Oral Histology Lec.1 Lab.1 Preparation of Histological Specimens

Total Page:16

File Type:pdf, Size:1020Kb

Oral Histology Lec.1 Lab.1 Preparation of Histological Specimens Oral Histology Lec.1 Lab.1 Dr.Munir Nasr Preparation of histological specimens Histology (compound of the Greek words: histo “tissue”, and logy “science”) is the study of the microscopic anatomy of cells and tissues of plants and animals. It is commonly performed by examining cells and tissues by sectioning and staining, followed by examination under a light or electron microscopes. Histological studies may be conducted via tissue culture, where live cells can be isolated and maintained in a proper environment outside the body for various research projects. The ability to visualize or differentially identify microscopic structures is frequently enhanced through the use of histological stains. The steps of sample preparations: 1. Tissue fixation 2.Tissue processing 3. Tissue cutting or sectioning 4. Tissue staining Tissue fixation Fixation is a complex series of chemical events that differ for the different groups of substance found in tissues. The aim of fixation: 1- To prevent autolysis and bacterial attack. 2- To fix the tissues so they will not change their volume and shape during processing. 3 - To prepare tissue and leave it in a condition which allow clear staining of sections. 1 4 . To leave tissue as close as their living state as possible, and no small molecules should be lost. Fixation is coming by reaction between the fixative and protein which form a gel, so keeping everything as their in vivo relation to each other. Factors affect fixation: -PH. -Temperature. -Penetration of fixative. -Volume of tissue. According to previous factors we can determine the concentration of fixative and fixation time. Types of fixative: Acetic acid, Formaldehyde, Ethanol, Glutaraldehyde, Methanol and Picric acid. Tissue processing the aim of tissue processing is to embed the tissue in a solid medium firm enough to support the tissue and give it sufficient rigidity to enable thin sections to be cut , and yet soft enough not to damage the knife or tissue. Stages of processing: -1Dehydration. -2Clearing. -3Embedding. Dehydration To remove fixative and water from the tissue and replace them with dehydrating fluid. There are a variety of compounds many of which are alcohols. Several are hydrophilic so attract water from tissue. 2 Types of dehydrating agents: Ethanol, Methanol, Acetone. Clearing Some clearing agents: -Zylene. -Toluene. -Chloroform. -Benzene. - Petrol. Embedding Is the process by which tissues are surrounded by a medium such as agar, gelatin, or wax which when solidified will provide sufficient external support during sectioning. Paraffin wax properties: Paraffin wax is a polycrystalline mixture of solid hydrocarbons produced during the refining of coal and mineral oils. It is about two thirds the density and slightly more elastic than dried protein. Paraffin wax is traditionally marketed by its melting points which range from 39°C to 68°C. The properties of paraffin wax are improved for histological purposes by the inclusion of substances added alone or in combination to the wax: - improve ribboning . - increase hardness. - decrease melting point - improve adhesion between specimen and wax 3 Embedding wax Processing machine 4 Cutting using the microtome A microtome is a mechanical instrument used to cut biological specimens into very thin segments for microscopic examination. Most microtomes use a steel blade and are used to prepare sections of animal or plant tissues for histology. Microtome knives steel knives non-corrosive knives for cryostats disposable blades glass knives diamond knives 5 Staining Hematoxylin and Eosin (H & E) H & E is a charge-based, general purpose stain. Hematoxylin stains acidic molecules shades of blue. Eosin stains basic materials shades of red, pink and orange. H & E stains are universally used for routine histological examination of tissue sections. Nuclei - blue - with some metachromasia Cytoplasm - various shades of pink-identifying different tissue components Staining machine 6 Dentistry Department; 2nd grade Dijlah University College Oral Histology Lec.2 Lab. 2 Dr. Munir Nasr Development and growth of the teeth The development of tooth involves many complex biological processes, including epithelial mesenchymal interaction, morphogenesis and mineralization. In human beings, 20 deciduous and 32 permanent teeth develop from the interaction between the oral epithelium cells and mesenchymal cells Fig (1). The basic developmental process is similar for all teeth but each developing tooth develops as an anatomically distinct unit. Vitamins, minerals and hormones affect tooth development. Vitamin A is important for epithelial growth, vitamin C for connective tissue development and vitamin D is essential for calcification. Tooth formation begins in the 6th week of intrauterine life(IUL) with the formation of a continuous horseshoe-band of thickened epithelium in the location of the upper and lower jaws called the primary epithelial band Fig. (2), at about 7th week the primary epithelial band divides into a lingual process