20 Ground Improvement – Coming Full Circle 32 30

Total Page:16

File Type:pdf, Size:1020Kb

20 Ground Improvement – Coming Full Circle 32 30 20 Ground Improvement 32 30 years of 48 Ground stabilization for 72 The Rise of UAVs – Coming Full Circle Launched Soil Nails Underground Construction in Geotechnics SEPTEMBER // OCTOBER 2016 Ground Improvement Proudly published by the Geo-Institute of ASCE GEOPIER IS GROUND IMPROVEMENT® Delivering cost-effective, reliable, engineered foundation systems PROVIDING CUSTOMIZED SOLUTIONS FOR ALL SOIL TYPES SEND US YOUR PROJECT DATA Geopier’s goal is to bring you advanced, innovative ground Let our geotechnical engineers customize a solution that meets your improvement technology in a way that is easy to use every day. needs. Submit your project details to receive a feasibility assessment Geopier Rammed Aggregate Pier® and rigid inclusion products and cost estimate at geopier.com/feasibilityrequest enable you to: • Improve variable fill soils in place • Replace deep foundations For more information call 800-371-7470, • Control settlement e-mail [email protected] or visit geopier.com. • Increase soil bearing capacities ©2016 Geopier Foundation Company, Inc. The Geopier® technology and brand names are protected under U.S. patents and trademarks listed at www.geopier.com/patents and other trademark applications and patents pending. Other foreign patents, patent applications, trademark registrations, and trademark applications also exist. September // October 2016 Features 32 The Evolution of Launched Soil Nails 64 Extreme Makeover: Interchange A 30-year retrospective. Gets Ground Improvement Facelift By Colby Barrett and Graeme Quickfall How innovative use of rigid inclusions allowed for rapid construction of a large highway interchange in the Garden State. 40 A History of Deep Vibratory Methods By Gillian M. Williams, Sarah Ramp, Sonia S. Swift, Justin for Ground Improvement Labrozzi, Michael P. Walker, and Frederic Masse A cost-effective foundation solution for 80+ years. By Jeffrey R. Hill, Allen L. Sehn, and Mark Koelling 72 What’s New in Geo? The Rise of UAVs Signals a New Era in 48 Ground Improvement for Geotechnics Underground Construction Big data in geotechnics is coming from above. The good, the bad, and the ugly. By Dimitrios Zekkos, William Greenwood, John By Paul C. Schmall Manousakis, and Jerome Lynch 56 A Sinking Feeling in Happy Valley ON THE COVER Limited mobility grouting arrests movement of Construction of a vibro-replacement, stone column ground improvement program for a emergency room. new restaurant along the San Diego Bayfront. By Shad E. Hoover and Whitney E. Greenawalt The ground improvement was used to mitigate liquefaction and lateral spread potential. With the views of the San Diego skyline across the bay, this site is considered prime real estate for a restaurant that will take advantage of the view. (Photo courtesy Hayward Baker, Inc.) CONNECT WITH US www.asce.org/geo twitter.com/GeoInstitute facebook.com/GeoInstitute LinkedInGeo GeoInstituteASCE 2 GEOSTRATA SEPTEMBER/OCTOBER 2016 SVOFFICE™5 offers a new paradigm for slope stability modeling. Imagine building your entire site in 3D, considering construction and excavation sequences – then easily utilize the same geometry within a variety of groundwater or slope stability analysis scenarios in 2D or 3D. Now imagine that this can all be done within one user-friendly environment more efficiently than your current workflow allows. That’s the new reality of the SVOFFICE™5 family of products. Start your free trial now. Visit soilvision.com/gsm4/ Fully integrated workkow allows users to build 3D 3D Multi-Directional site geometry Slope Stability Analysis with triangulated suface meshes using SVDESIGNER then use the mesh ™ SVOFFICE 5 Features in all other modules. ✪ SVDESIGNER™ Conceptual Modeler/Visualizer: ✪ Build complex 3D site geometry; ✪ Easily slice 2D cross-sections from any position or angle; ✪ Export to 2D or 3D numerical models; Slope Stability Analysis ✪ Rapid prototyping of geotechnical designs; ✪ Manage, edit and visualize construction/excavation activities. of 2D Slices ✪ SVSLOPE® Significantly Improved: ✪ Advanced multi-directional slope stability analysis. Fully build 3D models and analyze slip in any direction – a feature exclusive to SVSLOPE®3D and not available in any competing package. ✪ “Optimize” slip surface refinement function; 1D/2D/3D Groundwater ✪ Improved 2D block searching capabilities; Seepage Analysis ✪ Support for triangulated surface meshes; ✪ Faster solution times. ✪ SVSOILS™ Knowledge-Based Database: (fmr. SoilVision) ✪ Premier product for estimating the hydraulic properties for flow modeling in unsaturated soils has been completely redesigned; ✪ Simplified user interface for increased workflow efficiency; ✪ Increased to 34 available estimation methods; ✪ Development of oil-sand constitutive models; ✪ High-Performance Graphics Engine: ✪ Manipulation of larger more complex models; ✪ Quicker rotation and translation of objects; ✪ Improved CAD editing controls/responsiveness. ✪ & So Much More! Next Generation Geotechnical and Hydrogeological Modeling Sooware MINING AND EXPLORATION GEOTECHNICAL ENGINEERING ENVIRONMENTAL REMEDIATION Web: soilvision.com/gsm4/ | Email: [email protected] | Ph: 1.306.477.3324 SVOFFICE, SVSOILS, SVDESIGNER, SVFLUX, SVHEAT, SVCHEM, SVAIR, “Powerful • Flexible • Effcient” and respective logomarks are trademarks of SoilVision Systems Ltd. SVSLOPE is a registered trademark of SoilVision Systems Ltd. All rights reserved. EDITORIAL BOARD j James L. Withiam, PhD, PE, D.GE, M.ASCE, D’Appolonia [email protected] j J. Tanner Blackburn, PhD, PE, M.ASCE, Hayward Baker [email protected] j Jeff Dunn, PhD, PE, D.GE, GE, M.ASCE, Arup September // October 2016 [email protected] j Ken Fishman, PhD, PE, M.ASCE, McMahon & Mann Consulting Engineers [email protected] j Brian Hubel, PE, GE, M.ASCE, Black & Veatch Corp. [email protected] 8 From the President j Michael P. McGuire, PhD, PE, M.ASCE, Lafayette College By Kord Wissmann [email protected] j Peter G. Nicholson, PhD, PE, D.GE, F.ASCE, 10 From the Editorial Board Nicholson Geotechnical By Peter G. Nicholson [email protected] j Mary C. Nodine, PE, M.ASCE, GEI Consultants, Inc. [email protected] 12 Board of Governors Update j William K. Petersen, PE, M.ASCE, Schnabel Engineering [email protected] 14 Technical Activities Update j Mark Seel, PE, PG, M.ASCE, Langan [email protected] 16 COREBITS PEOPLE j Chris Woods, PE, D.GE, M.ASCE, Densification, Inc. [email protected] Departments 20 As I See It: Ground Improvement – Coming Full Circle 2015-16 G-I BOARD OF GOVERNORS By Vernon R. Schaefer j Kord Wissmann, PhD, PE, D.GE, M.ASCE – President j Garry H. Gregory, PhD, PE, D.GE, M.ASCE – 24 Lessons Learned from GeoLegends: Vice President Thomas D. O’Rourke j Youssef M. A. Hashash, PhD, PE, F.ASCE – Treasurer By Suguang (Sean) Xiao, Hai (Thomas) Lin, and Hanna j Allen Cadden, PE, D.GE, F.ASCE – Past President Moussa Jabbour j James G. Collin, PhD, PE, D.GE, F.ASCE j Patrick J. Fox, PhD, PE, D.GE, M.ASCE 78 The GeoCurmudgeon: The Call j Beth A. Gross, PhD, PE, D.GE, F.ASCE By John P. Bachner j Kancheepuram N. Gunalan, PhD, PE, D.GE, F.ASCE j Brad Keelor – Secretary (non-voting) 82 Look Who’s a D.GE An interview with Robert W. Thompson GEOSTRATA STAFF j Stefan Jaeger – Publisher 84 COREBITS INDUSTRY j Dianne Vance, CAE – Director of Advertising [email protected] 85 COREBITS EVERYTHING G-I j Kristie C. Kehoe – Content Coordinator j Helen Cook – Content Editor 86 COREBITS CHAPTERS j Elizabeth Cuscino – Content Editor j Sean Richardson – Production Manager 87 COREBITS CALENDAR ADVERTISING SALES MANAGERS 87 What’s Coming in November/ j Brooke King, Kelli Nilsson, McCall Mohanna December 2016 GEOSTRATA GEOSTRATA DESIGN