An Overview of Morihiko Saito's Theory of Mixed Hodge Modules
AN OVERVIEW OF MORIHIKO SAITO’S THEORY OF MIXED HODGE MODULES CHRISTIAN SCHNELL Abstract. After explaining the definition of pure and mixed Hodge modules on complex manifolds, we describe some of Saito’s most important results and their proofs, and then discuss two simple applications of the theory. A. Introduction 1. Nature of Saito’s theory. Hodge theory on complex manifolds bears a sur- prising likeness to ℓ-adic cohomology theory on algebraic varieties defined over finite fields. This was pointed out by Deligne [Del71], who also proposed a “heuristic dic- tionary” for translating results from one language into the other, and used it to predict, among other things, the existence of limit mixed Hodge structures and the notion of admissibility for variations of mixed Hodge structure. But the most important example of a successful translation is without doubt Morihiko Saito’s theory of mixed Hodge modules: it is the analogue, in Hodge theory, of the mixed ℓ-adic complexes introduced by Beilinson, Bernstein, and Deligne [BBD82]. One of the main accomplishments of Saito’s theory is a Hodge-theoretic proof for the decomposition theorem; the original argument in [BBD82, §6.2] was famously based on reduction to positive characteristic. Contained in two long papers [Sai88, Sai90b], Saito’s theory is a vast generaliza- tion of classical Hodge theory, built on the foundations laid by many people during the 1970s and 1980s: the theory of perverse sheaves, D-module theory, and the study of variations of mixed Hodge structure and their degenerations. Roughly speaking, classical Hodge theory can deal with two situations: the cohomology groups of a single complex algebraic variety, to which it assigns a mixed Hodge structure; and the cohomology groups of a family of smooth projective varieties, arXiv:1405.3096v1 [math.AG] 13 May 2014 to which it assigns a variation of Hodge structure.
[Show full text]