Frilled Shark Research Project
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sharks Great and Small
Sharks Great and Small Description: Are sharks really huge, man-eating beasts? Audience: 3rd – 5th Grade, with Actually no. In this activity students will estimate and Middle and High school extensions measure out lengths of sharks to discover how long Duration: 60 minutes sharks really are. STEM Process Skills: what process Materials: tape measure or meter stick (1 per group), skills are used throughout colored sidewalk chalk (1 – 2 per group) Learning Objectives/Goals: The Procedures: · student will be able to estimate • Divide the students into teams of four. Each team approximate lengths of various should have a supply of colored sidewalk chalk and shark species. a tape measure or meter stick. Assign each team four sharks to study. Focus TEKS: • points will be length and width (if the information is 3rd Grade – Science 1, 2, 3, 4; Math 2, 4 available). th 4 Grade – Science 1, 2, 3, 4; Math 2, 4 • On an outdoor surface, have the students 5th Grade - Science 1, 2, 3, 4; Math 2, 4 estimate and draw the length of each of their sharks. Ocean Literacy Principles: 5 • In a different color chalk, redraw the same shark using the tape measure or meter stick for accuracy. Vocabulary: estimate, length, • Compare the groups' results. measure Extensions: Set Up/Break Down: Find a sidewalk • Covert the units from meters to feet (or centimeters near your classroom or use the to inches) playground • Determine the percent of error in each estimate. • Use ratios to compare the sharks' widths to their Sept. 25, 2018 lengths and make scaled drawings. -
EU Shark Conservation
EU Shark Conservation Recent Progress and Priorities for Action Species in the Spotlight European fishermen have a long history of catching a wide variety 01 of sharks and rays. Some beleaguered species finally have EU protection while others are the subject of new, unregulated fisheries. Here we profile some of Europe’s most heavily fished species. Spiny dogfish or ‘Spurdog’ Porbeagle shark Shortfin mako shark Squalus acanthias Lamna nasus Isurus oxyrinchus A changing profile The European Union (EU) remains a global shark fishing power, A slender, white-spotted shark that grows to A powerful, torpedo-shaped, highly migratory This wide-ranging shark, thought to be the world’s about 1 metre in length and travels in schools. shark closely related to great white sharks. fastest, cannot out-swim today’s vast fishing fleets. but its record on shark conservation is changing. The EU’s notorious Can live for many decades; remains pregnant for nearly two years. FOUND: Cool waters in both hemispheres, FOUND: Open-ocean waters around the world, not-so-distant past – characterised by severe population depletion, including offshore in northern Europe. including the Mediterranean Sea and the Atlantic unregulated fishing and exceptionally weak regulations – is now FOUND: Cool, coastal waters worldwide. DEMAND: Fins valuable and sold to Asia while Ocean. DEMAND: Smoked belly flaps popular in Germany. sought primarily for meat. DEMAND: Among the most highly sought of EU finally being balanced by recent, significant strides toward limiting Sold as ‘rock salmon’ in UK fish and chips shops. STATUS: Critically Endangered in the Northeast shark species, particularly by Spanish high seas EU shark fisheries and securing international protections for the Fins not considered high quality but still traded Atlantic and Mediterranean Sea; Vulnerable longline fishermen. -
Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences
Hindawi Publishing Corporation BioMed Research International Volume 2013, Article ID 147064, 11 pages http://dx.doi.org/10.1155/2013/147064 Research Article Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences Keiko Tanaka,1 Takashi Shiina,1 Taketeru Tomita,2 Shingo Suzuki,1 Kazuyoshi Hosomichi,3 Kazumi Sano,4 Hiroyuki Doi,5 Azumi Kono,1 Tomoyoshi Komiyama,6 Hidetoshi Inoko,1 Jerzy K. Kulski,1,7 and Sho Tanaka8 1 Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan 2 Fisheries Science Center, The Hokkaido University Museum, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan 3 Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan 4 Division of Science Interpreter Training, Komaba Organization for Education Excellence College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan 5 Shimonoseki Marine Science Museum, 6-1 Arcaport, Shimonoseki, Yamaguchi 750-0036, Japan 6 Department of Clinical Pharmacology, Division of Basic Clinical Science and Public Health, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan 7 Centre for Forensic Science, The University of Western Australia, Nedlands, WA 6008, Australia 8 Department of Marine Biology, School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan Correspondence should be addressed to Takashi Shiina; [email protected] Received 1 March 2013; Accepted 26 July 2013 Academic Editor: Dietmar Quandt Copyright © 2013 Keiko Tanaka et al. -
Identification Guide to the Deep-Sea Cartilaginous Fishes Of
Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean FAO. 2015. Identification guide to the deep–sea cartilaginous fishes of the Southeastern Atlantic Ocean. FishFinder Programme, by Ebert, D.A. and Mostarda, E., Rome, Italy. Supervision: Merete Tandstad, Jessica Sanders (FAO, Rome) Technical editor: Edoardo Mostarda (FAO, Rome) Colour illustrations, cover and graphic design: Emanuela D’Antoni (FAO, Rome) This guide was prepared under the “FAO Deep–sea Fisheries Programme” thanks to a generous funding from the Government of Norway (Support to the implementation of the International Guidelines on the Management of Deep-Sea Fisheries in the High Seas project) for the purpose of assisting states, institutions, the fishing industry and RFMO/As in the implementation of FAO International Guidelines for the Management of Deep-sea Fisheries in the High Seas. It was developed in close collaboration with the FishFinder Programme of the Marine and Inland Fisheries Branch, Fisheries Department, Food and Agriculture Organization of the United Nations (FAO). The present guide covers the deep–sea Southeastern Atlantic Ocean and that portion of Southwestern Indian Ocean from 18°42’E to 30°00’E (FAO Fishing Area 47). It includes a selection of cartilaginous fish species of major, moderate and minor importance to fisheries as well as those of doubtful or potential use to fisheries. It also covers those little known species that may be of research, educational, and ecological importance. In this region, the deep–sea chondrichthyan fauna is currently represented by 50 shark, 20 batoid and 8 chimaera species. This guide includes full species accounts for 37 shark, 9 batoid and 4 chimaera species selected as being the more difficult to identify and/or commonly caught. -
For Creative Minds
For Creative Minds The For Creative Minds educational section may be photocopied or printed from our website by the owner of this book for educational, non-commercial uses. Cross-curricular teaching activities, interactive quizzes, and more are available online. Go to ArbordalePublishing.com and click on the book’s cover to explore all the links. Deep Ocean Habitats Things change the deeper you go in the ocean: light disappears, temperatures grow increasingly colder, and pressure gets much higher. The amount of oxygen in the water sunlight zone decreases with depth but then gets higher again at the bottom! Because these changes twilight zone affect the types of organisms that can survive there, the ocean is divided into five layers by depth called life zones. Only the sunlight zone receives enough sunlight for algae to convert light into energy midnight zone (photosynthesis). Because almost all food webs start with plants or algae, this is the zone where the most animals live. The twilight zone still gets some sunlight, but not enough for photosynthesis. The animals that live here either travel to the sunlight zone to feed or depend on food falling from above. There is no light in the midnight zone. Most abyssal zone of the animals that live here produce their own light through bioluminescence. The abyssal zone is pitch black, almost freezing cold, and has little oxygen and incredibly high pressure, yet animals still live here. In the deep trenches is the hadal zone. It is like the abyssal zone, except with even more hadal zone immense -
And Their Functional, Ecological, and Evolutionary Implications
DePaul University Via Sapientiae College of Science and Health Theses and Dissertations College of Science and Health Spring 6-14-2019 Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications Phillip C. Sternes DePaul University, [email protected] Follow this and additional works at: https://via.library.depaul.edu/csh_etd Part of the Biology Commons Recommended Citation Sternes, Phillip C., "Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications" (2019). College of Science and Health Theses and Dissertations. 327. https://via.library.depaul.edu/csh_etd/327 This Thesis is brought to you for free and open access by the College of Science and Health at Via Sapientiae. It has been accepted for inclusion in College of Science and Health Theses and Dissertations by an authorized administrator of Via Sapientiae. For more information, please contact [email protected]. Body Forms in Sharks (Chondrichthyes: Elasmobranchii), and Their Functional, Ecological, and Evolutionary Implications A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Master of Science June 2019 By Phillip C. Sternes Department of Biological Sciences College of Science and Health DePaul University Chicago, Illinois Table of Contents Table of Contents.............................................................................................................................ii List of Tables..................................................................................................................................iv -
NEAFC Deepwater Sharks
