Adedayo OA.Pdf (3.909Mb)

Total Page:16

File Type:pdf, Size:1020Kb

Adedayo OA.Pdf (3.909Mb) GENETIC POLYMORPHISM OF PREVALENT ROOT NODULES BACTERIAL STRAIN FROM BAMBARA NUT (INDIGENOUS AFRICAN LEGUME) OAADEDAYO orcid.org/0000-0002-2151-6474 Dissertation submitted in fulfilment of the requirements for the degree Magister in Biology at Mafikeng Campus of the North-West University Supervisor: Prof. Olubukola 0 . Babalola Graduation October 2017 Student number: 27048187 http://dspace.nwu.ac.za/ NORTH-WEST UNIVERSITY ® 11111 YUNIBESITI YA BOKONE-BOPHIRIMA ...., NOORDWES·UNIVERSITEIT It all starts here ™ " GENETIC POLYMORPHISM OF PREVALENT ROOT NODULES BACTERIAL STRAIN FROM BAMBARA GROUNDNUT (INDIGENOUS AFRICAN LEGUME) BY OLALEKAN AYODELE ADEDAYO A Dissertation Submitted in Fulfilment of the requirements fo r the degree MASTER OF SCIENCE (BIOLOGY) DEPARTMENT OF BIOLOGICAL SCIENCES, FACULTY OF SCIENCE, AGRICULTURE AND TECHNOLOGY, NORTH-WEST UNIVERSITY, MAFIKENG CAMPUS, SOUTH AFRICA Supervisor: Professor Olubukola O. Babalola 2016 DECLARATION I, the undersigned, declare that this disse1iation submitted to the North-West University for the degree of Masters of Science in Biology in the Faculty of Science, Agriculture and Technology, School of Environmental and Health Sciences, and the work contained herein is my original work with exception of the citations and that this work has not been submitted at any other University in part or entirety for the award of any degree. STUDENT NAME Olalekan Ayodele ADEDAYO SIGNATURE ................................. DATE ....................................... SUPERVISOR'S NAME Professor Olubukola BABALOLA SIGNATURE ................................. DATE ....................................... 2 DEDICATION This dissertation is dedicated to the Almighty God who is the beginning and ending, the custodian of wisdom, knowledge and understanding, and for sparing my li fe to achieve this task to Him alone be praised. 3 ACKNOWLEDGEMENTS I would like to express my gratitude to the following people for their assistance. Firstly, my supervisor Prof. Olubukola Oluranti Babalola for her support, care, guidance and timely advice to ensure that this work is brought to completion. May you continue to soar higher like an eagle I will extend my acknowledgement to North-West University for offering me North­ West Postgraduate and North-West Institutional bursary awards to pursue this MSc degree. Heartfelt gratitude also goes to Prof. E. Mukwevho, the head of the Department of Biological Sciences for his valuable advice and encouragement throughout my studies. Many thanks also go to all academic and support staff of the Department of Biological Sciences for their love and assistance during this work, as well as to all faculty and staff members of the School of Environmental and Health Sciences, North-West University, for their valuable co­ operation. My sincere appreciation goes to Dr. B.R. Aremu, Dr. M.F. Adegboye, Mrs G. 0 . Onipede, Mrs C.F. Ajilogba, and Mr A.E. Ayangbero for the help rendered in the techniques or part of my research at one stage or the other. I can never thank you enough for all your efforts and patience. I would also li ke to thank all my colleagues in the Microbial Biotechnology Research Group for the good working relationship in the laboratory and their help. I appreciate the time spent with you all. My special thanks go to the co-executives of the Redeemed Campus Fellowship (RCF) of North-West University. I am also indebted to all my friends including Mrs. M.O. 4 Fashola, Ms. A.R. Adebayo, Mrs. A. Akindolire, Mr. and Dr. E.O. Fayemi, Dr. and Mrs. A. Ayeleso, Mr. and Mrs. Omotayo, for their invaluable support. I appreciate all the members of Redeemed Christian Church of God, Mafikeng and Deeper Life Campus Fellowship for all their love, assistance and prayers. I am very grateful to my parents Mr Titus