UC Berkeley UC Berkeley Electronic Theses and Dissertations
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Stack Completions and Morita Equivalence for Categories in a Topos Cahiers De Topologie Et Géométrie Différentielle Catégoriques, Tome 20, No 4 (1979), P
CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES MARTA BUNGE Stack completions and Morita equivalence for categories in a topos Cahiers de topologie et géométrie différentielle catégoriques, tome 20, no 4 (1979), p. 401-436 <http://www.numdam.org/item?id=CTGDC_1979__20_4_401_0> © Andrée C. Ehresmann et les auteurs, 1979, tous droits réservés. L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CAHIERS DE TOPOLOGIE Vol. XX-4 (1979) ET GEOMETRIE DIFFERENTIELLE STACK COMPLETIONS AND MORITA EQUIVALENCE FOR CATEGORIES IN A TOPOS by Marta BUNGE 1) 0. INTRODUCTION. The origin of this paper can be traced back to one of a series of lectures given by F.W. Lawvere [10, Lecture V]. In it, Lawvere dealt for the case of an arbitrary topos S , with the notion of stack, a notion which, for Grothendieck toposes, had been considered by J. Giraud [6], and which is given relative to a site. A topos S may always be regarded as a site with the regular epi- morphism topology, and the notion of stack over S is then defined with respect to this particular topology. Special as it may be, this notion of stack over a topos S plays an important role in the development of Category Theory over a base to- pos S . -
Vector Bundles As Generators on Schemes and Stacks
Vector Bundles as Generators on Schemes and Stacks Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Philipp Gross aus D¨usseldorf D¨usseldorf,Mai 2010 Aus dem Mathematischen Institut der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Stefan Schr¨oer Koreferent: Prof. Dr. Holger Reich Acknowledgments The work on this dissertation has been one of the most significant academic challenges I have ever had to face. This study would not have been completed without the support, patience and guidance of the following people. It is to them that I owe my deepest gratitude. I am indebted to my advisor Stefan Schr¨oerfor his encouragement to pursue this project. He taught me algebraic geometry and how to write academic papers, made me a better mathematician, brought out the good ideas in me, and gave me the opportunity to attend many conferences and schools in Europe. I also thank Holger Reich, not only for agreeing to review the dissertation and to sit on my committee, but also for showing an interest in my research. Next, I thank the members of the local algebraic geometry research group for their time, energy and for the many inspiring discussions: Christian Liedtke, Sasa Novakovic, Holger Partsch and Felix Sch¨uller.I have had the pleasure of learning from them in many other ways as well. A special thanks goes to Holger for being a friend, helping me complete the writing of this dissertation as well as the challenging research that lies behind it. -
How to Glue Perverse Sheaves”
NOTES ON BEILINSON'S \HOW TO GLUE PERVERSE SHEAVES" RYAN REICH Abstract. The titular, foundational work of Beilinson not only gives a tech- nique for gluing perverse sheaves but also implicitly contains constructions of the nearby and vanishing cycles functors of perverse sheaves. These con- structions are completely elementary and show that these functors preserve perversity and respect Verdier duality on perverse sheaves. The work also de- fines a new, \maximal extension" functor, which is left mysterious aside from its role in the gluing theorem. In these notes, we present the complete details of all of these constructions and theorems. In this paper we discuss Alexander Beilinson's \How to glue perverse sheaves" [1] with three goals. The first arose from a suggestion of Dennis Gaitsgory that the author study the construction of the unipotent nearby cycles functor R un which, as Beilinson observes in his concluding remarks, is implicit in the proof of his Key Lemma 2.1. Here, we make this construction explicit, since it is invaluable in many contexts not necessarily involving gluing. The second goal is to restructure the pre- sentation around this new perspective; in particular, we have chosen to eliminate the two-sided limit formalism in favor of the straightforward setup indicated briefly in [3, x4.2] for D-modules. We also emphasize this construction as a simple demon- stration that R un[−1] and Verdier duality D commute, and de-emphasize its role in the gluing theorem. Finally, we provide complete proofs; with the exception of the Key Lemma, [1] provides a complete program of proof which is not carried out in detail, making a technical understanding of its contents more difficult given the density of ideas. -
