Introduction to Artificial Intelligence

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to Artificial Intelligence What is AI? Big Questions • There are no crisp definitions • Here’s one from John McCarthy, (He coined the phrase AI in Introduction to • Can machines think? 1956) - see http://www.formal.Stanford.EDU/jmc/whatisai/) • And if so, how? Q. What is artificial intelligence? Artificial A. It is the science and engineering of making intelligent • And if not, why not? machines, especially intelligent computer programs. It is related to the similar task of using computers to understand Intelligence • And what does this say about human intelligence, but AI does not have to confine itself to methods that are biologically observable. human beings? Q. Yes, but what is intelligence? Chapter 1 A. Intelligence is the computational part of the ability to achieve • And what does this say about the goals in the world. Varying kinds and degrees of intelligence mind? occur in people, many animals and some machines. Other possible AI definitions What’s easy and what’s hard? History • AI is a collection of hard problems which can be • It’s been easier to mechanize many of the high level tasks solved by humans and other living things, but for we usually associate with “intelligence” in people which we don’t have good algorithms for solving. – e.g., Symbolic integration, proving theorems, playing chess, medical diagnosis, etc. – E.g., understanding spoken natural language, medical • It’s been very hard to mechanize tasks that lots of animals diagnosis, circuit design, etc. can do • AI Problem + Sound theory = Engineering problem – walking around without running into things • Some problems used to be thought of as AI but are – catching prey and avoiding predators now considered not – interpreting complex sensory information (e.g., visual, aural, …) – modeling the internal states of other animals from their behavior – e.g., compiling Fortran in 1955, symbolic mathematics in – working as a team (e.g. with pack animals) 1965 • Is there a fundamental difference between the two • AI is thus, by nature pre-scientific in Kuhn’s terms categories? Foundations of AI Why AI? Possible Approaches Computer Science & • Engineering: To get machines to do a wider variety Like Engineering of useful things humans Well Mathematics Philosophy – e.g., understand spoken natural language, recognize individual people in visual scenes, find the best travel plan Rational for your vacation, etc. GPS Think agents • Cognitive Science: As a way to understand how AI tends to work mostly natural minds and mental phenomena work in this area Psychology – e.g., visual perception, memory, learning, language, etc. Heuristic Linguistics Act Eliza • Philosophy: As a way to explore some basic and systems Cognitive interesting (and important) philosophical questions Science – e.g., the mind body problem, what is consciousness, etc. Like Like Like humans Well humans Well humans Well Rational GPS Rational Think well Think GPS Rational Act well Think GPS Think like humans Think agents agents agents • For a given set of inputs generate an Heuristic Eliza Heuristic Eliza Heuristic • Cognitive science approach Act Eliza Act systems appropriate output that is not necessarily Act systems systems • Develop formal models of knowledge correct but gets the job done. • Focus not just on behavior and I/O representation, reasoning, learning, •Aheuristic (heuristic rule, heuristic method)isaruleof but also look at reasoning process. memory, problem solving, that can be thumb, strategy, trick, simplification, or any other kind of • Computational model should reflect "how" results were rendered in algorithms. device which drastically limits search for solutions in large obtained. • There is often an emphasis on a systems that are problem spaces. Heuristics do not guarantee optimal • Provide a new language for expressing cognitive theories provably correct, and guarantee finding an optimal solutions; in fact, they do not guarantee any solution at all: and new mechanisms for evaluating them all that can be said for a useful heuristic is that it offers • GPS (General Problem Solver): Goal not just to produce solution. solutions which are good enough most of the time. humanlike behavior (like ELIZA), but to produce a -- Feigenbaum and Feldman, 1963, p. 6 sequence of steps of the reasoning process that was similar to the steps followed by a person in solving the same task. Like humans Well Eliza Rational Act like humans Think GPS Turing Test agents • ELIZA: A program that simulated a psychotherapist interacting with a patient and successfully passed the Turing Eliza Heuristic • 3 rooms contain a person, a computer, and an interrogator Act systems Test. The interrogator can communicate with the other 2 by • Coded at MIT during 1964-1966 by Joel Weizenbaum. teleprinter. • Behaviorist approach. • First script was DOCTOR. • The interrogator tries to determine which is the person and – The script was a simple collection of syntactic patterns not unlike • Not interested in how you get results, just the which is the machine. regular expressions similarity to what human results are. • The machine tries to fool the interrogator into believing that – each pattern had an associated reply which might include bits of the • Exemplified by the Turing Test it is the person. input (after simple transformations (my -> your) (Alan Turing, 1950). • If the machine succeeds than we conclude that the machine • Weizenbaum was shocked at reactions: can think. – Psychiatrists