j THOR Design Studio, www.thor.design 88 GeoPoem: Ground Improvement By Mary C. Nodine GEOSTRATA is a forum for the free expression and interchange of ideas. The opinions and positions stated within are those of the authors, and not necessarily those of GEOSTRATA, the Geo-Institute, or the American Society of Civil Engineers (ASCE). GEOSTRATA—ISSN 1529-2975—is published bi-monthly by ASCE, 1801 Alexander Bell Drive, Reston, VA 20191-4400 and is a free ASCE/Geo-Institute membership benefit, not available by subscription. ADDRESS CHANGES: GEOSTRATA is published by the Geo-Institute ASCE/G-I members should e-mail [email protected], or click and the American Society of Civil Engineers. on “My Profile” at asce.org. Copyright © 2016 by the American Society of Civil Engineers. All rights reserved. Materials may not be reproduced or translated without written permission from ASCE. Periodicals postage paid at Herndon, VA, and at additional mailing offices. POSTMASTER: Send address changes to GEOSTRATA, 1801 Alexander Bell Drive, Reston, VA 20191-4400. 4 GEOSTRATA SEPTEMBER/OCTOBER 2016 ISSUE NO. 5 • VOLUME 20 GEOPIER IS GROUND IMPROVEMENT® Delivering cost-effective, reliable, engineered foundation systems PROVIDING CUSTOMIZED SOLUTIONS FOR ALL SOIL TYPES SEND US YOUR PROJECT DATA Geopier’s goal is to bring you advanced, innovative ground Let our geotechnical engineers customize a solution that meets your improvement technology in a way that is easy to use every day. needs. Submit your project details to receive a feasibility assessment Geopier Rammed Aggregate Pier® and rigid inclusion products and cost estimate at geopier.com/feasibilityrequest enable you to: • Improve variable fill soils in place • Replace deep foundations For more information call 800-371-7470, • Control settlement e-mail [email protected] or visit geopier.com.
Recommended publications
  • Evaluation of Nontraditional Soil and Aggregate Stabilizers the University of Texas at Austin Authors: Alan F
    CENTER FOR TRANSPORTATION RESEARCH THE UNIVERSITY OF TEXAS AT AUSTIN Project Summary Report 7-1993-S Center for Transportation Research Project 7-1993: Evaluation of Nontraditional Soil and Aggregate Stabilizers The University of Texas at Austin Authors: Alan F. Rauch, Lynn E. Katz, and Howard M. Liljestrand May 2003 EVALUATION OF NONTRADITIONAL SOIL AND AGGREGATE STABILIZERS: A SUMMARY and at ten times the recommended tography (GPC), UV/Vis spectroscopy, Introduction application rates. These tests failed to and nuclear magnetic resonance (NMR) Proprietary chemical products are show significant, consistent changes spectroscopy. In some cases, we syn- marketed by a number of companies for in the engineering properties of the thesized the stabilizer components in stabilizing pavement base and subgrade test soils following treatment with the the laboratory or purchased them from soils. Usually supplied as concentrated three selected products at the applica- other chemical supply companies to liquids, these products are diluted in tion rates used. verify our conclusions. water on the project site and sprayed The three stabilizer products were on the soil to be treated prior to mix- What We Did... then reacted with three reference clays ing and compaction. If effective, these We began by selecting three and five native Texas clay soils. We products might be used as alternatives commercially available, liquid soil tested samples of the well-character- for treating sulfate-rich soils, which are stabilizer products for evaluation. ized, reference clays (kaolinite, illite, susceptible to excessive heaving when Although no effort was made to as- and montmorillonite) to increase the treated with traditional, calcium-based semble and classify a comprehensive likelihood of observing subtle physi- stabilizers such as lime, cement, and fly list of available products and suppliers, cal-chemical changes.