X → S Be a Proper Morphism of Locally Noetherian Schemes and Let F Be a Coherent Sheaf on X That Is flat Over S (E.G., F Is Smooth and F Is a Vector Bundle)
COHOMOLOGY AND BASE CHANGE FOR ALGEBRAIC STACKS JACK HALL Abstract. We prove that cohomology and base change holds for algebraic stacks, generalizing work of Brochard in the tame case. We also show that Hom-spaces on algebraic stacks are represented by abelian cones, generaliz- ing results of Grothendieck, Brochard, Olsson, Lieblich, and Roth{Starr. To accomplish all of this, we prove that a wide class of relative Ext-functors in algebraic geometry are coherent (in the sense of M. Auslander). Introduction Let f : X ! S be a proper morphism of locally noetherian schemes and let F be a coherent sheaf on X that is flat over S (e.g., f is smooth and F is a vector bundle). If s 2 S is a point, then define Xs to be the fiber of f over s. If s has residue field κ(s), then for each integer q there is a natural base change morphism of κ(s)-vector spaces q q q b (s):(R f∗F) ⊗OS κ(s) ! H (Xs; FXs ): Cohomology and Base Change originally appeared in [EGA, III.7.7.5] in a quite sophisticated form. Mumford [Mum70, xII.5] and Hartshorne [Har77, xIII.12], how- ever, were responsible for popularizing a version similar to the following. Let s 2 S and let q be an integer. (1) The following are equivalent. (a) The morphism bq(s) is surjective. (b) There exists an open neighbourhood U of s such that bq(u) is an iso- morphism for all u 2 U. (c) There exists an open neighbourhood U of s, a coherent OU -module Q, and an isomorphism of functors: Rq+1(f ) (F ⊗ f ∗ I) =∼ Hom (Q; I); U ∗ XU OXU U OU where fU : XU ! U is the pullback of f along U ⊆ S. -
The Orbifold Chow Ring of Toric Deligne-Mumford Stacks
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 18, Number 1, Pages 193–215 S 0894-0347(04)00471-0 Article electronically published on November 3, 2004 THE ORBIFOLD CHOW RING OF TORIC DELIGNE-MUMFORD STACKS LEVA.BORISOV,LINDACHEN,ANDGREGORYG.SMITH 1. Introduction The orbifold Chow ring of a Deligne-Mumford stack, defined by Abramovich, Graber and Vistoli [2], is the algebraic version of the orbifold cohomology ring in- troduced by W. Chen and Ruan [7], [8]. By design, this ring incorporates numerical invariants, such as the orbifold Euler characteristic and the orbifold Hodge num- bers, of the underlying variety. The product structure is induced by the degree zero part of the quantum product; in particular, it involves Gromov-Witten invariants. Inspired by string theory and results in Batyrev [3] and Yasuda [28], one expects that, in nice situations, the orbifold Chow ring coincides with the Chow ring of a resolution of singularities. Fantechi and G¨ottsche [14] and Uribe [25] verify this conjecture when the orbifold is Symn(S)whereS is a smooth projective surface n with KS = 0 and the resolution is Hilb (S). The initial motivation for this project was to compare the orbifold Chow ring of a simplicial toric variety with the Chow ring of a crepant resolution. To achieve this goal, we first develop the theory of toric Deligne-Mumford stacks. Modeled on simplicial toric varieties, a toric Deligne-Mumford stack corresponds to a combinatorial object called a stacky fan. As a first approximation, this object is a simplicial fan with a distinguished lattice point on each ray in the fan. -
Perverse Sheaves in Algebraic Geometry
