A Survey on Various Chatbot Implementention Techniques

Total Page:16

File Type:pdf, Size:1020Kb

A Survey on Various Chatbot Implementention Techniques JASC: Journal of Applied Science and Computations ISSN NO: 1076-5131 A SURVEY ON VARIOUS CHATBOT IMPLEMENTENTION TECHNIQUES Ch.Sitha Mahalakshmi, T.Sharmila, S.Priyanka, Mr.Rajesekhar Sastry,Dr. B V Ramana Murthy and Mr.C Kishor Kumar Reddy. Stanley College of Engineering and Technology for women-Hyderabad [email protected], [email protected], [email protected],[email protected],[email protected] in, [email protected] ABSTRACT Today is the era of intelligence in various machines. With the advances in the technology, machines have started to portray different human attributes. A chatbots is a type of application which is generated by computer. It is capable of having virtual conversation with the user in such a way that they don’t feel like they are actually talking to the computer. Chatbots will provide a simple and friendly way for customers to ask or send the information instead of searching through the websites. In this survey we describe artificial intelligence, history of chatbot, applications of chatbots. Keywords: Chatbots, AIML, Eliza, ALICE, Knowledge based. 1.Introduction In this quickly growing world it is necessary to have a different ideology to access the information rapidly in a simple way. Artificial intelligence is a way of making a computer thinks intelligently in the similar manner the intelligent human think. It is a science and technology based on disciplines such as computer science, biology, psychology, linguistics, mathematics and engineering. Artificial intelligence technique is a manner which provides knowledge efficiently in such a way that It should be graspable by the people The errors should easily detectable and corrected To achieve the collaboration between user and machine they have introduced a new conversational entitie called as chatbot. Chatbot is computer program capable to carry a friendly conversation the user. A chatbot is an intelligent conversation between human and machine. The term chatbot is a synonym with text conversation but growing through voice communication. The chatbot can have conversation with you through different channels like Siri, facebook, Skype, messenger, we chat, telegram, slack and many others. Volume VI, Issue I, January/2019 Page No:320 JASC: Journal of Applied Science and Computations ISSN NO: 1076-5131 for different purpose such shopping customer service, news, games and many others. A chatbot is also known as smartbot, chatterbot, imbot, talkbot, bot, interactive agent, conversational interface artificial conversation entities. Chatbot are typically used in dialogue systems for various practical purposes. 2. History of chatbots The history to chatbots has being developed since1950, when Alan Turing published his ―Computing Machinery and Intelligence‖. The paper published by Alan Turing is regarded as one of the basic foundations of Artificial Intelligence and the Turing Test he proposed in this paper can be Considered as a benchmark for assess the worth of computer system intelligence .The fame of his proposed test has become a scrutiny to Joseph Weizenbaum‘s program Eliza which was introduced in 1966 at the MIT AI Laboratory. Eliza pretend to have a simple, text based conversation between a user and the computer. Joseph Weizenbaum‘s main intent in creating Eliza was to manifest the superficies the interaction between user and machine .Eliza's key method of operation which recognizes the prompt words or phrases in the input, and the output of corresponding pre-programmed or pre- prepared responses that can move the conversation a head in an apparently meaningful way. Thus an apparition of understanding is initiated, even though the processing involved has been entirely peripheral. Eliza showed this illusion is easy to generate and astonishingly proven that it is ―intelligent. However, he did not contemplate the possibility of how a lot of people can easily attributed human-like feelings to the program. Table:2.1 The history of chatbot 1950: It all began in 1950, when an English computer named Alan Turing, threw down the gauntlet by publishing an article entitled ―Computer Machinery and Intelligence. 1966: Eager computer scientist and contemporaries of Turing tried to pass his test. Eliza created in 1966 by Joseph Weizenbaum. Eliza was one of the first chatbots in the history although Eliza was able to fool some users into thinking that they were actually talking to a human; Eliza failed the Turing Test of Alan. Despite that, the principles used in Eliza laid a foundation for the structures of chatbots, such as specific phrases, keywords and preprogramming responses. 1972: Kenneth Colby introduced PARRY in 1972, a chatbot that could replicate a person with paranoid schizophrenia. In an experiment given to psychiatrists, only 48% were able to identify the difference between PARRY and a real person. 