    [Show full text]
  • Isotropic Work Softening Model for Frictional
    Yang, K.-H., Nogueira, C., and Zornberg, J.G. (2008). “Isotropic Work Softening Model for Frictional Geomaterials: Development Based on Lade and Kim soil Constitutive Model.” Proceedings of the XXIX Iberian Latin American Congress on Computational Methods in Engineering, CILAMCE 2008, Maceio, Brazil, November 4-7, pp. 1-17 (CD-ROM). ISOTROPIC WORK SOFTENING MODEL FOR FRICTIONAL GEOMATERIALS: DEVELOPMENT BASED ON LADE AND KIM CONSTITUTIVE SOIL MODEL Kuo-Hsin Yang [email protected] Dept. of Civil Engineering, The University of Texas at Austin, Texas, Austin, USA Christianne de Lyra Nogueira [email protected] Dept. of Mine Engineering, Universidade Federal de Ouro Preto, MG, Brazil Jorge G. Zornberg [email protected] Dept. of Civil Engineering, The University of Texas at Austin, Texas, Austin, USA Abstract: An isotropic softening model for predicting the post-peak behavior of frictional geomaterials is presented. The proposed softening model is a function of plastic work which can include all possible stress-strain combinations. The development of softening model is based on the Lade and Kim constitutive soil model but improves previous work by characterizing the size of decaying yield surface more realistically by assuming an inverse sigmoid function. Compared to original softening model using the exponential decay function, the benefits of using the inverse sigmoid function are highlighted as: (1) provide a smoother transition from hardening to softening occurring at the peak strength point, and (2) limit the decrease of yield surface at a residual yield surface, which is a minimum size of yield surface during softening. The proposed softening model requires three parameters; each parameter has it own physical meaning and can be easily calibrated by a triaxial compression test.
    [Show full text]
  • Characteristics of Composts : Moisture Holding and Water Quality
    Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA/TX-04/0-4403-2 4. Title and Subtitle 5. Report Date AUGUST 2003 CHARACTERISTICS OF COMPOSTS: MOISTURE HOLDING 6. Performing Organization Code AND WATER QUALITY IMPROVEMENT 7. Author(s) 8. Performing Organization Report No. Christine J. Kirchhoff, Dr. Joseph F. Malina, Jr., P.E., DEE, and Dr. 0-4403-2 Michael Barrett, P.E. 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Center for Transportation Research 11. Contract or Grant No. The University of Texas at Austin 0-4403 3208 Red River, Suite 200 Austin, TX 78705-2650 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Texas Department of Transportation Research Report Research and Technology Implementation Office 9/1/2001-8/31-2003 P.O. Box 5080 14. Sponsoring Agency Code Austin, TX 78763-5080 15. Supplementary Notes Project conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration, and the Texas Department of Transportation. 16. Abstract The objective of this study was investigation of the potential beneficial use of compost manufactured topsoil in highway rights-of-way in Texas. The water holding capacity and the physical, chemical and microbiological characteristics of composted manures (dairy cattle, poultry litter, and feedlot), composted biosolids and sandy and clay soil; compost manufacture topsoil (CMT) that contained composted manures or composted biosolids mixed with either sandy soil or clay soil; as well as erosion control compost (ECC) that contained compost and wood chips were evaluated.
    [Show full text]
  • Geoysynthetic Reinforced Embankment Slopes Akshay Kumar Jha and Madhav Madhira
    Chapter Geoysynthetic Reinforced Embankment Slopes Akshay Kumar Jha and Madhav Madhira Abstract Slope failures lead to loss of life and damage to property. Slope instability of natural slope depends on natural and manmade factors such as excessive rainfall, earthquakes, deforestation, unplanned construction activity, etc. Manmade slopes are formed for embankments and cuttings. Steepening of slopes for construc- tion of rail/road embankments or for widening of existing roads is a necessity for development. Use of geosynthetics for steep slope construction considering design and environmental aspects could be a viable alternative to these issues. Methods developed for unreinforced slopes have been extended to analyze geosynthetic reinforced slopes accounting for the presence of reinforcement. Designing geosyn- thetic reinforced slope with minimum length of geosynthetics leads to economy. This chapter presents review of literature and design methodologies available for reinforced slopes with granular and marginal backfills. Optimization of reinforce- ment length from face end of the slope and slope - reinforcement interactions are also presented. Keywords: slopes, geosynthetics, reinforcement, optimization of length, marginal soils, steepening 1. Introduction Landslides in slopes and failures of embankment and cut slopes lead to loss of life and property. Several factors, natural and manmade, such as heavy rainfall, unplanned construction, deforestation, restricting waterways of rivers and their tributaries are major causes for instability of slopes. Factors controlling stability of natural slopes are type of soil, environmental conditions, groundwater, stress history, rainfall, cloud burst, earthquakes, etc. Landslide mortality rate exceeds one per 100 km2 per year in developing countries like India, China, Nepal, Peru, Venezuela, Philippines and Tajikistan [1, 2].