9.3.2.3 Special request, Advice October 2012 ECOREGION Widely distributed and migratory stocks SUBJECT NEAFC Special request on the catch and status of deep-water sharks in the Northeast Atlantic Request With respect to the deep-sea shark species included in the NEAFC measure adopted for 2012, ICES is requested to provide information with respect to stock status and catch history for the individual species in the NEAFC Convention Area, with a view to defining specific management measures. Centrophorus granulosus Gulper shark Centrophorus squamosus Leafscale gulper shark Centroscyllium fabricii Black dogfish Centroscymnus coelolepis Portuguese dogfish Centroselachus crepidater Longnose velvet dogfish Dalatias licha Kitefin shark Etmopterus princeps Greater lanternshark Apristuris spp Iceland catshark Chlamydoselachus anguineus Frilled shark Deania calcea Birdbeak dogfish Galeus melastomus Blackmouth dogfish Galeus murinus Mouse catshark Hexanchus griseus Bluntnose six-gilled shark Etmopterus spinax Velvet belly Oxynotus paradoxus Sailfin roughshark (Sharpback shark) Scymnodon ringens Knifetooth dogfish Somniosus microcephalus Greenland shark ICES Response Catch history for each of the requested species is provided in the section “Catch history” below. A summary of the stock status of these species, where available, is provided in the section “Stock status”. Most of these species are considered to be data limited, with most caught only as bycatch rather than in a targeted fishery. ICES provides individual advice for Centrophorus squamosus, Centroscymnus coelolepis, and Dalatias licha. More detailed information on these species can be found in the appropriate ICES advice sheets. Further information on deep-water sharks can be found in the report of the ICES Working Group on Elasmobranch Fishes (ICES, 2012). -
The Conservation Status of Pelagic Sharks and Rays
The Conservation Status of The Conservation Status of Pelagic Sharks and Rays The Conservation Status of Pelagic Sharks and Rays Pelagic Sharks and Rays Report of the IUCN Shark Specialist Group Pelagic Shark Red List Workshop Report of the IUCN Shark Specialist Group Tubney House, University of Oxford, UK, 19–23 February 2007 Pelagic Shark Red List Workshop Compiled and edited by Tubney House, University of Oxford, UK, 19–23 February 2007 Merry D. Camhi, Sarah V. Valenti, Sonja V. Fordham, Sarah L. Fowler and Claudine Gibson Executive Summary This report describes the results of a thematic Red List Workshop held at the University of Oxford’s Wildlife Conservation Research Unit, UK, in 2007, and incorporates seven years (2000–2007) of effort by a large group of Shark Specialist Group members and other experts to evaluate the conservation status of the world’s pelagic sharks and rays. It is a contribution towards the IUCN Species Survival Commission’s Shark Specialist Group’s “Global Shark Red List Assessment.” The Red List assessments of 64 pelagic elasmobranch species are presented, along with an overview of the fisheries, use, trade, and management affecting their conservation. Pelagic sharks and rays are a relatively small group, representing only about 6% (64 species) of the world’s total chondrichthyan fish species. These include both oceanic and semipelagic species of sharks and rays in all major and Claudine Gibson L. Fowler Sarah Fordham, Sonja V. Valenti, V. Camhi, Sarah Merry D. Compiled and edited by oceans of the world. No chimaeras are known to be pelagic. Experts at the workshop used established criteria and all available information to update and complete global and regional species-specific Red List assessments following IUCN protocols. -
194631199.Pdf
Hindawi Publishing Corporation BioMed Research International Volume 2013, Article ID 147064, 11 pages http://dx.doi.org/10.1155/2013/147064 Research Article Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences Keiko Tanaka,1 Takashi Shiina,1 Taketeru Tomita,2 Shingo Suzuki,1 Kazuyoshi Hosomichi,3 Kazumi Sano,4 Hiroyuki Doi,5 Azumi Kono,1 Tomoyoshi Komiyama,6 Hidetoshi Inoko,1 Jerzy K. Kulski,1,7 and Sho Tanaka8 1 Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan 2 Fisheries Science Center, The Hokkaido University Museum, 3-1-1 Minato-cho, Hakodate, Hokkaido 041-8611, Japan 3 Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan 4 Division of Science Interpreter Training, Komaba Organization for Education Excellence College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan 5 Shimonoseki Marine Science Museum, 6-1 Arcaport, Shimonoseki, Yamaguchi 750-0036, Japan 6 Department of Clinical Pharmacology, Division of Basic Clinical Science and Public Health, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1143, Japan 7 Centre for Forensic Science, The University of Western Australia, Nedlands, WA 6008, Australia 8 Department of Marine Biology, School of Marine Science and Technology, Tokai University, 3-20-1 Orido, Shimizu, Shizuoka 424-8610, Japan Correspondence should be addressed to Takashi Shiina; [email protected] Received 1 March 2013; Accepted 26 July 2013 Academic Editor: Dietmar Quandt Copyright © 2013 Keiko Tanaka et al. -
Identity of Extra Branchial Arches of Hexanchiformes (Pisces, Elasmobranchii)
