10 min and the supernatant col- 2001; Nahrstedt and Butterweck, 2010). These findings suggest that lected. The procedure was repeated with the original residue to the effects may arise from synergistic mechanisms of herbal ingre- obtain a second supernatant. The first and second supernatants dients. Synergism occurs when two or more compounds interact were combined and filtered under vacuum through Whatman No. in ways that mutually enhance, amplify or potentiate each other’s 1 filter paper. Methanol from the filtrate was evaporated from the ◦ effect more significantly than the simple sum of these ingredients solution under vacuum at 40 C with the saponin sample in the (Williamson, 2001). aqueous phase remaining. The aqueous phase was then centrifuged Although there is significant information on the bioactivity at 3000 rpm for 10 min to remove water insoluble materials. The of the screened medicinal plant extracts, most studies, however, aqueous phase was then transferred into a separating funnel and report these findings on the basis of separate classes/groups of extracted three times with an equal volume of chloroform to compounds extracted using different individual solvents. Many sci- remove pigments. The concentrated saponins in the aqueous solu- entists perform extraction using solvents with increasing polarity, tion were then extracted twice with an equal volume of n-butanol. ◦ e.g. petroleum ether, chloroform, ethyl acetate, ethanol and water. The n-butanol was evaporated under vacuum at 45 C. The dried The quality of the extracted compounds and their overall quan- fractions containing saponins were dissolved in 10 ml of distilled tity in any given plant species would vary largely as a function of water and freeze-dried. the type of solvent used. The question, however, arises: What will the activity be if extracts from one extracting solvent are mixed 2.4. Preparation of phenolic-rich extracts with those from another of the same plant species? What would be the pharmacodynamic interaction between polar and non-polar Phenolic compounds were extracted from plant material as extracts of the same plant species? In light of the multiplicity described by Makkar (1999) with modifications. Dried plant sam- of the phytochemical compounds produced within an individual ples (2 g) were extracted with 10 ml of 50% aqueous methanol by plant, an investigation into this aspect, could possibly unlock the sonication on ice for 20 min. The extracts were then filtered under hidden potentialities of the therapeutic value of the entire set of vacuum through Whatman No. 1 filter paper. The concentrated compounds of a plant extract. We elaborate this knowledge here phenolic-rich extracts were subsequently dried at room temper- by assessing the antimicrobial interaction effect of the different ature under a stream of cold air. extract combinations for three medicinal bulbs. The study extends our previous research on these medicinal bulbs (Ncube et al., 2011a) 2.5. Antibacterial activity Minimum inhibitory concentrations (MIC) of extracts for 2. Materials and methods antibacterial activity were determined using the microdilution bioassay as described by Eloff (1998). Overnight cultures (incubated ◦ 2.1. Plant material at 37 C in a water bath with an orbital shaker) of two Gram-positive (Bacillus subtilis ATCC 6051 and Staphylococcus aureus ATCC 12600) Bulbs and leaves of Tulbaghia violacea Harv., Hypoxis heme- and two Gram-negative (Escherichia coli ATCC 11775 and Klebsiella rocallidea
Recommended publications
  • The Effect of Cultivation and Plant Age on the Pharmacological Activity of Merwilla Natalensis Bulbs
    South African Journal of Botany 2005, 71(2): 191–196 Copyright © NISC Pty Ltd Printed in South Africa — All rights reserved SOUTH AFRICAN JOURNAL OF BOTANY ISSN 1727–9321 The effect of cultivation and plant age on the pharmacological activity of Merwilla natalensis bulbs SG Sparg, AK Jäger and J van Staden* Research Centre for Plant Growth and Development, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa * Corresponding author, e-mail: [email protected] Received 5 March 2004, accepted in revised form 27 August 2004 Merwilla natalensis bulbs were cultivated at two thesis by COX-1, with activity decreasing as the bulbs different sites under different treatments. Bulbs were matured. The cultivation treatments had a significant harvested every six months for a period of two years effect on the antihelmintic activity of bulbs cultivated at and were tested for antibacterial, anti-inflammatory and the Fort Hare site. Results suggest that irrigation might anthelmintic activity. The cultivation treatments had no increase the antihelmintic activity of the bulbs if culti- significant effect (P ≤ 0.05) on neither the antibacterial vated in areas of low rainfall. The age of the bulbs at activity, nor the anti-inflammatory activity. However, the both sites had a significant effect on the antihelmintic age of the bulbs had a significant effect against the test activity, with activity increasing with plant maturity. bacteria and on the inhibition of prostaglandin syn- Introduction Merwilla natalensis (Planchon) Speta (synonym Scilla varied when the plants were grown in different geographical natalensis) is ranked as one of the more commonly-sold regions.