    [Show full text]
  • FHWA/TX-07/0-5202-1 Accession No
    Technical Report Documentation Page 1. Report No. 2. Government 3. Recipient’s Catalog No. FHWA/TX-07/0-5202-1 Accession No. 4. Title and Subtitle 5. Report Date Determination of Field Suction Values, Hydraulic Properties, August 2005; Revised March 2007 and Shear Strength in High PI Clays 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Jorge G. Zornberg, Jeffrey Kuhn, and Stephen Wright 0-5202-1 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Center for Transportation Research 11. Contract or Grant No. The University of Texas at Austin 0-5202 3208 Red River, Suite 200 Austin, TX 78705-2650 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Texas Department of Transportation Technical Report Research and Technology Implementation Office September 2004–August 2006 P.O. Box 5080 14. Sponsoring Agency Code Austin, TX 78763-5080 15. Supplementary Notes Project performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration. Project Title: Determination of Field Suction Values in High PI Clays for Various Surface Conditions and Drain Installations 16. Abstract Moisture infiltration into highway embankments constructed by the Texas Department of Transportation (TxDOT) using high Plasticity Index (PI) clays results in changes in shear strength and in flow pattern that leads to recurrent slope failures. In addition, soil cracking over time increases the rate of moisture infiltration. The overall objective of this research is to determine the suction, hydraulic properties, and shear strength of high PI Texas clays. Specifically, two comprehensive experimental programs involving the characterization of unsaturated properties and the shear strength of a high PI clay (Eagle Ford clay) were conducted.
    [Show full text]
  • An Analysis of the Mechanisms and Efficacy of Three Liquid Chemical Soil Stabilizers
    Technical Report Documentation Page 1. Report No. 1993-1 2. Government 3. Recipient’s Catalog No. FHWA/TX-03/1993-1 (Volume 1) Accession No. 4. Title and Subtitle 5. Report Date AN ANALYSIS OF THE MECHANISMS AND EFFICACY May 2003 OF THREE LIQUID CHEMICAL SOIL STABILIZERS: VOLUME 1 7. Author(s) 6. Performing Organization Code Alan F. Rauch, Lynn E. Katz, and Howard M. Liljestrand 8. Performing Organization Report No. 1993-1 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Center for Transportation Research The University of Texas at Austin 11. Contract or Grant No. 3208 Red River, Suite 200 Research Project 7-1993 Austin, TX 78705-2650 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Texas Department of Transportation Research Report Research and Technology Implementation Office 14. Sponsoring Agency Code P.O. Box 5080 Austin, TX 78763-5080 15. Supplementary Notes Project conducted in cooperation with the Texas Department of Transportation and the U.S. Department of Transportation, Federal Highway Administration. 16. Abstract Liquid chemical products are marketed by a number of companies for stabilizing pavement base and subgrade soils. If effective, these products could be used as alternatives for treating sulfate-rich soils, which are susceptible to excessive heaving when treated with traditional, calcium-based stabilizers like lime, cement, and fly ash. However, the chemical composition, stabilizing mechanisms, and performance of these liquid products are not well understood. The primary objective of this study was to investigate and identify the mechanisms by which clay soils are modified or altered by these liquid chemical agents.
    [Show full text]
  • Slope Stability Charts
    The University of Texas Department of Civil Engineering Professor Stephen G. Wright SLOPE STABILITY - CHARTS OR STABILITY NUMBERS Bell, James M. (1966) "Dimensionless Parameters for Homogeneous Earth Slopes," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 92, No. SM5, September, pp. 51-65. Bell, James M. (1968) Closure to "Dimensional Parameters for Homogeneous Earth Slopes," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM3, May, pp. 763-766. Bishop, A.W. and Morgenstern, Norbert (1960) "Stability Coefficients for Earth Slopes," Geotechnique, Institution of Civil Engineers, London, Vol. 10, No. 4, December, pp. 129-150. Cousins, Brian F. (1978) "Stability Charts for Simple Earth Slopes," Journal of the Geotechnical Engineering Division, ASCE, Vol. 104, No. GT2, February, pp. 267-279. Desai, Chandrakant S. (1977) "Drawdown Analysis of Slopes by Numerical Method," Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT7, July, pp. 667-676. Duncan, J.M. and Buchignani, A.L. (1975) An Engineering Manual for Slope Stability Studies, Department of Civil Engineering, University of California, Berkeley, March, 83 p. Ellis, Harold B. (1973) "Use of Cycloidal Arcs for Estimating Ditch Safety," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 99, No. SM2, February, pp. 165-179. Giger, Max W. and Krizek, Raymond J. (1976) "Stability of Vertical Corner Cut with Concentrated Surcharge Load," Journal of the Geotechnical Engineering Division, ASCE, Vol. 92, No. GT1, January, pp. 31-40. Huang, Yang H. (1977) "Stability Coefficients for Sidehill Benches," Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. GT5, May, pp.