called dental lamina & a buccal process called vestibular lamina Fig. (3) All deciduous teeth arise from dental lamina at the 8th week of fetal life, later the permanent successors arise from its lingual extension which is called successional lamina & permanent molars from its distal extension. Fig.1 Primary epithelial band and the mesenchymal cell. 1 Dentistry Department; 2nd grade Dijlah University College Maxillary primary epithelial band Mandibular primary epithelial band Fig.2 early oral cavity. Dental Lamina The dental lamina begins to function at the 6th week of gestation period, this lamina invaginates as a sheet of epithelial cells to underlying mesenchyme cells around the perimeter of both the maxillary and mandibular jaws. Along the leading edges of the lamina, 20 areas of enlargement which are forming the buds of 20 primary teeth. Which then develop into primary teeth and the leading edge of the lamina continues to develop the 32 permanent tooth buds. 2 Dentistry Department; 2nd grade Dijlah University College Fig.3. Each band of epithelium will give rise to 2 sub divisions: Dental lamina and vestibular lamina The initiation of the permanent 1st molar occurs at the 4th month of intrauterine life, the 2nd molar one year after birth and the 3rd molar five years after birth. Successional lamina is responsible for the development of permanent incisors, canine and premolars. The successional lamina is active from the 5th month in utero (permanent central incisor) to the 10th month of age (second premolar). Fate of dental lamina The total activity of dental lamina extends over a period of at least 5 years. As the teeth continue to develop, they lose their connection with dental lamina. They later break by mesenchymal invasion of the jaw. Remnants of dental lamina persist as epithelial islands within jaw and gingiva. In the incisors area the dental lamina is first to appear and disappear after initiation of tooth development, and in the third molar area it is the last to appear and disappear. Vestibular lamina Facial (labial &buccal) to dental lamina another thick band of epithelium develops in the maxillary and mandibular dental arches. It is called the vestibular lamina or the lip furrow band. It later hollows out and forms the oral vestibule between the alveolar portions of the jaws and the lips and cheeks. The oral 3 Dentistry Department; 2nd grade Dijlah University College epithelium in the lower jaw forms an epithelial invagination separating the tongue from the developing alveolar process termed the linguoalveolar sulcus. Stages of tooth development Tooth formation is a continuous process by a series of stages. Each tooth develops through successive bud, cap and bell stages. During these stages, the tooth germs grow and develop into specialized cells which form the enamel, dentin and the cementum. Dental lamina plays an important role in the development of teeth. At certain points along the dental lamina each representing the location of one of the 10 mandibular & 10 maxillary teeth, ectodermal cells multiply rapidly & little knobs that grow into the underlying mesenchyme. Each of this little down growths from the dental lamina represents the beginning of the enamel organ of the tooth bud of a deciduous tooth. First to appear are those of anterior mandibular region. As the cell proliferation occurs each enamel organ takes a shape that resembles a cap. 4 Dentistry Department; 2nd grade Dijlah University College On the inside of the cap, the ectomesenchymal cells increase in number. The tissue appears denser than the surrounding mesenchyme and represents the beginning of the dental papilla. Surrounding the combined enamel organ or dental papilla, the third part of the tooth bud forms. It is known as dental sac/follicle and it consists of ectomesenchymal cells and fibers that surround the dental papilla and the enamel organ. Thus the tooth germ consists of ectodermal component- the enamel organ, the ectomesenchymal components- the dental papilla & the dental follicle. The enamel is formed from the enamel organ, the dentin and the pulp from the dental papilla and the supporting tissues namely the cementum, periodontal ligament & the alveolar bone from the dental follicle. During & after these developments the shape of the enamel organ continues to change. The depression occupied by the dental papilla deepens until the enamel organ assumes a shape resembling a bell. The dental lamina becomes longer, thinner & finally loses its connection with the epithelium of the primitive oral cavity. Tooth development is a continuous process, however can be divided into 3 stages: 1.Bud Stage: Initiation 2.Cap Stage: Proliferation 3. Bell Stage: (a) Early- Histodifferentiatin (b) Advanced- Morfodifferentiation The name of the stages is based on the shape of epithelial part of the tooth germ which is the enamel organ. Bud stage (1st stage): This is the initial stage of tooth formation where enamel organ resembles a small bud. It is rounded localized growth of the epithelial cells; it consists of peripherally located columnar cells and centrally located polygonal cells. Many cells of the tooth and surrounding mesenchyme undergo mitosis.