thought it had potential. – People unequivocally anthropomorphised. – Many thought it solved the NL problem. E:E: I I am am the the psychotherapist. psychotherapist. Please, Please, describe describe your your problems. problems. Each time you are finished talking, type RET twice. H:H: Good Good afternoon. afternoon. My My name name is is Eliza Each time you are finished talking, type RET twice. Parry P:P: I I don't don't understand understand your your motives. motives. P:AllmenarealikeP:Allmenarealike Colby’s PARRY DoctorDoctor Jones. Jones. E:E: Why Why don't don't you you understand understand my my motives? motives? E:E: Why Why do do you you say say all all men men are are alike? alike? P:P: Pleased Pleased to to meet meet you. you. meets P: They're always bugging us about something or other. P: Shouldn't I be? •Thisisa P: They're always bugging us about something or other. • Kenneth Colby modeled H:H: How How are are you? you? P: Shouldn't I be? transcript of a E:E: Is Is it it because because of of your your plans plans that that you you say say they're they're always always P: All right I guess. Eliza E: Why do you say that just now? bugging us about something or other? a paranoid using the P: All right I guess. E: Why do you say that just now? conversation bugging us about something or other? H: Could you tell me your name? P: My boyfriend made me come here same techniques circa H: Could you tell me your name? P:P: That's That's just just the the way way it it is. is. with an Eliza P: My boyfriend made me come here P: Pat Smith. E:E: Maybe Maybe your your life life have have something something to to do do with with this. this. 1968. P: Pat Smith. E: Suppose that's the way it were not. like program H: I though you might have some E: Suppose that's the way it were not. P:P: He He thinks thinks I I am am depressed depressed • PARRY has basic H: I though you might have some found in Emacs problems. P:P: So? So? E:E: Are Are you you depressed depressed often? often? emotions. If it gets problems. (Gnu 20.2.2) P: You are asking me a lot of questions P: I've been upset lately. E:E: I I am am not not sure sure I I understand understand you you fully. fully. P: You are asking me a lot of questions angry, it’s replies P: I've been upset lately. E:E: What What makes makes you you believe believe I I am am asking asking you you a a lot lot of of H:H: By By what? what? P:P: You You harp harp on on the the same same questions questions too too much. much. • Try typing questions? become more hostile. questions? P:P: People People get get on on my my nerves nerves E: What does that similarity suggest to you? P: Because you seem very nosey • In a Turing test, expert E: What does that similarity suggest to you? $x doctor P: Because you seem very nosey sometimes.sometimes. E:E: Is Is it it because because I I seem seem very very nosey nosey that that you you came came to to me? me? psychiatrists were unable P:P: I I don't don't get get you. you. H:H: Tell Tell me me more. more. in your favorite P:P: I I am am leaving. leaving. to distinguish PARRY’s E: Do you wish that you did get I? P:P: Do Do you you know know anything anything about about E: Do you wish that you did get I? Emacs. E:E: Earlier Earlier you you said said you you felt felt depressed? depressed? ramblings from those of P: Good bye. bookies?bookies? P: Good bye. real paranoids. E:E: My My secretary secretary will will send send you you a a bill. bill. ...... The Loebner Contest What can AI systems do What can’t AI systems do yet? • A modern version of the turning test with $100,000 cash prize. Here are some example applications • Hugh Loebner was once director of UMBC’s Academic • Computer vision: face recognition from a large set • Robust natural language understanding (e.g.
Recommended publications
  • Lessons from a Restricted Turing Test
    Lessons from a Restricted Turing Test Stuart M. Shieber Aiken Computation Laboratory Division of Applied Sciences Harvard University March 28, 1994 (Revision 6) Abstract We report on the recent Loebner prize competition inspired by Turing’s test of intelligent behavior. The presentation covers the structure of the competition and the outcome of its first instantiation in an actual event, and an analysis of the purpose, design, and appropriateness of such a competition. We argue that the competition has no clear purpose, that its design prevents any useful outcome, and that such a competition is inappropriate given the current level of technology. We then speculate as to suitable alternatives to the Loebner prize. arXiv:cmp-lg/9404002v1 4 Apr 1994 This paper is to appear in Communications of the Association for Comput- ing Machinery, and is available from the Center for Research in Computing Technology, Harvard University, as Technical Report TR-19-92 and from the Computation and Language e-print server as cmp-lg/9404002. The Turing Test and the Loebner Prize The English logician and mathematician Alan Turing, in an attempt to develop a working definition of intelligence free of the difficulties and philosophical pitfalls of defining exactly what constitutes the mental process of intelligent reasoning, devised a test, instead, of intelligent behavior. The idea, codified in his cel- ebrated 1950 paper “Computing Machinery and Intelligence” (Turing, 1950), was specified as an “imitation game” in which a judge attempts to distinguish which of two agents is a human and which a computer imitating human re- sponses by engaging each in a wide-ranging conversation of any topic and tenor.