    [Show full text]
  • Albuca Spiralis
    Flowering Plants of Africa A magazine containing colour plates with descriptions of flowering plants of Africa and neighbouring islands Edited by G. Germishuizen with assistance of E. du Plessis and G.S. Condy Volume 62 Pretoria 2011 Editorial Board A. Nicholas University of KwaZulu-Natal, Durban, RSA D.A. Snijman South African National Biodiversity Institute, Cape Town, RSA Referees and other co-workers on this volume H.J. Beentje, Royal Botanic Gardens, Kew, UK D. Bridson, Royal Botanic Gardens, Kew, UK P. Burgoyne, South African National Biodiversity Institute, Pretoria, RSA J.E. Burrows, Buffelskloof Nature Reserve & Herbarium, Lydenburg, RSA C.L. Craib, Bryanston, RSA G.D. Duncan, South African National Biodiversity Institute, Cape Town, RSA E. Figueiredo, Department of Plant Science, University of Pretoria, Pretoria, RSA H.F. Glen, South African National Biodiversity Institute, Durban, RSA P. Goldblatt, Missouri Botanical Garden, St Louis, Missouri, USA G. Goodman-Cron, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, RSA D.J. Goyder, Royal Botanic Gardens, Kew, UK A. Grobler, South African National Biodiversity Institute, Pretoria, RSA R.R. Klopper, South African National Biodiversity Institute, Pretoria, RSA J. Lavranos, Loulé, Portugal S. Liede-Schumann, Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany J.C. Manning, South African National Biodiversity Institute, Cape Town, RSA A. Nicholas, University of KwaZulu-Natal, Durban, RSA R.B. Nordenstam, Swedish Museum of Natural History, Stockholm, Sweden B.D. Schrire, Royal Botanic Gardens, Kew, UK P. Silveira, University of Aveiro, Aveiro, Portugal H. Steyn, South African National Biodiversity Institute, Pretoria, RSA P. Tilney, University of Johannesburg, Johannesburg, RSA E.J.
    [Show full text]
  • Asparagaceae Subfam. Scilloideae) with Comments on Contrasting Taxonomic Treatments
    Phytotaxa 397 (4): 291–299 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2019 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.397.4.3 New combinations in the tribe Urgineeae (Asparagaceae subfam. Scilloideae) with comments on contrasting taxonomic treatments MARIO MARTÍNEZ-AZORÍN1*, MANUEL B. CRESPO1, MARÍA Á. ALONSO-VARGAS1, ANTHONY P. DOLD2, NEIL R. CROUCH3,4, MARTIN PFOSSER5, LADISLAV MUCINA6,7, MICHAEL PINTER8 & WOLFGANG WETSCHNIG8 1Depto. de Ciencias Ambientales y Recursos Naturales (dCARN), Universidad de Alicante, P. O. Box 99, E-03080 Alicante, Spain; e- mail: [email protected] 2Selmar Schonland Herbarium, Department of Botany, Rhodes University, Grahamstown 6140, South Africa 3Biodiversity Research, Assessment & Monitoring, South African National Biodiversity Institute, P.O. Box 52099, Berea Road 4007, South Africa 4School of Chemistry and Physics, University of KwaZulu-Natal, 4041 South Africa 5Biocenter Linz, J.-W.-Klein-Str. 73, A-4040 Linz, Austria 6Iluka Chair in Vegetation Science & Biogeography, Harry Butler Institute, Murdoch University, Murdoch WA 6150, Perth, Australia 7Department of Geography and Environmental Studies, Stellenbosch University, Private Bag X1, Matieland 7602, Stellenbosch, South Africa 8Institute of Biology, Division Plant Science, NAWI Graz, Karl-Franzens University Graz, Holteigasse 6, A-8010 Graz, Austria *author for correspondence Abstract As part of a taxonomic revision of tribe Urgineeae, and informed by morphological and phylogenetic evidence obtained in the last decade, we present 17 new combinations in Austronea, Indurgia, Schizobasis, Tenicroa, Thuranthos, Urgineopsis, and Vera-duthiea. These are for taxa recently described in Drimia sensu latissimo or otherwise named during the past cen- tury.