1995: A.L.I.C.E., a popular online bot was and a processing bot. Although A.L.I.C.E. was unable to pass the Turing Test, she did receive many other rewards for being the most advanced bot of exhibition time. Volume VI, Issue I, January/2019 Page No:321 JASC: Journal of Applied Science and Computations ISSN NO: 1076-5131 2001: That is, until Smarter child came out. In many ways, it was the progenitor to Apple‘s Siri and Samsung‘s S Voice. 2010-2015: Over the next decade or so, bots became very popular among big tech companies, starting with in Siri introduced in 2010, Google Now in Alexa in 2015 and Cortana in 2015. These bots can able to give response to voice commands, play audio and video, and perform internet searches, and many other tasks. Present: Amazon wants to improve Alexa by making it an intelligent socialbot that can have interaction about anything with anyone. The students at BYU have been building on the work of past computer scientists to take AI to the next level. Before, chatbots ran on keywords and specific phrases; now, they are creating chatbots that function based on neural networks and machine learning. It is incredible to see the progress made with AI, and it is exciting to think about the progress that will come in the future The Latest in Chatbot History: From Messaging Apps to Operating Systems. Before the West would fully embrace chatbots in messaging apps, we‘d talk to ones built into our mobile devices. Siri was the first mainstream assistant built natively into a mobile OS, released in 2010. With Siri, users could interact via text or voice, performing many tasks easily via natural language. Like other mobile assistants to follow, Siri‘s feature has become a great extent into tasks that could be performed across the device‘s operating system, including apps that users can installed on their devices. Future: Our history of chatbots takes us to the present-day and near-future. In the latest development, mobile assistants are transitioning to other devices like smart speakers. Similarly, niche bots you‘re used to talking via messaging apps which are becoming voice apps. In these upcoming technology no longer just assistants for accomplishing tasks, chatbots are serving as the primary boundary for managing a whole collection of connected devices. And it‘s not just smart speakers in the home, either. Voice assistants and chatbots are in advance traction in wearable devices from the Siri-powered Apple Watch to the Google Assistant- powered Pixel Buds. Together with the Internet of Things, chatbots are set to modernize the way we intermingle with everything around us, perhaps ultimately cutting out the need for computers or mobile phones for the middling consumer. The future looks bright for chatbots, and we‘re eager to see where things are headed next! 3. Survey on Chatbot It is also difficult to get all the valuable information you desire from passionate attempt at being shared. Anytime a knowledge falls somewhere in the middle, it rarely gets an over the phone or online, surveys can feel impersonal and not of particular value to the customer or responder. 3.1 Customers Prefer a Survey Chatbot for Conversational Forms We are able to offer a better experience for the user by using a chatbot for surveys we create a virtual interviewer and make conversational surveys. Users are able to answer questions by Volume VI, Issue I, January/2019 Page No:322 JASC: Journal of Applied Science and Computations ISSN NO: 1076-5131 using their available or favorite platforms, such as messenger, facebook. By deploying a messenger Facebook survey bot, they ensure that users never have to leave the application to provide valuable feedback. In collaboration with YouGov a research is conducted at Michigan State University, and tested. YouGov‘s traditional online email-based pane vs. a set of consumer electronics surveys administered on Facebook Messenger. The survey showed that 76% of people participated the survey via Facebook Messenger, and those who did rated the overall survey considerably higher than the web-based one.And, according to Quick Tap Survey, 64% of customers would rather text than call a business and 40% of customers prefer self-service to interacting with a human. These survey results support the proposal that people are more inclined to give us the feedback we are looking for via a surveybot, as opposed to other survey methods. 3.2 How a Chatbot Survey Benefits Your NPS In dealing with surveys, many companies are looking to gather information on their NPS, or Net Promoter Score. This is the industry standard in assessing your customer‘s experience and is therefore very important to pay attention to.Survey chatbots have a variety of use cases that can help with your customer‘s experience and keep your NPS score on the rise. Creating a survey with a user-friendly platform such as Messenger Facebook is one way to acquire the information you need to examine your customer experience and make it more optimistic.