Olanrewaju Adedayo and Late Mrs Felicia Moyosola Adedayo for nurturing in the way of the Lord. I am also indebted to all my spiritual parents; Pastor and Pastor (Mrs) Oduaran, Prophet Ojedele, Pastor Victor Essang, Pastor Joseph Adesina, Pastor Tope Fayemi, Pastor and Deaconess Salawu for all their prayers and encouragement I would also like to thank my father-in- law, mother-in-law, siblings, brother and sister-in-law, niece, nephew and cousins. They have given me their unequivocal support. Thanks to my wife, Mrs Oluwafunke Adedayo for her spiritual , financial and moral support. She always stood by me through the good and bad times with great patience at all times. Finally, I thank all those who have helped me directly or indirectly in the successful completion of this project. Anyone missed in this acknowledgement is also thanked. Above all, I give all the glory to God Almighty the creator of heaven and earth, the all sufficient God for His provisions, mercy, grace and Favour. To Him be all glory and honour forevermore. Amen 5 GENERAL ABSTRACT Bambara groundnut is an underutilized crop of good microbial resources in green manure. The knowledge of the true microbial diversity in rhizopheric bacteria of Bambara groundnut is fundamental to effective exploitation of these bacteria. This study employed morphological, biochemical as well as molecular approach in the isolation, identification and characterization of these bacteria. Morphological and biochemical analysis revealed only 8 out of 30 rhizopheric bacteria isolated from the Bambara root nodules as potential nitrogen fixing bacteria. These were further analyzed using the 16S rDNA and PCR-RFLP. The 16S rDNA sequences utilized in phylogenetic tree showed that 4 of the strains NWU A3 (Enterococcus durans), NWU A8 (Bacillus pumilus) NWU A 7 (Acinetobacter johnsonii) and NWU A 10 (Acinetobacter johnsonii) possessed 99% similarity index with the reference strains while 4 strains did not cluster with any of the reference strain due to their distinct nucleotide signature from the existing one. These strains are: NWU A2 (Fictibacillus nanhaiensis), NWU AS (Bacillus pumilus), NWU A6 (Fictibacillus arsenicus), and NWU A9 (Acinetobacter johnsonii). The PCR-RFLP expressed fingerprints of the strains generated by the ribosomal genes in three distinguished patterns of different combinations, representing three distinct l 6S rRNA genotypes among all the strains. Gene responsible for nodulation and nitrogen fixation in these strains are borne on their plasmid, which is an indication of probable horizontal gene transfer. In a nutshell, the rhizopheric bacteria found in the root nodules of Bambara groundnut can be used as biofertilizer in the future as main microbial resource, considering its rich bacterial diversity. This biological nitrogen fixation technology could be a right substitute to commercially available N fertilizer which are less environmentally friendly. In future research, three diverse group of rhizobia expressed from the PCR-RFLP point of view can further be analyzed and characterized through high throughput molecular technique to choose the ideal strain of rhizobia for Bambara. NWU· · 1 6 !LIBRARY Keywords: Bambara groundnut, bacteria, molecular, PCR-RFLP, rhizopheric 7 LIST OF PUBLICATIONS Chapter 2: Impact of Bambara groundnut symbiosis with rhizobium for sustainable crop yield improvement. This chapter has been formatted for publication in World Journal of Microbiology & Biotechnology. Authors: Candidate's Contributions: designed the study, managed the literature searches, and wrote the first draft of the manuscript. Chapter 3: Genetic diversity of root nodule bacteria associated with Bambara groundnut. This chapter has been formatted for publication in Turkish Journal ofBiology . Authors: Candidate's Contributions: designed the study, managed the literature searches, and wrote the