    [Show full text]
  • Antioxidant and Acetylcholinesterase-Inhibitory Properties of Long-Term Stored Medicinal Plants Stephen O Amoo, Adeyemi O Aremu, Mack Moyo and Johannes Van Staden*
    Amoo et al. BMC Complementary and Alternative Medicine 2012, 12:87 http://www.biomedcentral.com/1472-6882/12/87 RESEARCH ARTICLE Open Access Antioxidant and acetylcholinesterase-inhibitory properties of long-term stored medicinal plants Stephen O Amoo, Adeyemi O Aremu, Mack Moyo and Johannes Van Staden* Abstract Background: Medicinal plants are possible sources for future novel antioxidant compounds in food and pharmaceutical formulations. Recent attention on medicinal plants emanates from their long historical utilisation in folk medicine as well as their prophylactic properties. However, there is a dearth of scientific data on the efficacy and stability of the bioactive chemical constituents in medicinal plants after prolonged storage. This is a frequent problem in African Traditional Medicine. Methods: The phytochemical, antioxidant and acetylcholinesterase-inhibitory properties of 21 medicinal plants were evaluated after long-term storage of 12 or 16 years using standard in vitro methods in comparison to freshly harvested materials. Results: The total phenolic content of Artemisia afra, Clausena anisata, Cussonia spicata, Leonotis intermedia and Spirostachys africana were significantly higher in stored compared to fresh materials. The flavonoid content were also significantly higher in stored A. afra, C. anisata, C. spicata, L. intermedia, Olea europea and Tetradenia riparia materials. With the exception of Ekebergia capensis and L. intermedia, there were no significant differences between the antioxidant activities of stored and fresh plant materials as measured in the β-carotene-linoleic acid model system. Similarly, the EC50 values based on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging assay were generally lower for stored than fresh material. Percentage inhibition of acetylcholinesterase was generally similar for both stored and fresh plant material.