Perverse sheaves in Algebraic Geometry Mark de Cataldo Lecture notes by Tony Feng Contents 1 The Decomposition Theorem 2 1.1 The smooth case . .2 1.2 Generalization to singular maps . .3 1.3 The derived category . .4 2 Perverse Sheaves 6 2.1 The constructible category . .6 2.2 Perverse sheaves . .7 2.3 Proof of Lefschetz Hyperplane Theorem . .8 2.4 Perverse t-structure . .9 2.5 Intersection cohomology . 10 3 Semi-small Maps 12 3.1 Examples and properties . 12 3.2 Lefschetz Hyperplane and Hard Lefschetz . 13 3.3 Decomposition Theorem . 16 4 The Decomposition Theorem 19 4.1 Symmetries from Poincaré-Verdier Duality . 19 4.2 Hard Lefschetz . 20 4.3 An Important Theorem . 22 5 The Perverse (Leray) Filtration 25 5.1 The classical Leray filtration. 25 5.2 The perverse filtration . 25 5.3 Hodge-theoretic implications . 28 1 1 THE DECOMPOSITION THEOREM 1 The Decomposition Theorem Perhaps the most successful application of perverse sheaves, and the motivation for their introduction, is the Decomposition Theorem. That is the subject of this section. The decomposition theorem is a generalization of a 1968 theorem of Deligne’s, from a smooth projective morphism to an arbitrary proper morphism. 1.1 The smooth case Let X = Y × F. Here and throughout, we use Q-coefficients in all our cohomology theories. Theorem 1.1 (Künneth formula). We have an isomorphism M H•(X) H•−q(Y) ⊗ Hq(F): q≥0 In particular, this implies that the pullback map H•(X) H•(F) is surjective, which is already rare for fibrations that are not products. -
The Decomposition Theorem, Perverse Sheaves and the Topology Of
The decomposition theorem, perverse sheaves and the topology of algebraic maps Mark Andrea A. de Cataldo and Luca Migliorini∗ Abstract We give a motivated introduction to the theory of perverse sheaves, culminating in the decomposition theorem of Beilinson, Bernstein, Deligne and Gabber. A goal of this survey is to show how the theory develops naturally from classical constructions used in the study of topological properties of algebraic varieties. While most proofs are omitted, we discuss several approaches to the decomposition theorem, indicate some important applications and examples. Contents 1 Overview 3 1.1 The topology of complex projective manifolds: Lefschetz and Hodge theorems 4 1.2 Families of smooth projective varieties . ........ 5 1.3 Singular algebraic varieties . ..... 7 1.4 Decomposition and hard Lefschetz in intersection cohomology . 8 1.5 Crash course on sheaves and derived categories . ........ 9 1.6 Decomposition, semisimplicity and relative hard Lefschetz theorems . 13 1.7 InvariantCycletheorems . 15 1.8 Afewexamples.................................. 16 1.9 The decomposition theorem and mixed Hodge structures . ......... 17 1.10 Historicalandotherremarks . 18 arXiv:0712.0349v2 [math.AG] 16 Apr 2009 2 Perverse sheaves 20 2.1 Intersection cohomology . 21 2.2 Examples of intersection cohomology . ...... 22 2.3 Definition and first properties of perverse sheaves . .......... 24 2.4 Theperversefiltration . .. .. .. .. .. .. .. 28 2.5 Perversecohomology .............................. 28 2.6 t-exactness and the Lefschetz hyperplane theorem . ...... 30 2.7 Intermediateextensions . 31 ∗Partially supported by GNSAGA and PRIN 2007 project “Spazi di moduli e teoria di Lie” 1 3 Three approaches to the decomposition theorem 33 3.1 The proof of Beilinson, Bernstein, Deligne and Gabber . -
Moduli Stack of Oriented Formal Groups and Periodic Complex Bordism
MODULI STACK OF ORIENTED FORMAL GROUPS AND PERIODIC COMPLEX BORDISM ROK GREGORIC or Abstract. We study the non-connective spectral stack MFG, the moduli stack of ori- ented formal groups in the sense of Lurie. We show that its descent spectral sequence recovers the Adams-Novikov spectral sequence. For two E -forms of periodic complex bordism MP, the Thom spectrum and Snaith construction model, we describe the univer- ∞ or sal property of the cover Spec(MP) → MFG. We show that Quillen’s celebrated theorem on complex bordism is equivalent to the assertion that the underlying ordinary stack of or MFG is the classical stack of ordinary formal groups MFG. In order to carry out all of the above, we develop foundations of a functor of points approach♡ to non-connective spectral algebraic geometry. Introduction The goal of this paper is to show that the connection between the homotopy category of spectra and formal groups, which is at the heart of chromatic homotopy theory, may be interpreted in terms of spectral algebraic geometry. By formal group, we mean a smooth 1-dimensional commutative formal group, as is traditional in homotopy theory. These are classified by an algebro-geometric moduli stack, the moduli stack of formal groups, which ♡ we shall denote MFG. Here and in the rest of the paper, we will use the heart symbol ♡ in the subscript to emphasize the classical nature of algebro-geometric objects considered, in contrast to spectral algebro-geometric objects which will be our main focus. This notation is motivated by the fact that ordinary abelian groups sit inside spectra as the heart of the usual t- ♡ structure. -