Recommended publications
  • Histologic Characteristics of the Gingiva Associated with the Primary and Permanentteeth of Children
    SCIENTIFIC ARTICLE Histologic characteristics of the gingiva associated with the primary and permanentteeth of children Enrique Bimstein, CD Lars Matsson, DDS, Odont Dr Aubrey W. Soskolne, BDS, PhD JoshuaLustmann, DMD Abstract The severity of the gingival inflammatoryresponse to dental plaque increases with age, and it has been suggestedthat this phenomenonmay be related to histological characteristics of the gingiva. The objective of this study was to comparethe histological characteristics of the gingival tissues of primaryteeth with that of permanentteeth in children. Prior to extraction, children were subjected to a period of thorough oral hygiene. Histological sections prepared from gingival biopsies were examinedusing the light microscope. Onebiopsy from each of seven primaryand seven permanentteeth of 14 children, whose meanages were 11.0 +_0.9and 12.9 +_0.9years respectively, was obtained. All sections exhibited clear signs of inflammation. Apical migration of the junctional epithelium onto the root surface was associated only with the primaryteeth. Comparedwith the permanentteeth, the primary teeth were associated with a thicker junctional epithelium (P < 0.05), higher numbers leukocytes in the connective tissue adjacent to the apical end of the junctional epithelium (P < 0.05), and a higher density collagen fibers in the suboral epithelial connectivetissue (P < 0.01). No significant differences werenoted in the width of the free gingiva, thickness of the oral epithelium, or its keratinized layer. In conclusion,this study indicates significant differences in the microanatomyof the gingival tissues between primary and permanentteeth in children. (Pediatr Dent 16:206-10,1994) Introduction and adult dentitions to plaque-induced inflammation. Clinical and histological studies have indicated that Consequently, the objective of this study was to com- the severity of the gingival inflammatory response to pare the histological characteristics of the gingival tis- dental plaque increases with age.
    [Show full text]
  • Long-Term Uncontrolled Hereditary Gingival Fibromatosis: a Case Report
    Long-term Uncontrolled Hereditary Gingival Fibromatosis: A Case Report Abstract Hereditary gingival fibromatosis (HGF) is a rare condition characterized by varying degrees of gingival hyperplasia. Gingival fibromatosis usually occurs as an isolated disorder or can be associated with a variety of other syndromes. A 33-year-old male patient who had a generalized severe gingival overgrowth covering two thirds of almost all maxillary and mandibular teeth is reported. A mucoperiosteal flap was performed using interdental and crevicular incisions to remove excess gingival tissues and an internal bevel incision to reflect flaps. The patient was treated 15 years ago in the same clinical facility using the same treatment strategy. There was no recurrence one year following the most recent surgery. Keywords: Gingival hyperplasia, hereditary gingival hyperplasia, HGF, hereditary disease, therapy, mucoperiostal flap Citation: S¸engün D, Hatipog˘lu H, Hatipog˘lu MG. Long-term Uncontrolled Hereditary Gingival Fibromatosis: A Case Report. J Contemp Dent Pract 2007 January;(8)1:090-096. © Seer Publishing 1 The Journal of Contemporary Dental Practice, Volume 8, No. 1, January 1, 2007 Introduction Hereditary gingival fibromatosis (HGF), also Ankara, Turkey with a complaint of recurrent known as elephantiasis gingiva, hereditary generalized gingival overgrowth. The patient gingival hyperplasia, idiopathic fibromatosis, had presented himself for examination at the and hypertrophied gingival, is a rare condition same clinic with the same complaint 15 years (1:750000)1 which can present as an isolated ago. At that time, he was treated with full-mouth disorder or more rarely as a syndrome periodontal surgery after the diagnosis of HGF component.2,3 This condition is characterized by had been made following clinical and histological a slow and progressive enlargement of both the examination (Figures 1 A-B).