first draft of the manuscript. Chapter 4: Morphological and molecular characterization of prevalent root nodule bacterial strain from African Bambara groundnut (Indigenous African Legume). This chapter has been formatted for publication in Archives ofMicrobiology. Authors: Candidate's Contributions: managed the literature searches, carried out all the wet laboratory bench work, performed all the analyses, interpreted the results and wrote the first draft of the manuscript. Chapter 5: Determination of genetic diversity and phylogeny of rhizobia isolated from root nodule bacterial of Bambara groundnut using PCR-RFLP. This chapter has been formatted for publication in Biology Bulletin Authors: 8 Candidate's Contributions: managed the literature searches, carried out all the wet laboratory bench work, performed all the analyses, interpreted the results and wrote the first draft of the manuscript. 9 CHAPTER ONE GENERAL INTRODUCTION 1.1 Background and Rationale Polymorphism refers to different phenotypes that exist in the same population of a species. The term is used by molecular biologists to describe certain point mutations in the genotype polymorphism which is common in nature. It is related to biodiversity, genetic variation and adaptation. It usually functions to retain variety of form in a population living in a varied environment (Adeparusi, 2001). In polymorphism that is genetically related, the genetic make-up determines the morphs. The extent of polymorphism is such that, except for identical twins, no two humans share the same genetic composition. According to Conrad et al. (2010), any two individual genomes taken from nature, in any species, will have dozens to hundreds of differences in their total number of functional genes. As Copy-Number Variants (CNVs) are due to both duplications and deletions, these differences will be due to newly
Recommended publications
  • Fictibacillus Phosphorivorans Gen. Nov., Sp. Nov. and Proposal to Reclassify
    International Journal of Systematic and Evolutionary Microbiology (2013), 63, 2934–2944 DOI 10.1099/ijs.0.049171-0 Fictibacillus phosphorivorans gen. nov., sp. nov. and proposal to reclassify Bacillus arsenicus, Bacillus barbaricus, Bacillus macauensis, Bacillus nanhaiensis, Bacillus rigui, Bacillus solisalsi and Bacillus gelatini in the genus Fictibacillus Stefanie P. Glaeser,1 Wolfgang Dott,2 Hans-Ju¨rgen Busse3 and Peter Ka¨mpfer1 Correspondence 1Institut fu¨r Angewandte Mikrobiologie, Justus-Liebig-Universita¨t Giessen, D-35392 Giessen, Germany Peter Ka¨mpfer 2Institut fu¨r Hygiene und Umweltmedizin, RWTH Aachen, Germany peter.kaempfer 3Institut fu¨r Bakteriologie, Mykologie und Hygiene, Veterina¨rmedizinische Universita¨t, A-1210 Wien, @umwelt.uni-giessen.de Austria A Gram-positive-staining, aerobic, endospore-forming bacterium (Ca7T) was isolated from a bioreactor showing extensive phosphorus removal. Based on 16S rRNA gene sequence similarity comparisons, strain Ca7T was grouped in the genus Bacillus, most closely related to Bacillus nanhaiensis JSM 082006T (100 %), Bacillus barbaricus V2-BIII-A2T (99.2 %) and Bacillus arsenicus Con a/3T (97.7 %). Moderate 16S rRNA gene sequence similarities were found to the type strains of the species Bacillus gelatini and Bacillus rigui (96.4 %), Bacillus macauensis (95.1 %) and Bacillus solisalsi (96.1 %). All these species were grouped into a monophyletic cluster and showed very low sequence similarities (,94 %) to the type species of the genus Bacillus, Bacillus subtilis.Thequinonesystemof strain Ca7T consists predominantly of menaquinone MK-7. The polar lipid profile exhibited the major compounds diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. In addition, minor compounds of an unidentified phospholipid and an aminophospholipid were detected. No glycolipids were found in strain Ca7T, which was consistent with the lipid profiles of B.
