SPARC Joint Programming Specification 1 Implementation Supplement: Sun Ultrasparc III
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sun Fire E2900 Server
Sun FireTM E2900 Server Just the Facts February 2005 SunWin token 401325 Sun Confidential – Internal Use Only Just The Facts Sun Fire E2900 Server Copyrights ©2005 Sun Microsystems, Inc. All Rights Reserved. Sun, Sun Microsystems, the Sun logo, Sun Fire, Netra, Ultra, UltraComputing, Sun Enterprise, Sun Enterprise Ultra, Starfire, Solaris, Sun WebServer, OpenBoot, Solaris Web Start Wizards, Solstice, Solstice AdminSuite, Solaris Management Console, SEAM, SunScreen, Solstice DiskSuite, Solstice Backup, Sun StorEdge, Sun StorEdge LibMON, Solstice Site Manager, Solstice Domain Manager, Solaris Resource Manager, ShowMe, ShowMe How, SunVTS, Solstice Enterprise Agents, Solstice Enterprise Manager, Java, ShowMe TV, Solstice TMNscript, SunLink, Solstice SunNet Manager, Solstice Cooperative Consoles, Solstice TMNscript Toolkit, Solstice TMNscript Runtime, SunScreen EFS, PGX, PGX32, SunSpectrum, SunSpectrum Platinum, SunSpectrum Gold, SunSpectrum Silver, SunSpectrum Bronze, SunStart, SunVIP, SunSolve, and SunSolve EarlyNotifier are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. All other product or service names mentioned -
IEEE Standard 754 for Binary Floating-Point Arithmetic
Work in Progress: Lecture Notes on the Status of IEEE 754 October 1, 1997 3:36 am Lecture Notes on the Status of IEEE Standard 754 for Binary Floating-Point Arithmetic Prof. W. Kahan Elect. Eng. & Computer Science University of California Berkeley CA 94720-1776 Introduction: Twenty years ago anarchy threatened floating-point arithmetic. Over a dozen commercially significant arithmetics boasted diverse wordsizes, precisions, rounding procedures and over/underflow behaviors, and more were in the works. “Portable” software intended to reconcile that numerical diversity had become unbearably costly to develop. Thirteen years ago, when IEEE 754 became official, major microprocessor manufacturers had already adopted it despite the challenge it posed to implementors. With unprecedented altruism, hardware designers had risen to its challenge in the belief that they would ease and encourage a vast burgeoning of numerical software. They did succeed to a considerable extent. Anyway, rounding anomalies that preoccupied all of us in the 1970s afflict only CRAY X-MPs — J90s now. Now atrophy threatens features of IEEE 754 caught in a vicious circle: Those features lack support in programming languages and compilers, so those features are mishandled and/or practically unusable, so those features are little known and less in demand, and so those features lack support in programming languages and compilers. To help break that circle, those features are discussed in these notes under the following headings: Representable Numbers, Normal and Subnormal, Infinite -
SPARC Assembly Language Reference Manual
SPARC Assembly Language Reference Manual 2550 Garcia Avenue Mountain View, CA 94043 U.S.A. A Sun Microsystems, Inc. Business 1995 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Portions of this product may be derived from the UNIX® system, licensed from UNIX Systems Laboratories, Inc., a wholly owned subsidiary of Novell, Inc., and from the Berkeley 4.3 BSD system, licensed from the University of California. Third-party software, including font technology in this product, is protected by copyright and licensed from Sun’s Suppliers. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR 52.227-19. The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications. TRADEMARKS Sun, Sun Microsystems, the Sun logo, SunSoft, the SunSoft logo, Solaris, SunOS, OpenWindows, DeskSet, ONC, ONC+, and NFS are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd. OPEN LOOK is a registered trademark of Novell, Inc. -
X86-64 Machine-Level Programming∗