    [Show full text]
  • Alveolar Ridge Preservation at Different Anatomical Locations
    ALVEOLAR RIDGE PRESERVATION AT DIFFERENT ANATOMICAL LOCATIONS- CLINICAL AND HISTOLOGICAL EVALUATION OF TREATMENT OUTCOME MASTERS THESIS Presented in Partial Fulfillment of Requirements for the Degree Master of Science in Dentistry in the Graduate School of The Ohio State University By Mabel Salas, DDS Graduate Program in Dentistry The Ohio State University 2009 Master’s Examination Committee: Binnaz Leblebicioglu, DDS, MS, PhD, Advisor Dimitris N. Tatakis, DDS, PhD Suda Agarwal, PhD Do-Gyoon Kim, PhD Copyright by Mabel Salas 2009 ABSTRACT Background: Alveolar ridge preservation (ARP) is a surgical technique designed to prevent naturally occurring post-extraction bone resorption. It is well documented that alveolar bone height and width are reduced following tooth extraction as a result of physiologic bone remodeling. Depending on the type of post-extraction intrabony defect, an immediate or early implant placement itself may preserve the bone height and width. However, if the defect is generally too wide for immediate and/or early implant placement, it is recommended to perform ARP surgery to preserve the bone volume for future implant placement. The purpose of this study was to investigate clinical and histological healing outcomes following ARP performed on molar and premolar sites by using freeze-dried bone allograft (FDBA) together with a collagen membrane. Maxillary and mandibular sextants were compared for clinical and histological parameters. Methods: Patients who were scheduled to have tooth extraction and implant placement for a molar or premolar tooth were included into this study. Inclusion criteria were single tooth extraction with intact mesial and distal adjacent teeth. Exclusion criteria were smokers, systemic health problems that may affect wound healing and acute infection ii that may prevent bone graft placement.
    [Show full text]
  • Gingival Recession – Etiology and Treatment
    Preventive_V2N2_AUG11:Preventive 8/17/2011 12:54 PM Page 6 Gingival Recession – Etiology and Treatment Mark Nicolucci, D.D.S., M.S., cert. perio implant, F.R.C.D.(C) Murray Arlin, D.D.S., dip perio, F.R.C.D.(C) his article focuses on the recognition and reason is often a prophylactic one; that is we understanding of recession defects of the want to prevent the recession from getting T oral mucosa. Specifically, which cases are worse. This reasoning is also true for the esthetic treatable, how we treat these cases and why we and sensitivity scenarios as well. Severe chose certain treatments. Good evidence has recession is not only more difficult to treat, but suggested that the amount of height of keratinized can also be associated with food impaction, or attached gingiva is independent of the poor esthetics, gingival irritation, root sensitivity, progression of recession (Miyasato et al. 1977, difficult hygiene, increased root caries, loss of Dorfman et al. 1980, 1982, Kennedy et al. 1985, supporting bone and even tooth loss . To avoid Freedman et al. 1999, Wennstrom and Lindhe these complications we would want to treat even 1983). Such a discussion is an important the asymptomatic instances of recession if we consideration with recession defects but this article anticipate them to progress. However, non- will focus simply on a loss of marginal gingiva. progressing recession with no signs or Recession is not simply a loss of gingival symptoms does not need treatment. In order to tissue; it is a loss of clinical attachment and by know which cases need treatment, we need to necessity the supporting bone of the tooth that distinguish between non-progressing and was underneath the gingiva.
    [Show full text]
  • Is Inactivated in Toothless/Enamelless Placental Mammals and Toothed
    Odontogenic ameloblast-associated (ODAM) is inactivated in toothless/enamelless placental mammals and toothed whales Mark Springer, Christopher Emerling, John Gatesy, Jason Randall, Matthew Collin, Nikolai Hecker, Michael Hiller, Frédéric Delsuc To cite this version: Mark Springer, Christopher Emerling, John Gatesy, Jason Randall, Matthew Collin, et al.. Odonto- genic ameloblast-associated (ODAM) is inactivated in toothless/enamelless placental mammals and toothed whales. BMC Evolutionary Biology, BioMed Central, 2019, 19 (1), 10.1186/s12862-019-1359- 6. hal-02322063 HAL Id: hal-02322063 https://hal.archives-ouvertes.fr/hal-02322063 Submitted on 21 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Springer et al. BMC Evolutionary Biology (2019) 19:31 https://doi.org/10.1186/s12862-019-1359-6 RESEARCHARTICLE Open Access Odontogenic ameloblast-associated (ODAM) is inactivated in toothless/ enamelless placental mammals and toothed whales Mark S. Springer1* , Christopher A. Emerling2,3,JohnGatesy4, Jason Randall1, Matthew A. Collin1, Nikolai Hecker5,6,7, Michael Hiller5,6,7 and Frédéric Delsuc2 Abstract Background: The gene for odontogenic ameloblast-associated (ODAM) is a member of the secretory calcium- binding phosphoprotein gene family. ODAM is primarily expressed in dental tissues including the enamel organ and the junctional epithelium, and may also have pleiotropic functions that are unrelated to teeth.