    [Show full text]
  • Molecular Phylogenetic Analyses of Diverse Cntl Alone (A) and Cntlm (B) Amino Acid Sequences from Bacteria
    Electronic Supplementary Material (ESI) for Metallomics. This journal is © The Royal Society of Chemistry 2020 Supplementary Figures A B 96 Paenibacillus amylolyticus NBRC-15957 100 Paenibacillus amylolyticus NBRC-15957 49 Paenibacillus pabuli NBRC13638 91 Paenibacillus pabuli NBRC13638 28 50 Bacillus gaemokensis BL3-6 Bacillus gaemokensis BL3-6 67 99 Paenibacillus mucilaginosus K02-(B2K11200) Paenibacillus mucilaginosus K02-(B2K11200) 56 Paenibacillus vortex V453 98 Paenibacillus vortex V453 Lysinibacillus sphaericus C3-41 Lysinibacillus sphaericus C3-41 73 97 99 Lysinibacillus xylanilyticus JKR-42 100 Lysinibacillus xylanilyticus JKR-42 Actinosynnema mirum DSM43827 Actinosynnema mirum DSM43827 Austwickia chelonae NBRC105200 Austwickia chelonae NBRC105200 97 100 99 100 91 Glutamicibacter mysorens NBRC103060 98 Glutamicibacter mysorens NBRC103060 100 Arthrobacter arilaitensis RE117 100 Arthrobacter arilaitensis RE117 Staphylococcus pseudintermedius LMG-22219 Staphylococcus pseudintermedius LMG-22219 Staphylococcus epidermidis ATCC-12228 Staphylococcus epidermidis ATCC-12228 100 100 99 Staphylococcus aureus Mu50 100 Staphylococcus aureus Mu50 100 100 Staphylococcus argenteus 3688STDY6125130 100 Staphylococcus argenteus 3688STDY6125130 100 Fusobacterium varium NCTC10560 Fusobacterium mortiferum ATCC-9817 96 Fusobacterium ulcerans NCTC12112 100 Fusobacterium varium NCTC10560 Fusobacterium mortiferum ATCC-9817 100 Fusobacterium ulcerans NCTC12112 100 Fictibacillus phosphorivorans Ca7 100 Fictibacillus phosphorivorans Ca7 61 Fictibacillus arsenicus
    [Show full text]
  • Soil Vanadium(V)-Reducing Related Bacteria Drive Community Response to Vanadium Pollution from a Smelting Plant Over Multiple Gradients
    Downloaded from orbit.dtu.dk on: Sep 25, 2021 Soil vanadium(V)-reducing related bacteria drive community response to vanadium pollution from a smelting plant over multiple gradients Wang, Song; Zhang, Baogang; Li, Tingting; Li, Zongyan; Fu, Jie Published in: Environment International Link to article, DOI: 10.1016/j.envint.2020.105630 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Wang, S., Zhang, B., Li, T., Li, Z., & Fu, J. (2020). Soil vanadium(V)-reducing related bacteria drive community response to vanadium pollution from a smelting plant over multiple gradients. Environment International, 138, [105630]. https://doi.org/10.1016/j.envint.2020.105630 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Environment International 138 (2020) 105630
    [Show full text]
  • Patterns of Horizontal Gene Transfer Into the Geobacillus Clade
    Imperial College London London Institute of Medical Sciences Patterns of Horizontal Gene Transfer into the Geobacillus Clade Alexander Dmitriyevich Esin September 2018 Submitted in part fulfilment of the requirements for the degree of Doctor of Philosophy of Imperial College London For my grandmother, Marina. Without you I would have never been on this path. Your unwavering strength, love, and fierce intellect inspired me from childhood and your memory will always be with me. 2 Declaration I declare that the work presented in this submission has been undertaken by me, including all analyses performed. To the best of my knowledge it contains no material previously published or presented by others, nor material which has been accepted for any other degree of any university or other institute of higher learning, except where due acknowledgement is made in the text. 3 The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. 4 Abstract Horizontal gene transfer (HGT) is the major driver behind rapid bacterial adaptation to a host of diverse environments and conditions. Successful HGT is dependent on overcoming a number of barriers on transfer to a new host, one of which is adhering to the adaptive architecture of the recipient genome.