    [Show full text]
  • Scilla Hakkariensis, Sp. Nov. (Asparagaceae: Scilloideae): a New Species of Scilla L
    adansonia 2020 ● 42 ● 2 DIRECTEUR DE LA PUBLICATION : Bruno David Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Thierry Deroin RÉDACTEURS / EDITORS : Porter P. Lowry II ; Zachary S. Rogers ASSISTANTS DE RÉDACTION / ASSISTANT EDITORS : Emmanuel Côtez ([email protected]) MISE EN PAGE / PAGE LAYOUT : Emmanuel Côtez COMITÉ SCIENTIFIQUE / SCIENTIFIC BOARD : P. Baas (Nationaal Herbarium Nederland, Wageningen) F. Blasco (CNRS, Toulouse) M. W. Callmander (Conservatoire et Jardin botaniques de la Ville de Genève) J. A. Doyle (University of California, Davis) P. K. Endress (Institute of Systematic Botany, Zürich) P. Feldmann (Cirad, Montpellier) L. Gautier (Conservatoire et Jardins botaniques de la Ville de Genève) F. Ghahremaninejad (Kharazmi University, Téhéran) K. Iwatsuki (Museum of Nature and Human Activities, Hyogo) K. Kubitzki (Institut für Allgemeine Botanik, Hamburg) J.-Y. Lesouef (Conservatoire botanique de Brest) P. Morat (Muséum national d’Histoire naturelle, Paris) J. Munzinger (Institut de Recherche pour le Développement, Montpellier) S. E. Rakotoarisoa (Millenium Seed Bank, Royal Botanic Gardens Kew, Madagascar Conservation Centre, Antananarivo) É. A. Rakotobe (Centre d’Applications des Recherches pharmaceutiques, Antananarivo) P. H. Raven (Missouri Botanical Garden, St. Louis) G. Tohmé (Conseil national de la Recherche scientifique Liban, Beyrouth) J. G. West (Australian National Herbarium, Canberra) J. R. Wood (Oxford) COUVERTURE / COVER : Made from the figures of the article. Adansonia est
    [Show full text]
  • Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
    Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny.
    [Show full text]
  • CREW Newsletter – 2021
    Volume 17 • July 2021 Editorial 2020 By Suvarna Parbhoo-Mohan (CREW Programme manager) and Domitilla Raimondo (SANBI Threatened Species Programme manager) May there be peace in the heavenly virtual platforms that have marched, uninvited, into region and the atmosphere; may peace our homes and kept us connected with each other reign on the earth; let there be coolness and our network of volunteers. in the water; may the medicinal herbs be healing; the plants be peace-giving; may The Custodians of Rare and Endangered there be harmony in the celestial objects Wildflowers (CREW), is a programme that and perfection in eternal knowledge; may involves volunteers from the public in the everything in the universe be peaceful; let monitoring and conservation of South peace pervade everywhere. May peace abide Africa’s threatened plants. CREW aims to in me. May there be peace, peace, peace! capacitate a network of volunteers from a range of socio-economic backgrounds – Hymn of peace adopted to monitor and conserve South Africa’s from Yajur Veda 36:17 threatened plant species. The programme links volunteers with their local conservation e are all aware that our lives changed from the Wend of March 2020 with a range of emotions, agencies and particularly with local land from being anxious of not knowing what to expect, stewardship initiatives to ensure the to being distressed upon hearing about friends and conservation of key sites for threatened plant family being ill, and sometimes their passing. De- species. Funded jointly by the Botanical spite the incredible hardships, we have somehow Society of South Africa (BotSoc), the Mapula adapted to the so-called new normal of living during Trust and the South African National a pandemic and are grateful for the commitment of the CREW network to continue conserving and pro- Biodiversity Institute (SANBI), CREW is an tecting our plant taxa of conservation concern.
    [Show full text]
  • Journal of Ethnopharmacology a Broad Review of Commercially Important Southern African Medicinal Plants
    Journal of Ethnopharmacology 119 (2008) 342–355 Contents lists available at ScienceDirect Journal of Ethnopharmacology journal homepage: www.elsevier.com/locate/jethpharm Review A broad review of commercially important southern African medicinal plants B.-E. van Wyk ∗ Department of Botany and Plant Biotechnology, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa article info abstract Article history: Aims of the study: Commercially important indigenous medicinal plants of southern Africa are reviewed Received 8 May 2008 in the context of fundamental knowledge about their ethnobotany, phylogeny, genetics, taxonomy, bio- Received in revised form 14 May 2008 chemistry, chemical variation, reproductive biology and horticulture. The aim is to explore the rapidly Accepted 16 May 2008 increasing number of scientific publications and to investigate the need for further research. Available online 3 June 2008 Materials and methods: The Scopus (Elsevier) reference system was used to investigate trends in the number of scientific publications and patents in 38 medicinal plant species. Fifteen species of special Keywords: commercial interest were chosen for more detailed reviews: Agathosma betulina, Aloe ferox, Artemisia Biosystematics Chemical variation afra, Aspalathus linearis, Cyclopia genistoides, Harpagophytum procumbens, Hoodia gordonii, Hypoxis heme- Commercial development rocallidea, Lippia javanica, Mesembryanthemum tortuosum, Pelargonium sidoides, Siphonochilus aethiopicus, Medicinal plants Sutherlandia frutescens, Warburgia salutaris and Xysmalobium undulatum. Southern Africa Results: In recent years there has been an upsurge in research and development of new medicinal products Taxonomy and new medicinal crops, as is shown by a rapid increase in the number of scientific publications and patents. Despite the fact that an estimated 10% of the plant species of the world is found in southern Africa, only a few have been fully commercialized and basic scientific information is often not available.