x86-64 Machine-Level Programming∗ Randal E. Bryant David R. O'Hallaron September 9, 2005 Intel’s IA32 instruction set architecture (ISA), colloquially known as “x86”, is the dominant instruction format for the world’s computers. IA32 is the platform of choice for most Windows and Linux machines. The ISA we use today was defined in 1985 with the introduction of the i386 microprocessor, extending the 16-bit instruction set defined by the original 8086 to 32 bits. Even though subsequent processor generations have introduced new instruction types and formats, many compilers, including GCC, have avoided using these features in the interest of maintaining backward compatibility. A shift is underway to a 64-bit version of the Intel instruction set. Originally developed by Advanced Micro Devices (AMD) and named x86-64, it is now supported by high end processors from AMD (who now call it AMD64) and by Intel, who refer to it as EM64T. Most people still refer to it as “x86-64,” and we follow this convention. Newer versions of Linux and GCC support this extension. In making this switch, the developers of GCC saw an opportunity to also make use of some of the instruction-set features that had been added in more recent generations of IA32 processors. This combination of new hardware and revised compiler makes x86-64 code substantially different in form and in performance than IA32 code. In creating the 64-bit extension, the AMD engineers also adopted some of the features found in reduced-instruction set computers (RISC) [7] that made them the favored targets for optimizing compilers. -
FPGA Based Quadruple Precision Floating Point Arithmetic for Scientific Computations
International Journal of Advanced Computer Research (ISSN (print): 2249-7277 ISSN (online): 2277-7970) Volume-2 Number-3 Issue-5 September-2012 FPGA Based Quadruple Precision Floating Point Arithmetic for Scientific Computations 1Mamidi Nagaraju, 2Geedimatla Shekar 1Department of ECE, VLSI Lab, National Institute of Technology (NIT), Calicut, Kerala, India 2Asst.Professor, Department of ECE, Amrita Vishwa Vidyapeetham University Amritapuri, Kerala, India Abstract amounts, and fractions are essential to many computations. Floating-point arithmetic lies at the In this project we explore the capability and heart of computer graphics cards, physics engines, flexibility of FPGA solutions in a sense to simulations and many models of the natural world. accelerate scientific computing applications which Floating-point computations suffer from errors due to require very high precision arithmetic, based on rounding and quantization. Fast computers let IEEE 754 standard 128-bit floating-point number programmers write numerically intensive programs, representations. Field Programmable Gate Arrays but computed results can be far from the true results (FPGA) is increasingly being used to design high due to the accumulation of errors in arithmetic end computationally intense microprocessors operations. Implementing floating-point arithmetic in capable of handling floating point mathematical hardware can solve two separate problems. First, it operations. Quadruple Precision Floating-Point greatly speeds up floating-point arithmetic and Arithmetic is important in computational fluid calculations. Implementing a floating-point dynamics and physical modelling, which require instruction will require at a generous estimate at least accurate numerical computations. However, twenty integer instructions, many of them conditional modern computers perform binary arithmetic, operations, and even if the instructions are executed which has flaws in representing and rounding the on an architecture which goes to great lengths to numbers. -
Sun Blade 1000 and 2000 Workstations
Sun BladeTM 1000 and 2000 Workstations Just the Facts Copyrights 2002 Sun Microsystems, Inc. All Rights Reserved. Sun, Sun Microsystems, the Sun logo, Sun Blade, PGX, Solaris, Ultra, Sun Enterprise, Starfire, SunPCi, Forte, VIS, XGL, XIL, Java, Java 3D, SunVideo, SunVideo Plus, Sun StorEdge, SunMicrophone, SunVTS, Solstice, Solstice AdminTools, Solstice Enterprise Agents, ShowMe, ShowMe How, ShowMe TV, Sun Workstation, StarOffice, iPlanet, Solaris Resource Manager, Java 2D, OpenWindows, SunCD, Sun Quad FastEthernet, SunFDDI, SunATM, SunCamera, SunForum, PGX32, SunSpectrum, SunSpectrum Platinum, SunSpectrum Gold, SunSpectrum Silver, SunSpectrum Bronze, SunSolve, SunSolve EarlyNotifier, and SunClient are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered trademark in the United States and in other countries, exclusively licensed through X/Open Company, Ltd. FireWire is a registered trademark of Apple Computer, Inc., used under license. OpenGL is a trademark of Silicon Graphics, Inc., which may be registered in certain jurisdictions. Netscape is a trademark of Netscape Communications Corporation. PostScript and Display PostScript are trademarks of Adobe Systems, Inc., which may be registered in -
X86 Intrinsics Cheat Sheet Jan Finis [email protected]