Title Identity of Extra Branchial Arches of Hexanchiformes (Pisces, Elasmobranchii) Author(s) SHIRAI, Shigeru Citation 北海道大學水産學部研究彙報, 43(1), 24-32 Issue Date 1992-02 Doc URL http://hdl.handle.net/2115/24089 Type bulletin (article) File Information 43(1)_P24-32.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Bull. Fac. Fish. Hokkaido Univ. 43(1), 24-32. 1992. Identity of Extra Branchial Arches of Hexanchiformes (Pisces, Elasmobranchii) Shigeru SHIRAI * Abstract A hypothesis on the homology of branchial arches in living shark taxa is proposed. Based on the comparative anatomy, the branchial arches are composed of four types of units, the anteriormost (a-type), penultimate (y-type), ultimate (o--type), and other two or more arches (p-type). The extra branchial unit(s) of hexanchiforms should result from the duplication of the p-type arch (second or third arch of the original five-gilled condition). The first additional arch in the hexanchoids (cow sharks) is regarded as the fourth (He:c anchus) or the fifth arch (Heptranchias and Notorynchus). Homology of the extra arch in Ohlamydoselachus (frill sharks) is uncertain, but it appears to be homoplasous with that of hexanchoids. Most living elasmobranchs have five branchial arches supporting four holo branchs. In the order Hexanchiformes (Compagno, 1973) composed of Ohlamydoselachus and the hexanchoids (Notorynchus, Heptranchias, and Hexanchus), six or seven branchial arches are present, and previous authors have been tradition ally referred to the unit(s) behind the fifth branchial arch as the "sixth" or "seventh" arch (e.g., Garman, 1885, 1913; Goodey, 19lO; Allis, 1923; Daniel, 1934). -
Order HEXANCHIFORMES CHLAMYDOSELACHIDAE Frilled Sharks a Single Species in This Family
click for previous page 372 Sharks Order HEXANCHIFORMES CHLAMYDOSELACHIDAE Frilled sharks A single species in this family. Chlamydoselachus anguineus Garman, 1884 HXC Frequent synonyms / misidentifications: None / None. FAO names: En - Frilled shark; Fr - Requin lézard; Sp - Tiburón anguila. ventral view of head upper and lower teeth Diagnostic characters: A medium-sized shark with a long, eel-like body. Nostrils without barbels or nasoral grooves; no nictitating lower eyelids; snout very short, bluntly rounded; mouth extremely long, extending far behind the eyes,and nearly terminal;teeth of upper and lower jaws alike,with 3 strong cusps and a pair of minute cusplets between them, not compressed or blade-like. Head with 6 pairs of long and frilly gill slits, the last in front of pectoral-fin origins, the first connected to each other across the throat by a flap of skin; no gill rakers on inner gill slits. A single low dorsal fin, posterior to pelvic fins; anal fin present; caudal fin strongly asymmetrical, with subterminal notch vestigial or absent and without a ventral caudal lobe.Caudal peduncle compressed, without keels or precaudal pits. Intestinal valve of spiral type. Colour: grey-brown above, sometimes lighter below, fins dusky. Similar families occurring in the area Hexanchidae: Snout longer, mouth subtermi- nal, body more stocky and cylindrical, comb-like cutting teeth in the lower jaw, first gill slits not connected across the throat, higher, more anterior dorsal fin, and strong subterminal notch on the caudal fin. Size: Maximum about 196 cm; size at birth mouth about 39 cm; adults common to 150 cm. -
Assembling the Tree of Life
ASSEMBLING THE TREE OF LIFE *^» EDITED BY JOEL CRACRAFT MICHAEL J. DGNOGHUE M. L. J. Stiassny E. O. Wiley G. D. Johnson M. R. de Carvalho Gnathostome Fishes Gnathosiomata are a species-rich assemblage that, with the dozen of which remain undescribed. Recent sharks and rays exclusion of the Petromyzontiformes (lampreys, 45 spp,), rep- are further united in the subclass Elasmobranchii (975+ spp,), resents all living members of Vertebral a. Gnathostomes are whereas the chimaeras form the subclass Holocephali (35+ most notably characterized by the possession ol endoskeletal spp.). All chimaeras are marine; as are most sharks and rays, jaws primitively formed of dorsal palaioquadrate and ventral but about 15 living elasmobranch species are euryhaline, and Meckelian cartilages articulating at a mandibular joint, Our task some 30 are permanently restricted to freshwater (Compagno here is to provide a review of a large (paraphyletic) subset of and Cook 1995). gnathostome diversity—an artificial grouping often referred Chondriehthyans are characterized by perichondral pris- to as the "jawed fishes": chondriehthyans, "piscine sarcoptery- matic calcification; the prisms form a honeycomb-like mo- gians," and actinoptciygians. We treat all living jawed ver- saic that covers most of the cartilaginous endoskeleton tebrates with the exclusion of most Sarcopterygii—ihe (Schaeffer 1981, Janvier 1996). Paired male intromittent tetrapods—since they are discussed in other chapters, After a organs derived from pelvic radials (claspers) are probably review of the chondriehthyans or cartilaginous fishes and a another chondrichihyan synapomorphy, although they are brief summary of the so-called "piscine sarcopierygians," we unknown in some early fossil forms (e.g., the Devonian focus our contribution on the largest and most diverse of the Cladaselache and Carboniferous Caaeodm), but all recent three groups, the Actinopterygil, or rayfin fishes.