    [Show full text]
  • I V Anthropomorphic Attachments in U.S. Literature, Robotics, And
    Anthropomorphic Attachments in U.S. Literature, Robotics, and Artificial Intelligence by Jennifer S. Rhee Program in Literature Duke University Date:_______________________ Approved: ___________________________ Kenneth Surin, Supervisor ___________________________ Mark Hansen ___________________________ Michael Hardt ___________________________ Katherine Hayles ___________________________ Timothy Lenoir Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Literature in the Graduate School of Duke University 2010 i v ABSTRACT Anthropomorphic Attachments in U.S. Literature, Robotics, and Artificial Intelligence by Jennifer S. Rhee Program in Literature Duke University Date:_______________________ Approved: ___________________________ Kenneth Surin, Supervisor ___________________________ Mark Hansen ___________________________ Michael Hardt ___________________________ Katherine Hayles ___________________________ Timothy Lenoir An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Literature in the Graduate School of Duke University 2010 Copyright by Jennifer S. Rhee 2010 Abstract “Anthropomorphic Attachments” undertakes an examination of the human as a highly nebulous, fluid, multiple, and often contradictory concept, one that cannot be approached directly or in isolation, but only in its constitutive relationality with the world. Rather than trying to find a way outside of the dualism between human and not- human,
    [Show full text]
  • Philosophy of Artificial Intelligence: a Course Outline
    Teaching Philosophy 9:2, June 1986 103 Philosophy of Artificial Intelligence: A Course Outline WILLIAM J. RAPAPORT State University ofNew York, Buffalo In the Fall of 1983, I offered a junior/senior-level course in Philosophy of Artificial Intelligence, in the Department of Philosophy at SUNY· Fredonia, after retuming there from a year's leave to study and do research in computer science and artificial intelligence (AI) at SUNY Buffalo. Of the 30 students enrolled, most were computer-science majors, about a third had no <;omputer background, and only a handful had studied any philosophy. (I might note that enrollments have subsequently increased in the Philosophy Department's AI-related courses, such as logic, philosophy of mind, and epistemology, and that several computer­ science students have added philosophy as a second major.) This article describes that course, provides material for use in such a course, and offers a bibliography of relevant articles in the AI, cognitive science, and philosophical literature. Course Organization and Texts My original intention, inspired in part by Moulton and Voytek 1980, was to spend the first half of the semester discussing working AI programs, in order to get the students excited about what computers could do, using the first edition of Patrick Henry Winston's Artificial Intelligence (Winston 1977) as the text. During the second half of the semester, my plan was to discuss Hubert L. Dreyfus's What Computers Can't Do (Dreyfus 1979), as a sort of antidote and source of philosophical reflection. While I still think that this might have been a good course, I chose instead to use lohn Haugeland's anthology, Mind Design (Haugeland 1981), for the philosophical half of the course, since it offers a wider-and fairer-spectrum ofphilosophical essays, besides including the most important section ofDreyfus's book.
    [Show full text]
  • Much Has Been Written About the Turing Test in the Last Few Years, Some of It
    1 Much has been written about the Turing Test in the last few years, some of it preposterously off the mark. People typically mis-imagine the test by orders of magnitude. This essay is an antidote, a prosthesis for the imagination, showing how huge the task posed by the Turing Test is, and hence how unlikely it is that any computer will ever pass it. It does not go far enough in the imagination-enhancement department, however, and I have updated the essay with a new postscript. Can Machines Think?1 Can machines think? This has been a conundrum for philosophers for years, but in their fascination with the pure conceptual issues they have for the most part overlooked the real social importance of the answer. It is of more than academic importance that we learn to think clearly about the actual cognitive powers of computers, for they are now being introduced into a variety of sensitive social roles, where their powers will be put to the ultimate test: In a wide variety of areas, we are on the verge of making ourselves dependent upon their cognitive powers. The cost of overestimating them could be enormous. One of the principal inventors of the computer was the great 1 Originally appeared in Shafto, M., ed., How We Know (San Francisco: Harper & Row, 1985). 2 British mathematician Alan Turing. It was he who first figured out, in highly abstract terms, how to design a programmable computing device--what we not call a universal Turing machine. All programmable computers in use today are in essence Turing machines.