Recommended publications
  • Lessons from a Restricted Turing Test
    Lessons from a Restricted Turing Test Stuart M. Shieber Aiken Computation Laboratory Division of Applied Sciences Harvard University March 28, 1994 (Revision 6) Abstract We report on the recent Loebner prize competition inspired by Turing’s test of intelligent behavior. The presentation covers the structure of the competition and the outcome of its first instantiation in an actual event, and an analysis of the purpose, design, and appropriateness of such a competition. We argue that the competition has no clear purpose, that its design prevents any useful outcome, and that such a competition is inappropriate given the current level of technology. We then speculate as to suitable alternatives to the Loebner prize. arXiv:cmp-lg/9404002v1 4 Apr 1994 This paper is to appear in Communications of the Association for Comput- ing Machinery, and is available from the Center for Research in Computing Technology, Harvard University, as Technical Report TR-19-92 and from the Computation and Language e-print server as cmp-lg/9404002. The Turing Test and the Loebner Prize The English logician and mathematician Alan Turing, in an attempt to develop a working definition of intelligence free of the difficulties and philosophical pitfalls of defining exactly what constitutes the mental process of intelligent reasoning, devised a test, instead, of intelligent behavior. The idea, codified in his cel- ebrated 1950 paper “Computing Machinery and Intelligence” (Turing, 1950), was specified as an “imitation game” in which a judge attempts to distinguish which of two agents is a human and which a computer imitating human re- sponses by engaging each in a wide-ranging conversation of any topic and tenor.
    [Show full text]
  • I V Anthropomorphic Attachments in U.S. Literature, Robotics, And
    Anthropomorphic Attachments in U.S. Literature, Robotics, and Artificial Intelligence by Jennifer S. Rhee Program in Literature Duke University Date:_______________________ Approved: ___________________________ Kenneth Surin, Supervisor ___________________________ Mark Hansen ___________________________ Michael Hardt ___________________________ Katherine Hayles ___________________________ Timothy Lenoir Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Literature in the Graduate School of Duke University 2010 i v ABSTRACT Anthropomorphic Attachments in U.S. Literature, Robotics, and Artificial Intelligence by Jennifer S. Rhee Program in Literature Duke University Date:_______________________ Approved: ___________________________ Kenneth Surin, Supervisor ___________________________ Mark Hansen ___________________________ Michael Hardt ___________________________ Katherine Hayles ___________________________ Timothy Lenoir An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Literature in the Graduate School of Duke University 2010 Copyright by Jennifer S. Rhee 2010 Abstract “Anthropomorphic Attachments” undertakes an examination of the human as a highly nebulous, fluid, multiple, and often contradictory concept, one that cannot be approached directly or in isolation, but only in its constitutive relationality with the world. Rather than trying to find a way outside of the dualism between human and not- human,
    [Show full text]
  • Philosophy of Artificial Intelligence: a Course Outline
    Teaching Philosophy 9:2, June 1986 103 Philosophy of Artificial Intelligence: A Course Outline WILLIAM J. RAPAPORT State University ofNew York, Buffalo In the Fall of 1983, I offered a junior/senior-level course in Philosophy of Artificial Intelligence, in the Department of Philosophy at SUNY· Fredonia, after retuming there from a year's leave to study and do research in computer science and artificial intelligence (AI) at SUNY Buffalo. Of the 30 students enrolled, most were computer-science majors, about a third had no <;omputer background, and only a handful had studied any philosophy. (I might note that enrollments have subsequently increased in the Philosophy Department's AI-related courses, such as logic, philosophy of mind, and epistemology, and that several computer­ science students have added philosophy as a second major.) This article describes that course, provides material for use in such a course, and offers a bibliography of relevant articles in the AI, cognitive science, and philosophical literature. Course Organization and Texts My original intention, inspired in part by Moulton and Voytek 1980, was to spend the first half of the semester discussing working AI programs, in order to get the students excited about what computers could do, using the first edition of Patrick Henry Winston's Artificial Intelligence (Winston 1977) as the text. During the second half of the semester, my plan was to discuss Hubert L. Dreyfus's What Computers Can't Do (Dreyfus 1979), as a sort of antidote and source of philosophical reflection. While I still think that this might have been a good course, I chose instead to use lohn Haugeland's anthology, Mind Design (Haugeland 1981), for the philosophical half of the course, since it offers a wider-and fairer-spectrum ofphilosophical essays, besides including the most important section ofDreyfus's book.