    [Show full text]
  • CHAPTER 12 SPECIES TREATMENT (Enumeration of the 220 Obligate Or Near-Obligate Cremnophilous Succulent and Bulbous Taxa) FERNS P
    CHAPTER 12 SPECIES TREATMENT (Enumeration of the 220 obligate or near-obligate cremnophilous succulent and bulbous taxa) FERNS POLYPODIACEAE Pyrrosia Mirb. 1. Pyrrosia schimperiana (Mett. ex Kuhn) Alston PYRROSIA Mirb. 1. Pyrrosia schimperiana (Mett. ex Kuhn) Alston in Journal of Botany, London 72, Suppl. 2: 8 (1934). Cremnophyte growth form: Cluster-forming, subpendulous leaves (of medium weight, cliff hugger). Growth form formula: A:S:Lper:Lc:Ts (p) Etymology: After Wilhelm Schimper (1804–1878), plant collector in northern Africa and Arabia. DESCRIPTION AND HABITAT Cluster-forming semipoikilohydric plant, with creeping rhizome 2 mm in diameter; rhizome scales up to 6 mm long, dense, ovate-cucullate to lanceolate-acuminate, entire. Fronds ascending-spreading, becoming pendent, 150–300 × 17–35 mm, succulent-coriaceous, closely spaced to ascending, often becoming drooping (2–6 mm apart); stipe tomentose (silvery grey to golden hairs), becoming glabrous with age. Lamina linear-lanceolate to linear-obovate, rarely with 1 or 2 lobes; margin entire; adaxial surface tomentose becoming glabrous, abaxial surface remaining densely tomentose (grey to golden stellate hairs); base cuneate; apex acute. Sori rusty brown dots, 1 mm in diameter, evenly spaced (1–2 mm apart) in distal two thirds on abaxial surface, emerging through dense indumentum. Phenology: Sori produced mainly in summer and spring. Spores dispersed by wind, coinciding with the rainy season. Habitat and aspect: Sheer south-facing cliffs and rocky embankments, among lichens and other succulent flora. Plants are scattered, firmly rooted in crevices and on ledges. The average daily maximum temperature is about 26ºC for summer and 14ºC for winter. Rainfall is experienced mainly in summer, 1000–1250 mm per annum.