    [Show full text]
  • Hereditary Gingival Fibromatosis CASE REPORT
    Richa et al.: Management of Hereditary Gingival Fibromatosis CASE REPORT Hereditary Gingival Fibromatosis and its management: A Rare Case of Homozygous Twins Richa1, Neeraj Kumar2, Krishan Gauba3, Debojyoti Chatterjee4 1-Tutor, Unit of Pedodontics and preventive dentistry, ESIC Dental College and Hospital, Rohini, Delhi. 2-Senior Resident, Unit of Pedodontics and preventive dentistry, Oral Health Sciences Centre, Post Correspondence to: Graduate Institute of Medical Education and Research , Chandigarh, India. 3-Professor and Head, Dr. Richa, Tutor, Unit of Pedodontics and Department of Oral Health Sciences Centre, Post Graduate Institute of Medical Education and preventive dentistry, ESIC Dental College and Research, Chandigarh, India. 4-Senior Resident, Department of Histopathology, Oral Health Sciences Hospital, Rohini, Delhi Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India. Contact Us: www.ijohmr.com ABSTRACT Hereditary gingival fibromatosis (HGF) is a rare condition which manifests itself by gingival overgrowth covering teeth to variable degree i.e. either isolated or as part of a syndrome. This paper presented two cases of generalized and severe HGF in siblings without any systemic illness. HGF was confirmed based on family history, clinical and histological examination. Management of both the cases was done conservatively. Quadrant wise gingivectomy using ledge and wedge method was adopted and followed for 12 months. The surgical procedure yielded functionally and esthetically satisfying results with no recurrence. KEYWORDS: Gingival enlargement, Hereditary, homozygous, Gingivectomy AA swollen gums. The patient gave a history of swelling of upper gums that started 2 years back which gradually aaaasasasss INTRODUCTION increased in size. The child’s mother denied prenatal Hereditary Gingival Enlargement, being a rare entity, is exposure to tobacco, alcohol, and drug.
    [Show full text]
  • A Panoramic View of Junctional Epithelium and Biologic Width Around Teeth and Implant
    IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-ISSN: 2279-0853, p-ISSN: 2279-0861.Volume 16, Issue 9 Ver. IX (September. 2017), PP 61-70 www.iosrjournals.org A Panoramic View of Junctional Epithelium And Biologic Width Around Teeth And Implant *Dr. Jaimini Patel1, Dr. Jasuma Rai2,Dr. Deepak Dave3,Dr. Nidhi Shah4, Dr. Shraddha Shah5 1,2,3,4,5,(Department of Periodontology/ K. M. Shah Dental College and Hospital/ Sumandeep Vidyapeeth, India) Corresponding Author: *Dr. Jaimini Patel Abstract : Junctional epithelium is the most dynamic feature of the periodontal tissues as it not only plays an important role in health but also displays various characteristic changes in disease. The biologic width around tooth and implants is also an important consideration from treatment point of view. In the following review we have discussed the importance of junctional epithelium and biologic width around teeth and implant and the factors that influence the peri-implant biologic width. Keywords : Biologic Width, Junctional Epithelium, Implant ----------------------------------------------------------------------------------------------------------------------------- ---------- Date of Submission: 29 -07-2017 Date of acceptance: 09-09-2017 -------------------------------------------------------------------------------------------------------------------------------------- I. Introduction Teeth are trans-mucosal organs. This is a unique association in the human body where a hard tissue emerges through the soft tissue. Epithelia exhibit considerable differences in their histology, thickness and differentiation suitable for the functional demands of their location.1 The gingival epithelium around a tooth is divided into three functional compartments– outer, sulcular, and junctional epithelium. The outer epithelium extends from the mucogingival junction to the gingival margin where crevicular/sulcular epithelium lines the sulcus. At the base of the sulcus connection between gingiva and tooth is mediated with junctional epithelium.