    [Show full text]
  • Summer, 1974 Number 4
    newstetten Iouusiana psyctuatic \ssociatuon A district branch of the American Psychiatric Association Robert L. Newman, Jr., M.D., Editor DISTRICT BRANCH Mary Coyle, Assistant Editor Volume 12 Summer, 1974 Number 4 CHAPTER OFFICERS ELECTED New officers have been elected by the four LPA chapters to serve during 197 4-7 5. George Bishop is President of the Baton Rouge Psychiatric Society, with Ray Manson as Vice President and Eugene James Hill as Secretary-Treasurer. Serving a second term as President of the New Orleans Area Psychiatric Association is Al Koy, and President-Elect is Al Olinde. Charles Steck is Secretary, Lindsay Graham is Treasurer, and the two Councillors are Ernie Svenson and Walter Prickett, President of the North Louisiana Chapter is Fred Marceau, with John Richie as President-Elect and Edward Leatherman as Secretary. Sidney Dupuy will head the Acadiana Psychiatric Association. The names of other officers had not been received when the NEWSLETTER went to press. Robert G. Heath, M.D. William M. Easson, M.D. HEATH RECEIVES LPA FALL MEETING LSU SEATS NEW CHAIRMAN FROMM-REICHMANN AWARD Dick Brunstetter and Remi Gonzalez Dr. William M. Easson assumed his are making plans now for the LPA Fall duties June 3, 1974 as Professor and Dr. Robert G. Heath, Professor and Meeting, tentatively scheduled for Sep- Chairman of the Department of Psychia- Chairman of the Department of Psychia- tember 13-14 in New Orleans. try and Biobehavioral Sciences, LSU try and Neurology at the Tulane School During the weekend a "Town Hall" School of Medicine in New Orleans. He of Medicine, has received the Frieda meeting will be held in which members comes to Louisiana from Minneapolis Fromm-Reichmann Award of the Ameri- are invited to express their ideas, corn- where he served as Professor and Direc- can Academy of Psychoanalysis.
    [Show full text]
  • Introspection of Natural Language Processing for Ai Chatbot
    International Journal For Technological Research In Engineering Volume 6, Issue 7, March-2019 ISSN (Online): 2347 - 4718 INTROSPECTION OF NATURAL LANGUAGE PROCESSING FOR AI CHATBOT Snehal Kulthe1, Mrs. Vineeta Tiwari2, Mr. Manish Nirmal3, Prof. Bhushan Chaudhari4 1,4Department of Computer Science, Sandip University, Nashik, India 2,3Department of ACTS, CDAC ACTS, Pune, India Abstract: With Alan Turing's question "Can Machines models used so far in Natural Language Processing. Think?" chatbot concept came into existence. Since Turing, the ability of machines has been challenged. In the era of II. EVOLUTION OF CHATBOTS Artificial Intelligence advances in Natural Language A. ELIZA Processing, Machine Learning led to the adoption of the The term 'Chatbot' was coined by Mauldin to define the Chatbots. Machines have started to mimic human traits. systems aiming to pass the Turing Test. ELIZA in 1966 Artificial Intelligence conversational entities, also called created by Weizenbaum was widely recognized as the first chatbots are computer programs capable to carry out near- program capable to pass the Turing Test. ELIZA’s model natural conversation with people. For a chatbot to perfectly was specifically rephrasing input and trying to match emulate a human dialogue, it must examine the input given keywords with pre-defined responses. When none of the by a user correctly and articulate a relevant response. This rules matched ELIZA had some responses which were paper presents a literature survey of the chatbot regardless of any context, in addition to rules. The main architecture, design, and algorithms used in chatbots. In aspect that made ELIZA popular was because people thought this paper, we also describe the evolution of chatbots from a they were talking to real human.