    [Show full text]
  • Much Has Been Written About the Turing Test in the Last Few Years, Some of It
    1 Much has been written about the Turing Test in the last few years, some of it preposterously off the mark. People typically mis-imagine the test by orders of magnitude. This essay is an antidote, a prosthesis for the imagination, showing how huge the task posed by the Turing Test is, and hence how unlikely it is that any computer will ever pass it. It does not go far enough in the imagination-enhancement department, however, and I have updated the essay with a new postscript. Can Machines Think?1 Can machines think? This has been a conundrum for philosophers for years, but in their fascination with the pure conceptual issues they have for the most part overlooked the real social importance of the answer. It is of more than academic importance that we learn to think clearly about the actual cognitive powers of computers, for they are now being introduced into a variety of sensitive social roles, where their powers will be put to the ultimate test: In a wide variety of areas, we are on the verge of making ourselves dependent upon their cognitive powers. The cost of overestimating them could be enormous. One of the principal inventors of the computer was the great 1 Originally appeared in Shafto, M., ed., How We Know (San Francisco: Harper & Row, 1985). 2 British mathematician Alan Turing. It was he who first figured out, in highly abstract terms, how to design a programmable computing device--what we not call a universal Turing machine. All programmable computers in use today are in essence Turing machines.
    [Show full text]
  • Summer, 1974 Number 4
    newstetten Iouusiana psyctuatic \ssociatuon A district branch of the American Psychiatric Association Robert L. Newman, Jr., M.D., Editor DISTRICT BRANCH Mary Coyle, Assistant Editor Volume 12 Summer, 1974 Number 4 CHAPTER OFFICERS ELECTED New officers have been elected by the four LPA chapters to serve during 197 4-7 5. George Bishop is President of the Baton Rouge Psychiatric Society, with Ray Manson as Vice President and Eugene James Hill as Secretary-Treasurer. Serving a second term as President of the New Orleans Area Psychiatric Association is Al Koy, and President-Elect is Al Olinde. Charles Steck is Secretary, Lindsay Graham is Treasurer, and the two Councillors are Ernie Svenson and Walter Prickett, President of the North Louisiana Chapter is Fred Marceau, with John Richie as President-Elect and Edward Leatherman as Secretary. Sidney Dupuy will head the Acadiana Psychiatric Association. The names of other officers had not been received when the NEWSLETTER went to press. Robert G. Heath, M.D. William M. Easson, M.D. HEATH RECEIVES LPA FALL MEETING LSU SEATS NEW CHAIRMAN FROMM-REICHMANN AWARD Dick Brunstetter and Remi Gonzalez Dr. William M. Easson assumed his are making plans now for the LPA Fall duties June 3, 1974 as Professor and Dr. Robert G. Heath, Professor and Meeting, tentatively scheduled for Sep- Chairman of the Department of Psychia- Chairman of the Department of Psychia- tember 13-14 in New Orleans. try and Biobehavioral Sciences, LSU try and Neurology at the Tulane School During the weekend a "Town Hall" School of Medicine in New Orleans. He of Medicine, has received the Frieda meeting will be held in which members comes to Louisiana from Minneapolis Fromm-Reichmann Award of the Ameri- are invited to express their ideas, corn- where he served as Professor and Direc- can Academy of Psychoanalysis.