Unbounded Quantifiers and Strong Axioms in Topos Theory
Unbounded quantifiers & strong axioms Michael Shulman The Question Two kinds of set theory Strong axioms Unbounded quantifiers and strong axioms Internalization The Answer in topos theory Stack semantics Logic in stack semantics Strong axioms Michael A. Shulman University of Chicago November 14, 2009 Unbounded quantifiers & strong axioms The motivating question Michael Shulman The Question Two kinds of set theory Strong axioms Internalization The Answer Stack semantics Logic in stack semantics What is the topos-theoretic counterpart of the Strong axioms strong set-theoretic axioms of Separation, Replacement, and Collection? Unbounded quantifiers & strong axioms Outline Michael Shulman The Question Two kinds of set theory Strong axioms 1 The Question Internalization The Answer Two kinds of set theory Stack semantics Logic in stack Strong axioms semantics Strong axioms Internalization 2 The Answer Stack semantics Logic in stack semantics Strong axioms Following Lawvere and others, I prefer to view this as an equivalence between two kinds of set theory. Unbounded quantifiers & strong axioms Basic fact Michael Shulman The Question Two kinds of set theory Strong axioms Internalization The Answer Stack semantics Elementary topos theory is equiconsistent with a Logic in stack semantics weak form of set theory. Strong axioms Unbounded quantifiers & strong axioms Basic fact Michael Shulman The Question Two kinds of set theory Strong axioms Internalization The Answer Stack semantics Elementary topos theory is equiconsistent with a Logic in stack semantics weak form of set theory. Strong axioms Following Lawvere and others, I prefer to view this as an equivalence between two kinds of set theory. Unbounded quantifiers & strong axioms “Membership-based” or Michael Shulman “material” set theory The Question Two kinds of set theory Strong axioms Data: Internalization The Answer • A collection of sets. -
Introduction to Algebraic Stacks
Introduction to Algebraic Stacks K. Behrend December 17, 2012 Abstract These are lecture notes based on a short course on stacks given at the Newton Institute in Cambridge in January 2011. They form a self-contained introduction to some of the basic ideas of stack theory. Contents Introduction 3 1 Topological stacks: Triangles 8 1.1 Families and their symmetry groupoids . 8 Various types of symmetry groupoids . 9 1.2 Continuous families . 12 Gluing families . 13 1.3 Classification . 15 Pulling back families . 17 The moduli map of a family . 18 Fine moduli spaces . 18 Coarse moduli spaces . 21 1.4 Scalene triangles . 22 1.5 Isosceles triangles . 23 1.6 Equilateral triangles . 25 1.7 Oriented triangles . 25 Non-equilateral oriented triangles . 30 1.8 Stacks . 31 1.9 Versal families . 33 Generalized moduli maps . 35 Reconstructing a family from its generalized moduli map . 37 Versal families: definition . 38 Isosceles triangles . 40 Equilateral triangles . 40 Oriented triangles . 41 1 1.10 Degenerate triangles . 42 Lengths of sides viewpoint . 43 Embedded viewpoint . 46 Complex viewpoint . 52 Oriented degenerate triangles . 54 1.11 Change of versal family . 57 Oriented triangles by projecting equilateral ones . 57 Comparison . 61 The comparison theorem . 61 1.12 Weierstrass compactification . 64 The j-plane . 69 2 Formalism 73 2.1 Objects in continuous families: Categories fibered in groupoids 73 Fibered products of groupoid fibrations . 77 2.2 Families characterized locally: Prestacks . 78 Versal families . 79 2.3 Families which can be glued: Stacks . 80 2.4 Topological stacks . 81 Topological groupoids . 81 Generalized moduli maps: Groupoid Torsors . -
Algebraic Stacks Many of the Geometric Properties That Are Defined for Schemes (Smoothness, Irreducibility, Separatedness, Properness, Etc...)