    [Show full text]
  • Chatterbots 2 – a History of Chatbots
    ! " Mobile Coach - Enterprise Chatbot Platfo… # Customize $ 4 % 0 + New & Edit Post ! Edit with Elementor ' 0 Howdy, Mobile Coach ( WHY MOBILE COACH WHAT WE DO WHO WE HELP " GET A DEMO ABOUT SUPPORT BLOG Chatterbots 2 – A History of Chatbots Casey Sullivan ! January 2019 ! FACEBOOK " GOOGLE+ # TWITTER $ LINKEDIN A History of Chatbots In April 2016 1-800-Flowers announced Gwyn, their Facebook Messenger chatbot at Facebook’s F8 conference. Gwyn is a “personal gift concierge” that enables users to search, select and order the perfect flower arrangement. Shoppers can, as Mark Zuckerberg put it, order from 1-800-Flowers, without ever having to call 1-800-Flowers again! Gwyn helped reach a new customer base. In fact, 1-800-Flowers reported that 70% of orders via Gwyn were from new customers. [image source: https://botsociety.io/blog/2018/03/chatbot-examples/] With their increasing prevalence in today’s world, chatbots seem like a recent idea. While they have certainly been improved upon and made more useful and productive in the past 10-12 years, chatbot history actually goes back nearly 70 years to the beginning of computing itself. While not a comprehensive history of chatbots we will highlight some impactful and influential chatbots and developments from the last 70 years. Early Chatbot History: 1950 – 2000 The ideas for chatbots and computer intelligence date back to 1950. An English scientist named Alan Turing published an article in which he proposed the question “Can machines think?” Additionally, his article lays out the basis for the Turing test, a way to measure whether you are speaking to a human or a machine.
    [Show full text]
  • A Survey on Various Chatbot Implementention Techniques
    JASC: Journal of Applied Science and Computations ISSN NO: 1076-5131 A SURVEY ON VARIOUS CHATBOT IMPLEMENTENTION TECHNIQUES Ch.Sitha Mahalakshmi, T.Sharmila, S.Priyanka, Mr.Rajesekhar Sastry,Dr. B V Ramana Murthy and Mr.C Kishor Kumar Reddy. Stanley College of Engineering and Technology for women-Hyderabad [email protected], [email protected], [email protected],[email protected],[email protected] in, [email protected] ABSTRACT Today is the era of intelligence in various machines. With the advances in the technology, machines have started to portray different human attributes. A chatbots is a type of application which is generated by computer. It is capable of having virtual conversation with the user in such a way that they don’t feel like they are actually talking to the computer. Chatbots will provide a simple and friendly way for customers to ask or send the information instead of searching through the websites. In this survey we describe artificial intelligence, history of chatbot, applications of chatbots. Keywords: Chatbots, AIML, Eliza, ALICE, Knowledge based. 1.Introduction In this quickly growing world it is necessary to have a different ideology to access the information rapidly in a simple way. Artificial intelligence is a way of making a computer thinks intelligently in the similar manner the intelligent human think. It is a science and technology based on disciplines such as computer science, biology, psychology, linguistics, mathematics and engineering. Artificial intelligence technique is a manner which provides knowledge efficiently in such a way that It should be graspable by the people The errors should easily detectable and corrected To achieve the collaboration between user and machine they have introduced a new conversational entitie called as chatbot.
    [Show full text]
  • Villanova Journal of Science, Technology and Management Vol
    Villanova Journal of Science, Technology and Management Vol. 1. No. 1. 2019. ISSN: 2672-4995 (Online) 2672-4987 (Print) THE WOES OF SCIENTIFIC REALISM Jonathan C. Okeke Department of Philosophy University of Calabar, Calabar, Cross Rivers State, Nigeria [email protected] & Kanu, Ikechukwu Anthony Department of Philosophy University of Nigeria, Nsukka, Enugu State, Nigeria [email protected]; 08036345466 Abstract This paper investigated the disagreement between Realists and Anti-realists on the observable and unobservable distinction in scientific practice. While the realists maintain that machines and gadgets can simulate the human act of perception there-by making all realities under the screen of science observable, the anti-realists or the instrumentalists insist that what cannot be observed with the human senses even if detected with gadgets are not observable. This paper contended against the realist position which says that machines can simulate the human activity of perception. Hence the distinction between what is observable and unobservable is shown to be indisputable. INTRODUCTION In metaphysics there is a long standing argument between followers of realism (the view that the physical world exists independently of human thought and perception) and the apologists of idealism (the view that the existence of the physical world is dependent on human perception) (Ozumba, 2001). Realism is further broken down to three different types: ultra or transcendental realism which Plato represents, and which holds that the real things exist in a realm other than this physical one (Copleston, 1985). Naïve or Nominal realism which Philosophers like G. E. Moore represent hold that things in this physical world are real as we perceive them.