    [Show full text]
  • International Journal of Dentistry and Oral Health
    The influence of biological width violation on marginal bone resorption dynamics around two-stage dental implants with a moderately rough fixture neck: A prospective clinical and radiographic longitudinal study. International Journal of Dentistry and Oral Health Research Article Volume 7 Issue 6, The influence of biological width violation on marginal bone June 2021 resorption dynamics around two-stage dental implants with a moderately rough fixture neck: A prospective clinical and Copyright ©2021 Jakub Strnadet.al.This radiographic longitudinal study is an open access article dis- 4 5 tributed under the terms of the Jakub Strnad¹, Zdenek Novak², Radim Nesvadba³, Jan Kamprle , Zdenek Strnad Creative Commons Attribution 1 License, which permits unre- Principal research scientist, Research and Development Centre for Dental Implantology and Tissue Regeneration – stricted use, distribution, and LASAK s.r.o., Prague, Czech Republic; CEO – LASAK s.r.o., Prague, Czech Republic. reproduction in any medium, 2 Medical Doctor, Private Clinical Practice, Prague, Czech Republic. provided the original author 3 PhD Student, Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Czech Republic; and source are credited Research and Development Researcher, Research and Development Centre for Dental Implantology and Tissue Regeneration – LASAK s.r.o., Prague, Czech Republic. 4 Design and Development Designer, Research and Development Centre for Dental Implantology and Tissue Regeneration – LASAK s.r.o., Prague, Czech Republic. 5 Senior research scientist, Research and Development Centre for Dental Implantology and Tissue Regeneration – LASAK s.r.o., Prague, Czech Republic; Associate Professor, University of Chemistry and Technology, Prague, Czech Republic Citation Corresponding author: Jakub Strnad Jakub Strnad et.al.
    [Show full text]
  • Lecture 2 – Bone
    Oral Histology Summary Notes Enoch Ng Lecture 2 – Bone - Protection of brain, lungs, other internal organs - Structural support for heart, lungs, and marrow - Attachment sites for muscles - Mineral reservoir for calcium (99% of body’s) and phosphorous (85% of body’s) - Trap for dangerous minerals (ex:// lead) - Transduction of sound - Endocrine organ (osteocalcin regulates insulin signaling, glucose metabolism, and fat mass) Structure - Compact/Cortical o Diaphysis of long bone, “envelope” of cuboid bones (vertebrae) o 10% porosity, 70-80% calcified (4x mass of trabecular bone) o Protective, subject to bending/torsion/compressive forces o Has Haversian system structure - Trabecular/Cancellous o Metaphysis and epiphysis of long bone, cuboid bone o 3D branching lattice formed along areas of mechanical stress o 50-90% porosity, 15-25% calcified (1/4 mass of compact bone) o High surface area high cellular activity (has marrow) o Metabolic turnover 8x greater than cortical bone o Subject to compressive forces o Trabeculae lined with endosteum (contains osteoprogenitors, osteoblasts, osteoclasts) - Woven Bone o Immature/primitive, rapidly growing . Normally – embryos, newborns, fracture calluses, metaphyseal region of bone . Abnormally – tumors, osteogenesis imperfecta, Pagetic bone o Disorganized, no uniform orientation of collagen fibers, coarse fibers, cells randomly arranged, varying mineral content, isotropic mechanical behavior (behavior the same no matter direction of applied force) - Lamellar Bone o Mature bone, remodeling of woven
    [Show full text]
  • Periodontal Ligament, Cementum, and Alveolar Bone in the Oldest Herbivorous Tetrapods, and Their Evolutionary Significance
    Periodontal Ligament, Cementum, and Alveolar Bone in the Oldest Herbivorous Tetrapods, and Their Evolutionary Significance Aaron R. H. LeBlanc*, Robert R. Reisz Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada Abstract Tooth implantation provides important phylogenetic and functional information about the dentitions of amniotes. Traditionally, only mammals and crocodilians have been considered truly thecodont, because their tooth roots are coated in layers of cementum for anchorage of the periodontal ligament, which is in turn attached to the bone lining the alveolus, the alveolar bone. The histological properties and developmental origins of these three periodontal tissues have been studied extensively in mammals and crocodilians, but the identities of the periodontal tissues in other amniotes remain poorly studied. Early work on dental histology of basal amniotes concluded that most possess a simplified tooth attachment in which the tooth root is ankylosed to a pedestal composed of ‘‘bone of attachment’’, which is in turn fused to the jaw. More recent studies have concluded that stereotypically thecodont tissues are also present in non-mammalian, non-crocodilian amniotes, but these studies were limited to crown groups or secondarily aquatic reptiles. As the sister group to Amniota, and the first tetrapods to exhibit dental occlusion, diadectids are the ideal candidates for studies of dental evolution among terrestrial vertebrates because they can be used to test hypotheses of development and homology in deep time. Our study of Permo-Carboniferous diadectid tetrapod teeth and dental tissues reveal the presence of two types of cementum, periodontal ligament, and alveolar bone, and therefore the earliest record of true thecodonty in a tetrapod.