x86 Intrinsics Cheat Sheet Jan Finis [email protected] Bit Operations Conversions Boolean Logic Bit Shifting & Rotation Packed Conversions Convert all elements in a packed SSE register Reinterpet Casts Rounding Arithmetic Logic Shift Convert Float See also: Conversion to int Rotate Left/ Pack With S/D/I32 performs rounding implicitly Bool XOR Bool AND Bool NOT AND Bool OR Right Sign Extend Zero Extend 128bit Cast Shift Right Left/Right ≤64 16bit ↔ 32bit Saturation Conversion 128 SSE SSE SSE SSE Round up SSE2 xor SSE2 and SSE2 andnot SSE2 or SSE2 sra[i] SSE2 sl/rl[i] x86 _[l]rot[w]l/r CVT16 cvtX_Y SSE4.1 cvtX_Y SSE4.1 cvtX_Y SSE2 castX_Y si128,ps[SSE],pd si128,ps[SSE],pd si128,ps[SSE],pd si128,ps[SSE],pd epi16-64 epi16-64 (u16-64) ph ↔ ps SSE2 pack[u]s epi8-32 epu8-32 → epi8-32 SSE2 cvt[t]X_Y si128,ps/d (ceiling) mi xor_si128(mi a,mi b) mi and_si128(mi a,mi b) mi andnot_si128(mi a,mi b) mi or_si128(mi a,mi b) NOTE: Shifts elements right NOTE: Shifts elements left/ NOTE: Rotates bits in a left/ NOTE: Converts between 4x epi16,epi32 NOTE: Sign extends each NOTE: Zero extends each epi32,ps/d NOTE: Reinterpret casts !a & b while shifting in sign bits. right while shifting in zeros. right by a number of bits 16 bit floats and 4x 32 bit element from X to Y. Y must element from X to Y. Y must from X to Y. No operation is SSE4.1 ceil NOTE: Packs ints from two NOTE: Converts packed generated. -
Powerpc User Instruction Set Architecture Book I Version 2.01
PowerPC User Instruction Set Architecture Book I Version 2.01 September 2003 Manager: Joe Wetzel/Poughkeepsie/IBM Technical Content: Ed Silha/Austin/IBM Cathy May/Watson/IBM Brad Frey/Austin/IBM The following paragraph does not apply to the United Kingdom or any country or state where such provisions are inconsistent with local law. The specifications in this manual are subject to change without notice. This manual is provided “AS IS”. Interna- tional Business Machines Corp. makes no warranty of any kind, either expressed or implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. International Business Machines Corp. does not warrant that the contents of this publication or the accompanying source code examples, whether individually or as one or more groups, will meet your requirements or that the publication or the accompanying source code examples are error-free. This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. Address comments to IBM Corporation, Internal Zip 9630, 11400 Burnett Road, Austin, Texas 78758-3493. IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you. The following terms are trademarks of the International Business Machines Corporation in the United States and/or other countries: IBM PowerPC RISC/System 6000 POWER POWER2 POWER4 POWER4+ IBM System/370 Notice to U.S. Government Users—Documentation Related to Restricted Rights—Use, duplication or disclosure is subject to restrictions set fourth in GSA ADP Schedule Contract with IBM Corporation. -
UM0434 E200z3 Powerpc Core Reference Manual
UM0434 e200z3 PowerPC core Reference manual Introduction The primary objective of this user’s manual is to describe the functionality of the e200z3 embedded microprocessor core for software and hardware developers. This book is intended as a companion to the EREF: A Programmer's Reference Manual for Freescale Book E Processors (hereafter referred to as EREF). Book E is a PowerPC™ architecture definition for embedded processors that ensures binary compatibility with the user-instruction set architecture (UISA) portion of the PowerPC architecture as it was jointly developed by Apple, IBM, and Motorola (referred to as the AIM architecture). This document distinguishes among the three levels of the architectural and implementation definition, as follows: ● The Book E architecture—Book E defines a set of user-level instructions and registers that are drawn from the user instruction set architecture (UISA) portion of the AIM definition PowerPC architecture. Book E also includes numerous supervisor-level registers and instructions as they were defined in the AIM version of the PowerPC architecture for the virtual environment architecture (VEA) and the operating environment architecture (OEA). Because the operating system resources (such as the MMU and interrupts) defined by Book E differ greatly from those defined by the AIM architecture, Book E introduces many new registers and instructions. ● Freescale Book E implementation standards (EIS)—In many cases, the Book E architecture definition provides a general framework, leaving specific details up to the implementation. To ensure consistency among its Book E implementations, Freescale has defined implementation standards that provide an additional layer of architecture between Book E and the actual devices. -
Why Transcendentals and Arbitrary Precision?