    [Show full text]
  • Turing Test 1 Turing Test
    Turing test 1 Turing test The Turing test is a test of a machine's ability to exhibit intelligent behavior, equivalent to or indistinguishable from, that of an actual human. In the original illustrative example, a human judge engages in a natural language conversation with a human and a machine designed to generate performance indistinguishable from that of a human being. All participants are separated from one another. If the judge cannot reliably tell the machine from the human, the machine is said to have passed the test. The test does not check the ability to give the correct answer; it checks how closely the answer resembles typical human answers. The conversation is limited to a text-only channel such as a computer keyboard and screen so that the result is not dependent on the machine's ability to render words into audio.[2] The test was introduced by Alan Turing in his 1950 paper "Computing Machinery and Intelligence," which opens with the words: "I propose to consider the question, 'Can machines think?'" Since "thinking" is The "standard interpretation" of the Turing Test, in which player C, the interrogator, is tasked with difficult to define, Turing chooses to "replace the question by another, trying to determine which player - A or B - is a which is closely related to it and is expressed in relatively computer and which is a human. The interrogator [3] unambiguous words." Turing's new question is: "Are there is limited to using the responses to written questions in order to make the determination. imaginable digital computers which would do well in the imitation [1] Image adapted from Saygin, 2000.
    [Show full text]
  • Chatbots' Greetings to Human-Computer Communication
    Chatbots’ Greetings to Human-Computer Communication Maria Joao˜ Pereira1, Lu´ısa Coheur1;2, Pedro Fialho1, Ricardo Ribeiro1;3 1INESC-ID Lisboa, 2IST, Universidade de Lisboa, 3Instituto Universitario´ de Lisboa (ISCTE-IUL) Rua Alvez Redol, 9, 1000-029 Lisboa, Portugal [email protected], [email protected], peter.fi[email protected], [email protected] Abstract In the last years, chatbots have gained new attention, due to the interest showed by widely known personalities and companies. The concept is broad, and, in this paper we target the work developed by the (old) community that is typically associated with chatbot’s competitions. In our opinion, they contribute with very interesting know-how, but specially with large-scale corpora, gathered by interactions with real people, an invaluable resource considering the renewed interest in Deep Nets. Keywords: natural language interfaces, agent-based interaction, intelligent agents, interaction design 1. Introduction of references to web pages in this paper) makes it difficult Chatbots are currently a hot-topic, both for industry and to uncover the technology and the real possibilities behind academia (Dale, 2016; Følstad and Brandtzæg, 2017). them. In this paper, we unveil the main contributions of There are many platforms to help developing such systems, this community, as we believe that this line of work can and the number of new chatbots continues to increase at bring important insights to the human-machine communi- a dizzying pace. Pandorabots hosting service1 declares to cation field, as some of them contribute with large amounts have more than 225,000 botmasters (people in charge of of data gathered during their interactions with the crowd, creating/maintaining a chatbot), which have built more than which could be used by current data-driven chatbots (e.g., 280,000 chatbots, resulting in more than 3 billion interac- (Li et al., 2016; Vinyals and Le, 2015)).
    [Show full text]
  • Various Real Time Chat Bots and Their Applications in Human Life
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-4, November 2019 Various Real Time Chat Bots and Their Applications in Human Life V. Krishna sree, C. Kaushik, G. Sahitya , Remalli Rohan Processing (NLP) is the main standard core for the any Abstract: Chatbots are also referred to as virtual assistance chatbot which aims to interpret, to recognize and to devices. They are the basic forms of artificial intelligence understand user request in the free language. NLP analyses software that can imitate human conversations. Chatbots are the knowledge, based on the conversation context to give relatively a new technology. The main goal of this survey paper is the proper response to the user. The basic architecture of to provide the information about the various existing chatbots chatbot consists of the Knowledge base, Knowledge and their history of evaluation, and the applications of various chatbots in different domains. Chatbots are applied in fields like identification engine as shown in the figure.1 [2]. medical, E-commerce, business, education, banking, customer services, entertainment, etc. Chatbots cab be analyzed and Input response improved. Main goal of any chatbot is to allow the user to make a given by the user Analyzer natural conversation with machine. A conversational system consists of dialogue management, speech recognition, speech synthesis and conversation generation. Keywords: Artificial intelligence, Artificial intelligence Knowledge-identification markup language (AIML), Chatbot, Knowledge base. Engine I. INTRODUCTION Now-a-days chatbots are widely popular and text Knowledg communication plays a major role in people‟s lives. Almost Output Generator all age groups use text communication with each others.
    [Show full text]