    [Show full text]
  • Reliability-Based Design for External Stability of Narrow Mechanically Stabilized Earth Walls: Calibration from Centrifuge Tests
    Reliability-Based Design for External Stability of Narrow Mechanically Stabilized Earth Walls: Calibration from Centrifuge Tests Kuo-Hsin Yang1; Jianye Ching, M.ASCE2; and Jorge G. Zornberg, M.ASCE3 Abstract: A narrow mechanically stabilized earth (MSE) wall is defined as a MSE wall placed adjacent to an existing stable wall, with a width less than that established in current guidelines. Because of space constraints and interactions with the existing stable wall, various studies have suggested that the mechanics of narrow walls differ from those of conventional walls. This paper presents the reliability-based design (RBD) for external stability (i.e., sliding and overturning) of narrow MSE walls with wall aspects L=H ranging from 0.2 to 0.7. The reduction in earth pressure pertaining to narrow walls is considered by multiplying a reduction factor by the conventional earth pressure. The probability distribution of the reduction factor is calibrated based on Bayesian analysis by using the results of a series of centrifuge tests on narrow walls. The stability against bearing capacity failure and the effect of water pressure within MSE walls are not calibrated in this study because they are not modeled in the centrifuge tests. An RBD method considering variability in soil parameters, wall dimensions, and traffic loads is applied to establish the relationship between target failure probability and the required safety factor. A design example is provided to illustrate the design procedure. DOI: 10.1061/(ASCE)GT.1943-5606.0000423. © 2011 American Society of Civil Engineers. CE Database subject headings: Earth pressure; Centrifuge models; Walls; Soil structures; Calibration.
    [Show full text]
  • SIDEWALK CROSS-SLOPE DESIGN: ANALYSIS of October 2001 Rev
    Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. FHWA/TX-03/4171-1 4. Title and Subtitle 5. Report Date SIDEWALK CROSS-SLOPE DESIGN: ANALYSIS OF October 2001 Rev. May 2002 ACCESSIBILITY FOR PERSONS WITH DISABILITIES 7. Author(s) 6. Performing Organization Code Kara M.Kockelman, Lydia Heard, Young-Jun Kweon, Thomas W. Rioux 8. Performing Organization Report No. 4171-1 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Center for Transportation Research The University of Texas at Austin 11. Contract or Grant No. 3208 Red River, Suite 200 Austin, TX 78705-2650 Research Project 0-4171 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered Texas Department of Transportation Research Report Research and Technology Implementation Office 14. Sponsoring Agency Code P.O. Box 5080 Austin, TX 78763-5080 15. Supplementary Notes Project conducted in cooperation with the U.S. Department of Transportation, Federal Highway Administration, and the Texas Department of Transportation. 16. Abstract Current and proposed Americans with Disabilities Act (ADA) guidelines offer no specific guidance on acceptable maximum cross slopes where constraints of reconstruction prohibit meeting the 2-percent maximum cross-slope requirement for new construction. Two types of sidewalk test-section data across a sample of 50 individuals were collected, combined with an earlier sample of 17 records of participation, and analyzed here, with an emphasis on cross slopes. These examined heart-rate changes and user perception of discomfort levels, and they relied on a random-effects model and an ordered-probit model, respectively.