    [Show full text]
  • The Ancient Roots of Nicotianamine: Diversity, Role, Regulation and Evolution of Nicotianamine-Like Metallophores Clémentine Laffont, Pascal Arnoux
    The ancient roots of nicotianamine: diversity, role, regulation and evolution of nicotianamine-like metallophores Clémentine Laffont, Pascal Arnoux To cite this version: Clémentine Laffont, Pascal Arnoux. The ancient roots of nicotianamine: diversity, role, regulation and evolution of nicotianamine-like metallophores. Metallomics, Royal Society of Chemistry, 2020, 12 (10), pp.1480-1493. 10.1039/D0MT00150C. cea-03125731 HAL Id: cea-03125731 https://hal-cea.archives-ouvertes.fr/cea-03125731 Submitted on 11 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The ancient roots of nicotianamine: diversity, role, regulation and evolution of nicotianamine-like metallophores. Clémentine Laffont, Pascal Arnoux Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France F-13108. E-mails : [email protected] ; [email protected] ORCID : C. Laffont : 0000-0003-3067-1369 P. Arnoux: 0000-0003-4609-4893 Clémentine Pascal Arnoux Laffont obtained a received his PhD master’s degree in from the University environmental of Paris XI, Orsay microbiology at (France) in 2000. Université de Pau After postdoctoral et des Pays de positions at Toronto l’Adour (France). University (Canada) Since 2017, she and at the CEA Clémentine Laffont continued as a Pascal Arnoux Cadarache (France), PhD student he obtained a under the supervision of Pascal Arnoux at permanent position at the CEA in the the Molecular and Environmental Molecular and Environmental Microbiology Microbiology (MEM) team at the CEA – (MEM) team.
    [Show full text]
  • Research Article Review Jmb
    J. Microbiol. Biotechnol. (2017), 27(0), 1–5 https://doi.org/10.4014/jmb.1712.12006 Research Article Review jmb Fig. S1. Circular genomic map of B. s. subtilis KCTC 3135T by CLgenomics ver. 1.55. From the outer circle to the inward circle, the circle indicates rRNA and/or tRNA, reverse CDS, forward CDS, GC skew and the GC ratio. A 2017 ⎪ Vol. 27⎪ No. 0 2Name et al. Fig. S2. OrthoANI distance Neighbor-Joining tree with 60 strains (extended OrthoANI tree). A neighbor-joining tree based on the OrthoANI distance matrix. B. subtilis with three subspecies contains 59 genomes and S. aureus subsp. aureus DSM 20231T was used as an outgroup. The scale bar indicates the sequence divergence. J. Microbiol. Biotechnol. Title 3 Fig. S3. The tarABD MLST NJ tree and heatmap with 60 strains (extended NJ tree). A) Phylogenetic tree using the tarABD Multilocus sequence analysis (MLSA) Neighbor-Joining (NJ) tree and B) heatmap based on the similarities of the tarABD from B. subtilis genome to the reference tar or tag genes. B. subtilis with three subspecies contains 59 genomes and S. aureus subsp. aureus DSM 20231T was used for outgroup. Bootstrap values (>70%) based on 1000 replicates are shown at branch nodes. The brand nodes also recovered maximum-likelihood (ML) and maximum-parsimony (MP) trees are marked by the filled black circles. The bar indicates nucleotide substitution rate in given length of the scale. The color indicated the tblastn nucleotide similarities to reference tar (red) or tag (green) genes. A 2017 ⎪ Vol. 27⎪ No. 0 4Name et al.
    [Show full text]
  • Targeting the ESKAPE Pathogens by Botanical and Microbial Approaches
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School March 2020 Targeting the ESKAPE Pathogens by Botanical and Microbial Approaches Emily Dilandro University of South Florida Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Microbiology Commons Scholar Commons Citation Dilandro, Emily, "Targeting the ESKAPE Pathogens by Botanical and Microbial Approaches" (2020). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/8186 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Targeting the ESKAPE Pathogens by Botanical and Microbial Approaches by Emily DiLandro A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Cell Biology, Microbiology & Molecular Biology College of Arts and Sciences University of South Florida Major professor: Lindsey N. Shaw, Ph.D. Prahathees Eswara, Ph.D. Larry Dishaw, Ph.D. Date of Approval: March 11, 2019 Keywords: Cinnamaldehyde, Secondary Metabolites Copywrite © 2020, Emily DiLandro Table of Contents List of Tables ................................................................................................................... iii List of Figures .................................................................................................................
