PETROCHEMICALS from REFINERY STREAMS (February 2000)
Total Page:16
File Type:pdf, Size:1020Kb
Abstract Process Economics Report 169B PETROCHEMICALS FROM REFINERY STREAMS (February 2000) Lyondell’s (formerly Arco’s) SuperflexSM process and Mobil’s Olefin Interconversion (MOI) process are two new secondary olefin conversion technologies that crack C4-C8 olefins to pre- dominately ethylene and propylene. Both technologies are based on a reactor/regenerator design similar to conventional fluid catalytic cracking (FCC). Alternatively, Asahi’s Alpha process converts C4-C8 olefins to aromatics, mainly benzene, toluene, and xylenes (BTX). In the Alpha process, hydrogen circulation maintains stable catalyst activity for 3 days; therefore, this process can oper- ate in a two-fixed bed swing reactor system. Shape-selective medium-pore zeolite catalysts are at the heart of the three processes. Reac- tion thermodynamics determine the product slate and selectivity independent of feedstock sources. Suitable feedstocks include light cracked naphtha (LCN), coker naphtha, steam cracker C4/C5, and light pyrolysis gasoline. Olefin cracking technology offers the opportunity to decouple propylene supply from ethylene production. The quantity of polymer-grade propylene produced by either the Superflex or MOI process based on LCN from a 65,000 b/d FCC unit exceeds that recovered from a 1 billion lb/yr (world-scale) naphtha-based ethylene plant. A similar amount of LCN could produce BTX equiva- lent to that of a 44,5000 b/d catalytic reformer. Economic analyses show that it is more attractive to convert LCN to light olefins than to aro- matics, although more than twice the capital investment is required. During periods of high demand (e.g., the mid-1990s), the simple return on investment for the MOI and Superflex process could have reached 20% and 30%, respectively. Because of the volatility in commodity prices, these two processes could not cover cash costs during other times in the 1990s. Lower capital investment cost fail to make the Alpha process economically viable because paraffinic by-products constitute 40% of the process yield. By nature, aromatization reactions generate hydrogen, which in turn saturates olefinic components and downgrades them to fuel. PEP’98 169B EJC CONTENTS GLOSSARY.................................................................................................................................... xiii 1 INTRODUCTION ................................................................................................................1-1 REFINERY PROFITABILITY ..............................................................................................1-1 GASOLINE REGULATIONS...............................................................................................1-4 SECONDARY OLEFIN CONVERSION TECHNOLOGY....................................................1-4 2 SUMMARY..........................................................................................................................2-1 TECHNICAL ASPECTS......................................................................................................2-1 Conversion to Light Olefins.................................................................................................2-1 Chemistry.......................................................................................................................2-1 Process Design .............................................................................................................2-2 Conversion to Aromatics.....................................................................................................2-3 Chemistry.......................................................................................................................2-3 Process Design .............................................................................................................2-3 ECONOMIC ASPECTS ......................................................................................................2-4 Olefins Production from LCN..............................................................................................2-6 Aromatics Production from LCN .........................................................................................2-9 3 OLEFINS AND AROMATICS SOURCES...........................................................................3-1 LIGHT OLEFIN PRODUCTION..........................................................................................3-5 Light Olefins from Steam Cracking.....................................................................................3-5 Light Olefins from Refinery Sources...................................................................................3-6 Fluid Catalytic Cracking.................................................................................................3-7 Deep Catalytic Cracking ................................................................................................3-8 On-Purpose Olefin Production.......................................................................................3-8 Propylene from Ethylene Metathesis (Disproportionation) ............................................3-8 AROMATICS PRODUCTION .............................................................................................3-9 Sources of BTX Aromatics .................................................................................................3-9 Conventional Catalytic Reforming ...............................................................................3-10 Zeolite Reforming ........................................................................................................3-11 Pyrolysis Gasoline .......................................................................................................3-12 Nonconventional Aromatics Sources................................................................................3-14 i CONTENTS (Continued) 4 CHEMISTRY REVIEW (Concluded) Monomolecular Reactions ................................................................................................4-13 Pentene Cracking ........................................................................................................4-15 Hexene Cracking .........................................................................................................4-16 Heptene Cracking........................................................................................................4-17 Octene Cracking..........................................................................................................4-19 Aromatization Mechanism ................................................................................................4-21 5 FLUID CATALYTIC CRACKING PROCESS REVIEW.......................................................5-1 FLUIDIZATION ...................................................................................................................5-1 REACTOR/REGENERATION ............................................................................................5-1 Reactor Riser......................................................................................................................5-5 Feed Injection ................................................................................................................5-5 Riser ..............................................................................................................................5-5 Vapor/Catalyst Separation ..................................................................................................5-6 Spent Catalyst Stripper .......................................................................................................5-6 Catalyst Transfer to Regenerator .......................................................................................5-7 Regeneration ......................................................................................................................5-7 Heat Balance ......................................................................................................................5-8 VAPOR RECOVERY SECTION .........................................................................................5-9 6 SUPERFLEXSM PROCESS ................................................................................................6-1 PROCESS REVIEW...........................................................................................................6-1 Process Conditions.............................................................................................................6-1 Catalyst ...............................................................................................................................6-2 Superflex Chemistry ...........................................................................................................6-5 Feedstocks .........................................................................................................................6-5 Product Distribution.............................................................................................................6-5 PROCESS DESCRIPTION.................................................................................................6-8 Section 100—Cracking and Fractionation ..........................................................................6-8 Section 200—Ethylene Recovery .......................................................................................6-9 Section 300—Propylene Recovery .....................................................................................6-9