    [Show full text]
  • Recommended Compaction Requirements for Placement (1874-S)
    CENTER FOR TRANSPORTATION RESEARCH THE UNIVERSITY OF TEXAS AT AUSTIN Center for Project Summary Report 1874-S Transportation Research Assessment of Cohesionless Materials to Be Used as Compacted Fill The University of Texas at Austin Authors: Stephen G. Wright, Brad J. Arcement, and Eric R. Marx Recommended Compaction Requirements for Placement of Uniform Fine Sand Backfill Materials Objective and Scope Particular attention was paid pacted using each of the to the laboratory compaction following compaction proce- of Project procedures used and the dures: The objective of this specifications for field • TxDOT Tx 113-E- project was to develop compaction. Laboratory Compaction recommendations for com- Selection of Soil for Testing Characteristics and paction of cohesionless soils TxDOT selected several Moisture-Density Rela- used as backfill materials. sources of cohesionless fill tionship of Base Materials The Texas Department of materials for testing and • ASTM D 1557-Labora- Transportation (TxDOT) evaluation. Initially, attention tory Compaction Charac- utilizes a number of sources was focused on the El Paso teristics of Soil Using of cohesionless soils as fill area where abundant sources Modified Effort materials for embankment of cohesionless fill materials • British Standard BS-1377 construction and as backfill are available and used. Nine -Vibrating Hammer for mechanically stabilized sources of fill material were Method earth (MSE) walls. Some identified in the El Paso area • ASTM D 4253-Maximum problems have been experi- and samples were obtained Index Density and Unit enced with these materials in for further laboratory testing. Weight of Soils Using a the past, especially with After the initial selection of Vibratory Table settlements of backfills soils from the El Paso area, All tests using the Tx behind retaining walls.
    [Show full text]
  • GMS 10.1 Tutorial UTEXAS – Dam with Seepage Use SEEP2D and UTEXAS to Model Seepage and Slope Stability of an Earth Dam
    v. 10.1 GMS 10.1 Tutorial UTEXAS – Dam with Seepage Use SEEP2D and UTEXAS to model seepage and slope stability of an earth dam Objectives Learn how to build an integrated SEEP2D/UTEXAS model in GMS. Prerequisite Tutorials Required Components Time • SEEP2D – Earth Dam • GIS • 25–40 minutes • UTEXAS – Natural Slope • Map Module • Mesh Module • SEEP2D • UTEXAS Page 1 of 16 © Aquaveo 2015 1 Introduction ......................................................................................................................... 2 1.1 Outline .......................................................................................................................... 3 2 Program Mode..................................................................................................................... 3 3 Getting Started .................................................................................................................... 3 4 Set the Units ......................................................................................................................... 4 5 Save the GMS Project File ................................................................................................. 4 6 Create the Conceptual Model Features ............................................................................. 5 6.1 Create the Points .......................................................................................................... 5 6.2 Create the Arcs and Polygons ......................................................................................
    [Show full text]
  • 1 Slope Stability References Alonso, EE
    1 The University of Texas Department of Civil Engineering Professor Stephen G. Wright Slope Stability References Alonso, E. E., "Risk Analysis of Slopes and Its Application to Slopes in Canadian Sensitive Clays," Geotechnique, Great Britain, Vol. 26, No. 3, Sept., 1976, pp. 453-472. Baker, R., "Determination of the Critical Slip Surface in Slope Stability Computations," International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 4, No. 4, Oct.-Dec., 1980, pp. 333-359. Baligh, Mohsen, and Amr S. Azzouz, "End Effects on Stability of Cohesive Slopes," Journal of the Geotechnical Engineering Division, ASCE, Vol. 101, No. GT11, Nov., 1975, pp. 1105-1117. Baligh, M. M., A. S. Azzouz, and C. C. Ladd, "Line Loads on Cohesive Slopes," Proceedings of the Ninth International Conference on Soil Mechanics and Foundation Engineering, Tokyo, Vol. 2, 1977, pp. 13-16. Bazett, D.J., Adams, J.I. and Matyas, E.L. (1961) "An Investigation of Slides in a Test Trench Excavated in Fissured Sensitive Marine Clay," Proceedings, Fifth International Conference on Soil Mechanics and Foundation Engineering, Vol. 1, pp. 431-435. Beene, R.R.W. (1967) "Waco Dam Slide," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 93, SM4, July, pp. 35-44. Bell, James M. (1966), "Dimensionless Parameters for Homogeneous Earth Slopes," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 92, No. SM5, Sept., pp. 51-65. Bell, James M. ·(1968) "General Slope Stability Analysis," Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 94, No. SM6, November, pp. 1253-1270. Binger, W.V. (1948) "Analytical Studies of Panama Canal Slides," Proceedings, Second International Conference on Soil Mechanics and Foundation Engineering, Vol.
    [Show full text]