Why transcendentals and arbitrary precision? Paul Zimmermann, December 15th, 2005 Why transcendentals and arbitrary precision? IEEE 754 Revision Committee, December 15th, 2005 Why Transcendentals? Why transcendentals and arbitrary precision? IEEE 754 Revision Committee, December 15th, 2005 Some transcendentals today Opteron, Linux 2.6.12, gcc 4.0.1, libc 2.3.5: Testing function atan for exponent 0. rounding mode GMP_RNDU: 1.507141 ulp(s) for x=5.27348750514293418412e-01 wrong DR: x=8.71159292701253917812e-01 [-0.505215] Testing function cbrt for exponent 0. rounding mode GMP_RNDN: wrong monotonicity for x=8.90550497574918109578e-01 f(x-)=9.62098454219197263271e-01 not <= f(x)=9.62098454219197152248e-01 Why transcendentals and arbitrary precision? IEEE 754 Revision Committee, December 15th, 2005 Sparc, SunOS 5.7, cc Sun WorkShop 6: Testing function exp for exponent 0. rounding mode GMP_RNDN: 0.659120 ulp(s) for x=9.43344491255437844757e-01 rounding mode GMP_RNDU: wrong DR: x=5.33824498679617898134e-01 [-0.295496] Testing function pow for exponents 0 and 0. rounding mode GMP_RNDN: -0.522792 ulp(s) for x=9.91109071895216686698e-01 t=6.06627312254989226048e-01 Testing function tanh for exponent 0. rounding mode GMP_RNDN: 1.771299 ulp(s) for x=5.19240368581155742334e-01 Why transcendentals and arbitrary precision? IEEE 754 Revision Committee, December 15th, 2005 MIPS R16000, IRIX64 6.5, gcc 3.3: Testing function tan for exponent 10. rounding mode GMP_RNDZ: -6.143332 ulp(s) for x=5.25427198389763360000e+02 wrong DR: x=7.56078520967298570000e+02 [-4.523771] Itanium 1, Linux 2.4.20, gcc 3.2.3, libc 2.2.5: Testing function gamma for exponent 7. -
Fpnew: an Open-Source Multi-Format Floating-Point Unit Architecture For
1 FPnew: An Open-Source Multi-Format Floating-Point Unit Architecture for Energy-Proportional Transprecision Computing Stefan Mach, Fabian Schuiki, Florian Zaruba, Student Member, IEEE, and Luca Benini, Fellow, IEEE Abstract—The slowdown of Moore’s law and the power wall Internet of Things (IoT) domain. In this environment, achiev- necessitates a shift towards finely tunable precision (a.k.a. trans- ing high energy efficiency in numerical computations requires precision) computing to reduce energy footprint. Hence, we need architectures and circuits which are fine-tunable in terms of circuits capable of performing floating-point operations on a wide range of precisions with high energy-proportionality. We precision and performance. Such circuits can minimize the present FPnew, a highly configurable open-source transprecision energy cost per operation by adapting both performance and floating-point unit (TP-FPU) capable of supporting a wide precision to the application requirements in an agile way. The range of standard and custom FP formats. To demonstrate the paradigm of “transprecision computing” [1] aims at creating flexibility and efficiency of FPnew in general-purpose processor a holistic framework ranging from algorithms and software architectures, we extend the RISC-V ISA with operations on half-precision, bfloat16, and an 8bit FP format, as well as SIMD down to hardware and circuits which offer many knobs to vectors and multi-format operations. Integrated into a 32-bit fine-tune workloads. RISC-V core, our TP-FPU can speed up execution of mixed- The most flexible and dynamic way of performing nu- precision applications by 1.67x w.r.t. -
Sun Firetm 12K and Sun Firetm15k System
Sun FireTM 12K System and Sun FireTM 15K System JUST THE FACTS and Configuration Guide Sun Microsystems, Inc. 901 San Antonio Road Palo Alto, CA 94303 U.S.A. 650-960-1300 December 2, 2003 Sun Proprietary – Internal Use Only Copyrights © 2003 Sun Microsystems, Inc., 901 San Antonio Road • Palo Alto, CA 94303 USA. All Rights Reserved. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. Sun, Sun Microsystems, the Sun logo, Sun Fire, UltraSPARC, Solaris, Sun Fireplane, Sun GigabitEthernet, Sun HIPPI/P1.0, Sun Enterprise Systems Interface, Sun Management Center 3.0, Sun StorEdge, Sun StorEdge Volume Manager, SunATM, Java, Sun HPC ClusterTools,ONC/NFS, SunNet, Solstice Site Manager, Solstice Domain Manager, Solstice DiskSuite, Solstice Backup, Sun StorEdge, Sun Quad FastEthernet, SunSolve, SunVIP, Sun Enterprise, ServerStart, SunReady, Sun Professional Services, SunSpectrum, StorEdge S1, and SunSpectrum Platinum are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc., in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. UNIX is a registered trademark in the United States and other countries, exclusively JUST THE FACTS Sun Proprietary - Internal Use Only December 2, 2003 licensed through X/Open Company, Ltd.