    [Show full text]
  • The Phylogenetic Relationship in the Lachenalia Pusilla Group
    The phylogenetic relationship in the Lachenalia pusilla group *********************************** Sizani Bulelani Londoloza Dissertation submitted in fulfillment of the requirements for the degree Magister Scientiae in the Faculty of Natural and Agricultural Sciences (Department of Genetics) at the University of the Free State. 02 July 2014 Supervisor: Dr P. Spies Co- supervisor: Prof J.J. Spies ************************************ Declaration *************************************************************** “I declare that the dissertation hereby submitted by me for the Magister Scientiae degree at the University of the Free State is my own independent work and has not previously been submitted by me at another university/faculty. I further more cede copy of the dissertation in favour of the University of the Free State” *************************************************************** ii Table of content: Declaration ii Table of contents iii List of abbreviation v Acknowledgements vi 1 Chapter 1. General introduction 1 1.1. Medicinal application 2 1.2. South African and global floriculture industry 3 1.3. Lachenalia breeding and new cultivars 4 1.4. Division of genus Lachenalia 6 1.5. Aim 8 1.6. Dessertation outline 8 2 Chapter 2. Review of Lachenalia classification based on morphological, cytogenetic and molecular data 10 2.1. Abstract 10 2.2. Introduction 10 2.3. Lachenalia classification 11 2.3.1. Classification of Lachenalia based on morphological data 11 2.3.2. Classification of Lachenalia based on cytogenetics 15 2.3.2.1 Basic chromosome numbers in the genus 17 2.3.3. Classification of Lachenalia based on molecular systematic 23 2.4. Conclusion 24 3 Chapter 3. Review of factors influencing the survival of the genus Lachenalia 3.1.
    [Show full text]
  • Hyacinthaceae | Plantz Africa About:Reader?Url=
    Hyacinthaceae | Plantz Africa about:reader?url=http://pza.sanbi.org/hyacinthaceae pza.sanbi.org Hyacinthaceae | Plantz Africa Hyacinthaceae Family: Hyacinthaceae Common names: hyacinth family Introduction This is a family of 700-900 species of deciduous, or rarely evergreen, bulbous plants, several with brightly coloured flowers, that is well represented in South Africa. Description Description The plants are deciduous or rarely evergreen perennials with a bulb, which can sometimes be quite large. The leaves are usually lance-shaped and soft-textured, with rather slimy sap. The leaves are mostly held upright but in several species from the South African winter rainfall area they lie flat against the ground. Mostly the leaves are smooth and unmarked but in most species of Ledebouria (also some Lachenalia and Eucomis from South Africa) the leaves are attractively spotted or streaked with purple or dark green. Occasionally the leaves may have their upper surface covered with warts or pustules, or coarse hairs, especially in species of Lachenalia and Massonia . In some species the leaves are narrow and needle-like or cylindrical. The flower stalk is leafless and the flowers are always arranged in racemes. Sometimes these may be very short so that the flowers are crowded into a head-like cluster. In the genera Bowiea and Igidiae the raceme is highly branched and sprawls through the surrounding vegetation. Each flower arises in the axil of a bract, which may be large and leaf-like or minute and vestigial. In the subfamily Urgineoideae the lower bracts have a flattened spur at their base. In some genera a second smaller bract arises on the base of the flower stalk, or pedicel, as well.
    [Show full text]
  • Health Nature and Quality of Life: T Owards BRICS W Ellness Index
    What is Wellness Index ...? Economists and philosophers have expended time and energy to develop measurements for economic growth and development. One of the most prominent ones is the GDP based index, which does not account for the developmental aspects of human beings and income inequality. The Human Development Index was developed to overcome the limitations of GDP based measurements. This index, however, failed to fully reflect impact of structural factors on human development. A more comprehensive way was thought to be evolved in terms of the concepts of Index Wellness BRICS Towards Health Nature and Quality of Life: happiness, wellbeing and wellness. Though statistically robust, many such indices perhaps miss the wood for the trees. This volume is an attempt to develop a holistic wellness index that accounts for human development, material progress, and environmental sustainability. It is a new way of looking at development, but based on the ancient wisdom and traditions. With the global consensus on Sustainable Development Goals (SDGs) that focus on comprehensive development, there is an widened window of opportunity for the BRICS countries, themselves storehouses of ancient wisdom and home to the rich biodiversity, and as emerging economies of the world, to cut a new way of looking at measuring economic progress in its entirety, viz. the Wellness Index. About RIS Research and Information System for Developing Countries (RIS) is a New Delhi-based autonomous policy research institute that specialises in issues related to international economic development, trade, investment and technology. RIS is envisioned as a forum for fostering effective policy dialogue and capacity-building among developing countries on global and regional economic issues.
    [Show full text]