    [Show full text]
  • UC Berkeley Previously Published Works
    UC Berkeley UC Berkeley Previously Published Works Title Building the Second Mind, 1961-1980: From the Ascendancy of ARPA-IPTO to the Advent of Commercial Expert Systems Permalink https://escholarship.org/uc/item/7ck3q4f0 ISBN 978-0-989453-4-6 Author Skinner, Rebecca Elizabeth Publication Date 2013-12-31 eScholarship.org Powered by the California Digital Library University of California Building the Second Mind, 1961-1980: From the Ascendancy of ARPA to the Advent of Commercial Expert Systems copyright 2013 Rebecca E. Skinner ISBN 978 09894543-4-6 Forward Part I. Introduction Preface Chapter 1. Introduction: The Status Quo of AI in 1961 Part II. Twin Bolts of Lightning Chapter 2. The Integrated Circuit Chapter 3. The Advanced Research Projects Agency and the Foundation of the IPTO Chapter 4. Hardware, Systems and Applications in the 1960s Part II. The Belle Epoque of the 1960s Chapter 5. MIT: Work in AI in the Early and Mid-1960s Chapter 6. CMU: From the General Problem Solver to the Physical Symbol System and Production Systems Chapter 7. Stanford University and SRI Part III. The Challenges of 1970 Chapter 8. The Mansfield Amendment, “The Heilmeier Era”, and the Crisis in Research Funding Chapter 9. The AI Culture Wars: the War Inside AI and Academia Chapter 10. The AI Culture Wars: Popular Culture Part IV. Big Ideas and Hardware Improvements in the 1970s invert these and put the hardware chapter first Chapter 11. AI at MIT in the 1970s: The Semantic Fallout of NLR and Vision Chapter 12. Hardware, Software, and Applications in the 1970s Chapter 13.
    [Show full text]
  • Introspection of Natural Language Processing for Ai Chatbot
    International Journal For Technological Research In Engineering Volume 6, Issue 7, March-2019 ISSN (Online): 2347 - 4718 INTROSPECTION OF NATURAL LANGUAGE PROCESSING FOR AI CHATBOT Snehal Kulthe1, Mrs. Vineeta Tiwari2, Mr. Manish Nirmal3, Prof. Bhushan Chaudhari4 1,4Department of Computer Science, Sandip University, Nashik, India 2,3Department of ACTS, CDAC ACTS, Pune, India Abstract: With Alan Turing's question "Can Machines models used so far in Natural Language Processing. Think?" chatbot concept came into existence. Since Turing, the ability of machines has been challenged. In the era of II. EVOLUTION OF CHATBOTS Artificial Intelligence advances in Natural Language A. ELIZA Processing, Machine Learning led to the adoption of the The term 'Chatbot' was coined by Mauldin to define the Chatbots. Machines have started to mimic human traits. systems aiming to pass the Turing Test. ELIZA in 1966 Artificial Intelligence conversational entities, also called created by Weizenbaum was widely recognized as the first chatbots are computer programs capable to carry out near- program capable to pass the Turing Test. ELIZA’s model natural conversation with people. For a chatbot to perfectly was specifically rephrasing input and trying to match emulate a human dialogue, it must examine the input given keywords with pre-defined responses. When none of the by a user correctly and articulate a relevant response. This rules matched ELIZA had some responses which were paper presents a literature survey of the chatbot regardless of any context, in addition to rules. The main architecture, design, and algorithms used in chatbots. In aspect that made ELIZA popular was because people thought this paper, we also describe the evolution of chatbots from a they were talking to real human.