    [Show full text]
  • The Preservation of Alveolar Bone Ridge During Tooth Extraction Marius Kubilius, Ricardas Kubilius, Alvydas Gleiznys
    REVIEWS SCIENTIFIC ARTICLES Stomatologija, Baltic Dental and Maxillofacial Journal, 14: 3-11, 2012 The preservation of alveolar bone ridge during tooth extraction Marius Kubilius, Ricardas Kubilius, Alvydas Gleiznys SUMMARY Objectives. The aims were to overview healing of extraction socket, recommendations for atraumatic tooth extraction, possibilities of post extraction socket bone and soft tissues preservation, augmentation. Materials and Methods. A search was done in Pubmed on key words in English from 1962 to December 2011. Additionally, last decades different scientifi c publications, books from ref- erence list were assessed for appropriate review if relevant. Results and conclusions. There was made intraalveolar and extraalveolar postextractional socket healing overview. There was established the importance and effectiveness of atraumatic tooth extraction and subsequent postextractional socket augmentation in limited hard and soft tissue defects. There are many different methods, techniques, periods, materials in regard to the review. It is diffi cult to compare the data and to give the priority to one. Key words: tooth extraction, grafting, socket, healing, ridge preservation. INTRODUCTION Nowadays tooth extraction becomes more im- portunity to get acknowledge with summarized con- portant in complex odontological treatment. Three temporary scientifi c publication results, methodologies dimensional bones’ and soft tissue parameters infl u- and practical recommendations in preserving alveolar ence further treatment plan, results and long time crest in tooth extraction (validity for atraumatic tooth prognosis. Tooth extraction inevitably has infl uence extraction, operative methods, protection of alveolus in bone resorption and changes in gingival contours. after extractions, feasible post extraction fi llers and Further treatment may become more complex in using complications, alternative treatment).
    [Show full text]
  • Diagnosis Questions and Answers
    1.0 DIAGNOSIS – 6 QUESTIONS 1. Where is the narrowest band of attached gingiva found? 1. Lingual surfaces of maxillary incisors and facial surfaces of maxillary first molars 2. Facial surfaces of mandibular second premolars and lingual of canines 3. Facial surfaces of mandibular canines and first premolars and lingual of mandibular incisors* 4. None of the above 2. All these types of tissue have keratinized epithelium EXCEPT 1. Hard palate 2. Gingival col* 3. Attached gingiva 4. Free gingiva 16. Which group of principal fibers of the periodontal ligament run perpendicular from the alveolar bone to the cementum and resist lateral forces? 1. Alveolar crest 2. Horizontal crest* 3. Oblique 4. Apical 5. Interradicular 33. The width of attached gingiva varies considerably with the greatest amount being present in the maxillary incisor region; the least amount is in the mandibular premolar region. 1. Both statements are TRUE* 39. The alveolar process forms and supports the sockets of the teeth and consists of two parts, the alveolar bone proper and the supporting alveolar bone; ostectomy is defined as removal of the alveolar bone proper. 1. Both statements are TRUE* 40. Which structure is the inner layer of cells of the junctional epithelium and attaches the gingiva to the tooth? 1. Mucogingival junction 2. Free gingival groove 3. Epithelial attachment * 4. Tonofilaments 1 49. All of the following are part of the marginal (free) gingiva EXCEPT: 1. Gingival margin 2. Free gingival groove 3. Mucogingival junction* 4. Interproximal gingiva 53. The collar-like band of stratified squamous epithelium 10-20 cells thick coronally and 2-3 cells thick apically, and .25 to 1.35 mm long is the: 1.
    [Show full text]