    [Show full text]
  • Phylogenetic Analysis and Screening of Antimicrobial And
    Hindawi BioMed Research International Volume 2019, Article ID 7851251, 14 pages https://doi.org/10.1155/2019/7851251 Research Article Phylogenetic Analysis and Screening of Antimicrobial and Antiproliferative Activities of Culturable Bacteria Associated with the Ascidian Styela clava from the Yellow Sea, China Lei Chen , Xue-Ning Wang, Chang-Ming Fu, and Guang-Yu Wang Department of Bioengineering, School of Marine Science and Technology, Harbin Institute of Technology, Weihai , China Correspondence should be addressed to Lei Chen; [email protected] and Guang-Yu Wang; wanggy18 [email protected] Received 24 April 2019; Revised 4 July 2019; Accepted 28 July 2019; Published 28 August 2019 Academic Editor: Stefano Pascarella Copyright © 2019 Lei Chen et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Over 1,000 compounds, including ecteinascidin-743 and didemnin B, have been isolated from ascidians, with most having bioactive properties such as antimicrobial, antitumor, and enzyme-inhibiting activities. In recent years, direct and indirect evidence has shown that some bioactive compounds isolated from ascidians are not produced by ascidians themselves but by their symbiotic microorganisms. Isolated culturable bacteria associated with ascidians and investigating their potential bioactivity are an important approach for discovering novel compounds. In this study, a total of 269 bacteria were isolated from the ascidian Styela clava collected from the coast of Weihai in the north of the Yellow Sea, China. Phylogenetic relationships among 183 isolates were determined using their 16S rRNA gene sequences.
    [Show full text]
  • Maldi-Tof Mass Spectrometry and 16S Rna Approach for The
    MALDI-TOF MASS SPECTROMETRY AND 16S RNA APPROACH FOR THE IDENTIFICATION OF BACTERIA COLLECTED DURING THE PHOENIX MARS LANDER A Thesis Presented to the Faculty of California State Polytechnic University, Pomona In Partial Fulfillment Of the Requirements for the Degree Master of Science In Biological Sciences By Devin L. Lachner 2020 SIGNATURE PAGE THESIS: MALDI-TOF MASS SPECTROMETRY AND 16S RNA APPROACH FOR THE IDENTIFICATION OF BACTERIA COLLECTED DURING THE PHOENIX MARS LANDER AUTHOR: Devin L. Lachner DATE SUBMITTED: Spring 2020 Department of Biological Sciences Dr. Wei-Jen Lin Thesis Committee Chair Biological Sciences Dr. Parag Vaishampayan Jet Propulsion Laboratory Dr. Wendy Dixon Biological Sciences ii ACKNOWLEDGEMENTS I want to thank Dr. Lin who took me into her lab when I was an undergraduate and gave me my first opportunity to perform research. This experience gave me direction for the first time and filled me with excitement for microbiology. Thanks for the countless hours you have invested in me, and for teaching me how to become a better scientist and teacher. This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, and was sponsored by the JPL Graduate Student Program and the National Aeronautics and Space Administration (80NM0018D0004). A special thanks to Arman Seuylemezian and Parag Vaishampayan, who taught me most of what I learned about lab work at JPL. It was a pleasure learning from you both, thank you for always being there when I needed your help. Thank you to Dr. Dixon and Dr. Vaishampayan for agreeing to be on my committee and all the work that it has entailed.
    [Show full text]
  • Szarvashoz Közeli Mélyfúrású Termálkutak Vizében Előforduló Prokarióta Közösségek
    EÖTVÖS LORÁND TUDOMÁNYEGYETEM Természettudományi Kar Biológiai Intézet Mikrobiológiai Tanszék Szarvashoz közeli mélyfúrású termálkutak vizében előforduló prokarióta közösségek készítette: Németh Andrea Témavezető: DR. BORSODI ANDREA, docens Mikrobiológiai Tanszék KÖRNYEZETTUDOMÁNYI TDK KONFERENCIA Budapest, 2014 Tartalomjegyzék 1. Bevezetés ............................................................................................................................... 3 2. Irodalmi áttekintés ............................................................................................................... 4 2.1. Hévízkutak Magyarországon .......................................................................................... 4 2.2. Egy ausztrál termálkút vizének termofil mikrobaközössége ......................................... 6 3. Célkitűzések .......................................................................................................................... 7 4. Anyagok és módszerek ......................................................................................................... 8 4.1. Mintavétel ........................................................................................................................ 8 4.2. Közösségi DNS izolálás ................................................................................................... 9 4.3. 16S rRNS kódoló régiók felszaporítása ......................................................................... 9 4.4. PCR termékek tisztítása, ligálás ....................................................................................