    [Show full text]
  • Chatterbots 2 – a History of Chatbots
    ! " Mobile Coach - Enterprise Chatbot Platfo… # Customize $ 4 % 0 + New & Edit Post ! Edit with Elementor ' 0 Howdy, Mobile Coach ( WHY MOBILE COACH WHAT WE DO WHO WE HELP " GET A DEMO ABOUT SUPPORT BLOG Chatterbots 2 – A History of Chatbots Casey Sullivan ! January 2019 ! FACEBOOK " GOOGLE+ # TWITTER $ LINKEDIN A History of Chatbots In April 2016 1-800-Flowers announced Gwyn, their Facebook Messenger chatbot at Facebook’s F8 conference. Gwyn is a “personal gift concierge” that enables users to search, select and order the perfect flower arrangement. Shoppers can, as Mark Zuckerberg put it, order from 1-800-Flowers, without ever having to call 1-800-Flowers again! Gwyn helped reach a new customer base. In fact, 1-800-Flowers reported that 70% of orders via Gwyn were from new customers. [image source: https://botsociety.io/blog/2018/03/chatbot-examples/] With their increasing prevalence in today’s world, chatbots seem like a recent idea. While they have certainly been improved upon and made more useful and productive in the past 10-12 years, chatbot history actually goes back nearly 70 years to the beginning of computing itself. While not a comprehensive history of chatbots we will highlight some impactful and influential chatbots and developments from the last 70 years. Early Chatbot History: 1950 – 2000 The ideas for chatbots and computer intelligence date back to 1950. An English scientist named Alan Turing published an article in which he proposed the question “Can machines think?” Additionally, his article lays out the basis for the Turing test, a way to measure whether you are speaking to a human or a machine.
    [Show full text]
  • Introduction to Artificial Intelligence
    What is AI? Big Questions • There are no crisp definitions • Here’s one from John McCarthy, (He coined the phrase AI in Introduction to • Can machines think? 1956) - see http://www.formal.Stanford.EDU/jmc/whatisai/) • And if so, how? Q. What is artificial intelligence? Artificial A. It is the science and engineering of making intelligent • And if not, why not? machines, especially intelligent computer programs. It is related to the similar task of using computers to understand Intelligence • And what does this say about human intelligence, but AI does not have to confine itself to methods that are biologically observable. human beings? Q. Yes, but what is intelligence? Chapter 1 A. Intelligence is the computational part of the ability to achieve • And what does this say about the goals in the world. Varying kinds and degrees of intelligence mind? occur in people, many animals and some machines. Other possible AI definitions What’s easy and what’s hard? History • AI is a collection of hard problems which can be • It’s been easier to mechanize many of the high level tasks solved by humans and other living things, but for we usually associate with “intelligence” in people which we don’t have good algorithms for solving. – e.g., Symbolic integration, proving theorems, playing chess, medical diagnosis, etc. – E.g., understanding spoken natural language, medical • It’s been very hard to mechanize tasks that lots of animals diagnosis, circuit design, etc. can do • AI Problem + Sound theory = Engineering problem – walking around without running into things • Some problems used to be thought of as AI but are – catching prey and avoiding predators now considered not – interpreting complex sensory information (e.g., visual, aural, …) – modeling the internal states of other animals from their behavior – e.g., compiling Fortran in 1955, symbolic mathematics in – working as a team (e.g.