Algebraic stacks Tom´as L. G´omez Tata Institute of Fundamental Research Homi Bhabha road, Mumbai 400 005 (India) [email protected] 9 November 1999 Abstract This is an expository article on the theory of algebraic stacks. After intro- ducing the general theory, we concentrate in the example of the moduli stack of vector budles, giving a detailed comparison with the moduli scheme obtained via geometric invariant theory. 1 Introduction The concept of algebraic stack is a generalization of the concept of scheme, in the same sense that the concept of scheme is a generalization of the concept of projective variety. In many moduli problems, the functor that we want to study is not representable by a scheme. In other words, there is no fine moduli space. Usually this is because the objects that we want to parametrize have automorphisms. But if we enlarge the category of schemes (following ideas that go back to Grothendieck and Giraud, and were developed by Deligne, Mumford and Artin) and consider algebraic stacks, then we can construct the “moduli stack”, that captures all the information that we would like in a fine moduli space. The idea of enlarging the category of algebraic varieties to study moduli problems is not new. In fact A. Weil invented the concept of abstract variety to give an algebraic arXiv:math/9911199v1 [math.AG] 25 Nov 1999 construction of the Jacobian of a curve. These notes are an introduction to the theory of algebraic stacks. I have tried to emphasize ideas and concepts through examples instead of detailed proofs (I give references where these can be found). -
The Hodge Theory of the Decomposition Theorem (After De
S´eminaire BOURBAKI Mars 2016 o 68`eme ann´ee, 2015-2016, n 1115 THE HODGE THEORY OF THE DECOMPOSITION THEOREM [after M. A. de Cataldo and L. Migliorini] by Geordie WILLIAMSON INTRODUCTION The Decomposition Theorem is a beautiful theorem about algebraic maps. In the words of MacPherson [Mac83], “it contains as special cases the deepest homological properties of algebraic maps that we know.” Since its proof in 1981 it has found spec- tacular applications in number theory, representation theory and combinatorics. Like its cousin the Hard Lefschetz Theorem, proofs appealing to the Decomposition The- orem are usually difficult to obtain via other means. This leads one to regard the Decomposition Theorem as a deep statement lying at the heart of diverse problems. The Decomposition Theorem was first proved by Beilinson, Bernstein, Deligne and Gabber [BBD]. Their proof proceeds by reduction to positive characteristic in order to use the Frobenius endomorphism and its weights, and ultimately rests on Deligne’s proof of the Weil conjectures. Some years later Saito obtained another proof of the Decomposition Theorem as a corollary of his theory of mixed Hodge modules [Sai87, Sai89]. Again the key is a notion of weight. More recently, de Cataldo and Migliorini discovered a simpler proof of the Decom- position Theorem [dCM02, dCM05]. The proof is an ingenious reduction to statements about the cohomology of smooth projective varieties, which they establish via Hodge theory. In their proof they uncover several remarkable geometric statements which go a arXiv:1603.09235v1 [math.AG] 30 Mar 2016 long way to explaining “why” the Decomposition Theorem holds, purely in the context of the topology of algebraic varieties.