    [Show full text]
  • 641969V1.Full.Pdf
    bioRxiv preprint doi: https://doi.org/10.1101/641969; this version posted May 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Simple rules govern the diversity of bacterial nicotianamine-like metallophores 2 Clémentine Laffont1, Catherine Brutesco1, Christine Hajjar1, Gregorio Cullia2, Roberto Fanelli2, 3 Laurent Ouerdane3, Florine Cavelier2, Pascal Arnoux1,* 4 1Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France F-13108. 5 2Institut des Biomolécules Max Mousseron, IBMM, UMR-5247, CNRS, Université Montpellier, 6 ENSCM , Place Eugène Bataillon, 34095 Montpellier cedex 5, France. 7 3CNRS-UPPA, Laboratoire de Chimie Analytique Bio-inorganique et Environnement, UMR 5254, 8 Hélioparc, 2, Av. Angot 64053 Pau, France. 9 *Correspondance: Pascal Arnoux, Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez- 10 Durance, France F-13108; [email protected]; Tel. 04-42-25-35-70 11 Keywords: opine/opaline dehydrogenase, CntM, nicotianamine-like metallophore, bacillopaline 12 13 ABSTRACT 14 In metal-scarce environments, some pathogenic bacteria produce opine-type metallophores 15 mainly to face the host’s nutritional immunity. This is the case of staphylopine, pseudopaline and 16 yersinopine, identified in Staphylococcus aureus, Pseudomonas aeruginosa and Yersinia pestis 17 respectively. These metallophores are synthesized by two (CntLM) or three enzymes (CntKLM), 18 CntM catalyzing the last step of biosynthesis using diverse substrates (pyruvate or α-ketoglutarate), 19 pathway intermediates (xNA or yNA) and cofactors (NADH or NADPH), depending on the species. 20 Here, we explored substrate specificity of CntM by combining bioinformatics and structural analysis 21 with chemical synthesis and enzymatic studies.
    [Show full text]
  • Occurrence of Disinfectant-Resistant Bacteria in a Fresh-Cut Vegetables
    RSC Advances View Article Online PAPER View Journal | View Issue Occurrence of disinfectant-resistant bacteria in a fresh-cut vegetables processing facility and their Cite this: RSC Adv.,2021,11,10291 role in protecting Salmonella enteritidis† Jing-Guo Xu, Jiao Meng, Wen-Jing Bao, Jia-Mu Kang, Jing-Yu Chen and Bei-Zhong Han * Chemical disinfectants are widely used to control foodborne pathogen contamination in fresh-cut vegetables (FVs) processing facilities. In this study, we investigated the disinfectant-resistant bacteria in a FVs processing facility and evaluate the effects of these bacteria on Salmonella enteritidis biofilm formation and disinfectant resistance. The disinfectant-resistance profiles were determined using 0.02% sodium hypochlorite (NaClO), 0.2% benzalkonium bromide (BAB) and 2% hydrogen peroxide (H2O2) solutions. The results showed the high occurrence of disinfectant resistant bacteria in the FVs processing environment, especially in the clean area. All isolates showed planktonic susceptibility to H2O2 and BAB, Creative Commons Attribution-NonCommercial 3.0 Unported Licence. while the Gram-positive isolates were specifically resistant to NaClO. Isolates with biofilm-forming ability showed resistance to tested disinfectants. Disinfectant resistance of S. enteritidis was not significantly enhanced in most of the mixed-species biofilms, except for Bacillus paramycoides B5 which not only Received 2nd November 2020 increased the biomass but also enhanced the survival ability of the Salmonella under NaClO treatment. Accepted 25th February 2021 Increased biomass and compact biofilm structures were observed in mixed-species biofilms by scanning DOI: 10.1039/d0ra09325d electron microscopy (SEM). This study provides new insights into the disinfectant-resistant bacteria from rsc.li/rsc-advances food processing facilities and highlights their relevance for foodborne pathogen contamination.
    [Show full text]