    [Show full text]
  • Villanova Journal of Science, Technology and Management Vol
    Villanova Journal of Science, Technology and Management Vol. 1. No. 1. 2019. ISSN: 2672-4995 (Online) 2672-4987 (Print) THE WOES OF SCIENTIFIC REALISM Jonathan C. Okeke Department of Philosophy University of Calabar, Calabar, Cross Rivers State, Nigeria [email protected] & Kanu, Ikechukwu Anthony Department of Philosophy University of Nigeria, Nsukka, Enugu State, Nigeria [email protected]; 08036345466 Abstract This paper investigated the disagreement between Realists and Anti-realists on the observable and unobservable distinction in scientific practice. While the realists maintain that machines and gadgets can simulate the human act of perception there-by making all realities under the screen of science observable, the anti-realists or the instrumentalists insist that what cannot be observed with the human senses even if detected with gadgets are not observable. This paper contended against the realist position which says that machines can simulate the human activity of perception. Hence the distinction between what is observable and unobservable is shown to be indisputable. INTRODUCTION In metaphysics there is a long standing argument between followers of realism (the view that the physical world exists independently of human thought and perception) and the apologists of idealism (the view that the existence of the physical world is dependent on human perception) (Ozumba, 2001). Realism is further broken down to three different types: ultra or transcendental realism which Plato represents, and which holds that the real things exist in a realm other than this physical one (Copleston, 1985). Naïve or Nominal realism which Philosophers like G. E. Moore represent hold that things in this physical world are real as we perceive them.
    [Show full text]
  • Arxiv:2004.10151V3 [Cs.CL] 2 Nov 2020
    Experience Grounds Language Yonatan Bisk* Ari Holtzman* Jesse Thomason* Jacob Andreas Yoshua Bengio Joyce Chai Mirella Lapata Angeliki Lazaridou Jonathan May Aleksandr Nisnevich Nicolas Pinto Joseph Turian Abstract Meaning is not a unique property of language, but a general characteristic of human activity ... We cannot Language understanding research is held back say that each morpheme or word has a single or central meaning, or even that it has a continuous or coherent by a failure to relate language to the physical range of meanings ... there are two separate uses and world it describes and to the social interactions meanings of language – the concrete ... and the abstract. it facilitates. Despite the incredible effective- ness of language processing models to tackle Zellig S. Harris (Distributional Structure 1954) tasks after being trained on text alone, success- ful linguistic communication relies on a shared trained solely on text corpora, even when those cor- experience of the world. It is this shared expe- pora are meticulously annotated or Internet-scale. rience that makes utterances meaningful. You can’t learn language from the radio. Nearly Natural language processing is a diverse field, every NLP course will at some point make this and progress throughout its development has claim. The futility of learning language from lin- come from new representational theories, mod- guistic signal alone is intuitive, and mirrors the eling techniques, data collection paradigms, belief that humans lean deeply on non-linguistic and tasks. We posit that the present success knowledge (Chomsky, 1965, 1980). However, as of representation learning approaches trained a field we attempt this futility: trying to learn lan- on large, text-only corpora requires the paral- guage from the Internet, which stands in as the lel tradition of research on the broader physi- cal and social context of language to address modern radio to deliver limitless language.
    [Show full text]
  • From Eliza to Xiaoice: Challenges and Opportunities with Social Chatbots
    From Eliza to XiaoIce: Challenges and Opportunities with Social Chatbots Heung-Yeung Shum, Xiaodong He, Di Li Microsoft Corporation Abstract: Conversational systems have come a long way since their inception in the 1960s. After decades of research and development, we’ve seen progress from Eliza and Parry in the 60’s and 70’s, to task-completion systems as in the DARPA Communicator program in the 2000s, to intelligent personal assistants such as Siri in the 2010s, to today’s social chatbots like XiaoIce. Social chatbots’ appeal lies not only in their ability to respond to users’ diverse requests, but also in being able to establish an emotional connection with users. The latter is done by satisfying users’ need for communication, affection, as well as social belonging. To further the advancement and adoption of social chatbots, their design must focus on user engagement and take both intellectual quotient (IQ) and emotional quotient (EQ) into account. Users should want to engage with a social chatbot; as such, we define the success metric for social chatbots as conversation-turns per session (CPS). Using XiaoIce as an illustrative example, we discuss key technologies in building social chatbots from core chat to visual awareness to skills. We also show how XiaoIce can dynamically recognize emotion and engage the user throughout long conversations with appropriate interpersonal responses. As we become the first generation of humans ever living with AI, we have a responsibility to design social chatbots to be both useful and empathetic, so they will become ubiquitous and help society as a whole. 1.
    [Show full text]